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Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endoge-
nously synthesized byNO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH,
molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS,
and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features
and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational
biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of
structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that
could benefit from more extensive computational investigations.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
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1. Introduction

Nitric oxide (NO) is a gaseous radical identified as a signaling mole-
cule by Furchgott, Ignarro, and Murad, who were awarded the Nobel
prize in Physiology and Medicine in 1998 for their pioneering findings
on this small, highly diffusible molecule [1,2]. Before NO was identified
and characterized, themolecule responsible for vasodilationwas known
as “endothelium-derived relaxing factor” [3,4] and many years passed
until it became clear that this was NO [1,2,5]. The finding of its
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involvement in the cardiovascular system [6] was followed by the real-
ization of its relevance in the context of immune response [7,8], neuro-
transmission [9], respiratory function [10], and a number of different
other biological processes, establishing NO as a crucial physiologic reg-
ulator of cellular signaling.

Because of its highly diffusible nature and reactivity, NO is a proto-
typic cellular messenger, as it can signal in a dose-, time-, and organ-
dependent manner by directly targeting cellular biomolecules such as
proteins and nucleic acids. NO is generated by a class of nicotinamide
adenine dinucleotide phosphate (NADPH)-dependent NO synthases
(NOSs), from L-arginine andmolecular oxygen (Fig. 1). Several cofactors
are involved in the reaction, which allow the electron flow fromNADPH
to the heme group and molecular oxygen, through a molecule of flavin
adenine dinucleotide (FAD), and then flavin mononucleotide (FMN).
During catalysis, the tetrahydrobiopterin (BH4) cofactor provides an ad-
ditional electron, which is replaced during the catalytic turnover [11].

Three isoforms of NOS that require binding to calmodulin to be ac-
tive have been identified so far in mammals [12,13]. Two are constitu-
tively expressed (cNOSs), while the third is inducible (iNOS or NOS2).
Constitutive NOSs comprise the neuronal NOS (nNOS or NOS1) and
the endothelial NOS (eNOS or NOS3), both of which have calcium-
dependent activity, whereas iNOS can produce NO efficiently and mas-
sively without calcium [14]. nNOS plays a pivotal role in the nervous
system, as it is involved in synaptic plasticity for regulation of nerves
tone [15]. It is also likely to be involved in long term potentiation, be-
cause of the neurotransmitter properties of theNO produced in the cen-
tral nervous system [6,16]. nNOS also has many crucial functions also in
skeletal muscle cells [17], where it localizes below the sarcolemma by
interacting with dystrophin [18,19], and it regulates blood flow in mus-
cle cells during exercise. Moreover, nNOS is associated with the cardiac
sarcoplasmic reticulum, where it regulates myocardial contraction by
exerting highly specific, localized NO production that acts on ion
channels or transporters involved in calcium cycling [20–22]. eNOS is
expressed mainly in vascular endothelium to guarantee vasorelaxation
[23,24], cellular proliferation, white blood cells adhesion, and platelet
aggregation [24,25]. cNOSs exert their functions functions mainly by
producing low, controlled fluxes of NO, whereas iNOS acts mainly as a
cytotoxic, antimicrobial enzyme, which is induced by stress and inflam-
matory conditions [26]. It has been reported that the activation of iNOS
by pro-inflammatory cytokines (such as interleukin-1, tumor necrosis
factorα, and interferon γ) results in massive production of NO and sus-
tains host immunity as part of the oxidative burst of macrophages.
Other immune cell types also respond to NO [7], resulting in an even
wider role of iNOS in immunity. For example, it is well documented
that iNOS-derived NO can activate T-cells [8] and interfere with lym-
phocyte development [27] and death [8,28]. iNOS has also been linked
to cancer progression and development, but its role in cancer biology
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Fig. 1. Two-step oxidation of L-arginine catalyzed by NOS. The NHA interm
has not been fully elucidated, as both tumor promoting and inhibiting
activities have been described [29,30].

Multiplemolecular effects are induced byNO, ranging from signaling
to irreversiblemodificationor damage (Fig. 2), strongly affecting several
physiological processes, indicating that NOS defects underlie many
human disease conditions. Understanding the structure and mecha-
nisms of action of NOSs is, therefore, fundamental to developing useful
clinical interventions. In this review, we summarize the state-of-the-art
information on the structure and reactivity of NOSs, with an emphasis
on the contributions of computational biochemistry, molecular model-
ing, and simulations. Current knowledge and pending questions are
discussed in the following sections, and perspectives for molecular
modeling studies are proposed in the final section.

2. NOS Structure

The NOS structure has two main domains. The N-terminal oxygen-
ase domain (NOSox) harbors the heme porphyrin center (Figs. 3 and
4), that catalyzes oxidation of L-arginine to L-citrulline, requiring BH4

and resulting in the release of NO (Fig. 1), while the C-terminal reduc-
tase domain consists of three binding domains for FMN, FAD, and
NADPH cofactors (Figs. 5 and 6). The latter domain provides electrons
for the reaction, which takes place in the NOSox domain. These two do-
mains are connected through a linker, which includes a calmodulin
binding site that is essential for NOS activity. cNOSs binding to calmod-
ulin is responsive to calcium levels,whereas this is not the case for iNOS,
which binds calmodulin independently of calcium concentrations.

The electrons from the reductase domain are shuttled toward the
oxygenase reactive site through long-range displacement of the FMN
domain [31]. Although this ‘swing’ has been the subject ofmany studies,
aspects of its mechanisms of regulation are not yet understood [32–39].
The NOS isoforms are functional upon dimerization, and electron trans-
fer is likely to occur in trans from one monomer to the other [40,41];
however, the details of this mechanism, such as the contact surface
and the elements that stabilize the dimer interface, are still being inves-
tigated (Section 2.3). The three-dimensional (3D) structures of the full-
length NOS variants are unknown, although numerous X-ray structures
of the individual domains (Table 1) and models built from cryogenic
electron microscopy (cryo-EM) densities and other experimental data
are available [32–37,42–45], so that the architecture of the full-length
NOS can be hypothesized.

Computational studies would address several outstanding ques-
tions about the structural mechanisms of NOSs; however, only a few
molecular dynamics simulations of NOSs have been reported, on
very short timescales, no extensive structural analysis, and most as
part of more comprehensive experimental studies. Other computa-
tional approaches, such as homology modeling and docking, have
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Fig. 2. Schematic representation of NO-mediated signalingpathways. (A)NO induces the soluble guanylate cyclase (sGC) by binding its heme-group and stimulates theproduction of cyclic
GMP (cGMP) [182]. cGMP productionmodulates calcium channels and activates the protein kinase G (PKG), leading to a downstreamphosphorylation cascade that is important inmuscle
tone control. (B) Other central sensors of NO fluxes are mitochondria, which adjust the oxygen consumption rate and energy production according to NO levels. NO can affect the
mitochondrial respiration rate by direct attachment to Fe-S centers or by the covalent binding to specific tyrosines (C) and cysteines (D) [183–185]. (C) Large amounts of NO produced
by immune cells (e.g. macrophages) react with superoxide (O2·), generating the highly reactive peroxynitrite (ONOO-), which leads to protein tyrosine nitration, DNA nitro-oxidation,
cell damage, and death. (D) The reaction between NO and nitrogen dioxide (NO2) or redox metals (e.g., Fe3+, Cu2+) generates dinitrogen trioxide (N2O3) or nitrosonium ion (NO+), re-
spectively. Both these species can bind directly to cysteine residues (-SH) of proteins, forming S-nitrosothiols (-SNO). The reaction, termed S-nitrosylation, acts as a posttranslationalmod-
ification that affects protein function, stability, localization and signaling. The processes in which protein S-nitrosylation plays a role include apoptosis, cell cycle, cell proliferation, gene
transcription, mitochondrial homeostasis, and development [82,186,187].
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been used together with experiments to determine the quaternary
structure of NOS [32–37,43–46]. However, they suffer of major limita-
tions in terms of accuracy and the capability to account for highly flex-
ible and conformationally heterogeneous proteins. The interaction of
NOSs with selective inhibitors has been reported [47,48] but there
has been no extensive computational investigation of the free enzyme
structure.

In this section,we summarized the current knowledge onNOS struc-
tural features from studieswith computationalmethods and raise ques-
tions that would benefit from more extensive, accurate studies with
molecular modeling and simulations.
2.1. The Oxygenase Domain

The NOSox is composed of a unique heme domain, harboring a
heme-porphyrin catalytic center, a structural zinc tetrathiolate (ZnS4)
motif, and the BH4 pterin cofactor. Numerous high-resolution structures
of the three human isoforms of NOSox are available (Table 1), which
provide considerable source of information for unraveling the structural
features of this catalytic domain.

The geometry of the active site is highly conserved among NOS
isoforms and mammalian species [49–51]. The heme iron is axially
coordinated to a cysteine thiolate on one side (Cys420 in nNOS),
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Fig. 3. Structure of the human nNOSox dimer (PDB: 4D1N). Monomers are colored differently for sake of clarity. The left magnified section (red) shows the ZnS4 motif, with arrows
pointing to the cysteines of the first monomer and the central zinc cation depicted in Van der Waals representation. The right magnified section (blue) provides a view of the active
site, with the heme moiety in the center, coordinated to Cys420 on one side and dioxygen on the other. Interacting with the heme carboxylates, the pterin BH4 cofactor forms π-
stacking interactions with Trp683. Glu597 stabilizes the substrate above the heme moiety, and the aromatic residues Phe589 and Trp414 sandwich the latter to maintain the proper
organization of the active site. Trp592, presumably involved in the electron transfer from NOSred to NOSox, is located at the bottom of the heme-binding pocket.

418 E. Bignon et al. / Computational and Structural Biotechnology Journal 17 (2019) 415–429
and the other side of the porphyrin is the binding site for the
dioxygen molecule required for L-arginine oxidation (Fig. 3). The
heme insertion within the NOSox domain might be favored by the
interaction of NOS with heat shock protein 90 (hsp90), by a struc-
tural deformation that allows access of heme to its binding cleft in
the protein [52,53], concomitantly promoting NOS dimerization
[54]. A conserved glutamate residue (Glu597 in nNOS) is likely to
play an important role in substrate binding [51], as shown by exper-
imental mutagenesis [55,56]. The pterin redox cofactor binds in the
vicinity of the active site through interaction with the heme propio-
nate groups, and this process is thought to promote the binding of L-
arginine [57]. Conserved aromatic residues near the active site form
stacking interactions with the porphyrin moiety (Trp414 and Phe589

in nNOS) and the pterin cofactor (Trp683 in nNOS), which is involved
in an extensive hydrogen-bond network. This network is likely to
promote the stabilization of the NOSox dimer interface and the bind-
ing of L-arginine to the enzyme [49]. An important tryptophan resi-
due located at the back of the heme pocket (Trp592 in nNOS) has
been proposed to shuttle the electron from the FMN cofactor to
heme (Section 2.3).

Another element that favors dimerization is the zinc tetrathiolate
(ZnS4) motif. Indeed, the zinc ion is tetra-coordinated with two
thiolates (Cys331 and Cys336 in nNOS) from eachmonomer, contributing
to the maintainance of the architecture of NOS by bridging the two
NOSox domains (Fig. 3). The absence of this cation or the modification
of one of the coordinated cysteines drastically destabilizes the dimer
and thus reduces the NOS catalytic activity [58–60].
Surprisingly, no computational studies have been carried out so far
on the dynamic properties of NOSox and the catalytic site with NOS in
the closed state. To the best of our knowledge, the only study with
MD simulation of isolated NOSox involved a very short trajectory
below the nanosecond timescale. This 300-ps MD simulation was per-
formed within a reactivity study of iNOS active site with fixed heme,
dioxygen, coordinated cysteine, and surrounding water molecules
[61]. The simulations were performed with Turbomole/Jaguar, coupled
to DL-POLY. The QM and MM simulations were treated at the B3LYP/
LACV3P*+ level of theory and with CHARMM potentials, respectively.
Electronic embedding was applied. Given the very short timescale,
this study did not allow a proper assessment of the dynamic behavior
of the NOSox domain, which would have required longer, uncon-
strained MD simulations. In another study, the interaction of NOSox
with caveolin-1 was studied by docking and short MD simulations
(10ns) with a CHARMM force field, and accompanied by experimental
investigations [62]. Caveolin specifically decreases eNOS activity by hin-
dering calmodulin binding and further activation [63,64]. The MD sim-
ulations were performed to assess the stability of the docking poses
and were too short to elucidate the dynamics of the complex between
NOSox and caveolin-1. Furthermore, few details were given about the
simulation, so that the datawould be difficult to reproduce. Their results
suggest that caveolin-1 prevents binding of the BH4 cofactor by
interacting with the eNOS Trp447 (equivalent to Trp683 in nNOS). How-
ever, given the lack of technical details and the short timescale, this hy-
pothesis must be confirmed in studies of the competitive binding of
caveolin-1 to eNOS against BH4.



Fig. 4. Sequence alignment of the three humanNOS isoforms generatedwith ClustalW [188] for the oxygenase domain, harboring heme-interacting residues (red squares), Zn-coordinated
thiolates (green circles), BH4-interacting tryptophan and L-arginine-binding glutamate (blue circles), post-translationally modified cysteines (pink pentagons), and the tryptophan
hypothesized to be involved in the electron transfer from FMN to the heme (black star).
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Designing effective isoform-selective inhibitors is important for
targeted therapies, and modeling and simulations could be valuable
in this context. Docking, Quantitative-Structure-Activity Relations
(QSAR), and GRID/Consensus Principal Component Analysis (CPCA)
approaches have been used to probe the chemical environment
within the heme binding site and the ligand-host interactions
[48,65], sometimes coupled with homology modeling, MM-
Poisson-Boltzmann (Implicit Solvent Model) Surface Area calcula-
tions, thermodynamic integration, and short MD simulations
[66–72]. These computational studies shed light on the subtle elec-
trostatic differences among the active sites of the NOS isoforms,
opening new avenues for enhanced selective inhibitor design.
Many questions remain, however, about NOSox structure and regu-
lation. Numerous experimental data are available on the structure
of the NOS heme domain in the closed state, but several aspects re-
main to be elucidated. For comparison with a homolog, extensive
in silico studies (e.g., microsecond all-atom and coarse-grain MD,
docking) have been reported on P450 enzymes [73–78], including
the investigation of the structure of the active site, substrate tunnel-
ing and binding modes, mutational effects, and interaction with
membranes. These show the usefulness of molecular modeling in a
context similar to NOSox. Use of computational methods with regard
to NOSox has essentially focused on the design of selective inhibi-
tors. However, as for P450 enzymes, longer timescale MD investiga-
tions with unbiased simulations or enhanced sampling approaches
could provide important insight into NOSox domain structural be-
havior, its interaction with other proteins (including Hsp90 and cav-
eolin [79]), the structural effect of post-translational modifications
(PTMs), such as S-nitrosylation/S-sulfhydration of Cys441 [80–82]
and S-glutathionylation of Cys382 in eNOS [81], and into the role of
BH4 and ZnS4 in the stabilization of the dimer interface.

2.2. The Reductase Domain

The NOS reductase domain (NOSred) has three different sub-
domains, namely NADPH, FAD, and FMN, each of which binds a specific
cofactor for electron transfer (Fig. 5). This organization is similar to that
of the cytochrome P450 reductase protein (CPR), which shares 60% se-
quence homology with NOSred and catalyzes analog electron transfer
from NADPH to P450 reactive site [83].

The NADPH and FAD domains assemble to form the ‘FNR-like’ unit,
while the individual FMN part is thought to serve as an electron shuttle
toward the heme center, as observed in CPR [84,85]. An α-helix hinge
section connects the FMN and the FAD sub-domains, ensuring proper
alignment of the two flavins in a position to promote electron transfer.
The electron goes from NADPH to FAD then to FMN. Upon activation,
the FMN domain undergoes large-scale movements to dock on the
NOSox domain and terminate electron transfer toward the heme center.
This phenomenon occurs in trans, from the reductase domain of one
monomer to theNOSox of the othermonomer, and is triggered by bind-
ing of calmodulin [40,41,86,87].

Several NOSred elements have been suggested to respond to
calmodulin binding and regulate FMN domain, unlocking from
NADPH/FAD domains in an isoform-dependent manner. First, a con-
served auto-regulatory segment is present in cNOSs FMN-binding do-
main, whose N-terminal α-helix shares sequence similarity with the
calmodulin-bindingmotif [88]. This segment harbors a phosphorylation
site at Ser847, suggesting an additional layer of post-translational
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Fig. 5. Structure of the rat nNOS reductase domain (PDB: 1TLL, chain A), with the NADPH domain in blue, the FAD domain in violet, the FMN domain in red, the α-helix hinge section in
gray, the C-terminal tail in green, and the beta-finger in the pink circle on the left. The magnified section A (bottom left) is the active site of the reductase, revealing the placement of the
cofactors within the structure, with Phe1395 stackingwith the FAD flavin, and Arg1400 interacting with NADPH phosphates. Magnified section B (right) shows two regulatory elements: CT
in green and the autoinhibitory segment of the FMN domain (AH) in red, front view (top) and top view (bottom). The two phosphorylated serine residues are also displayed. Magnified
section C (bottom right) shows the conserved salt bridge linking the FMN and FAD domains.
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regulation. Second, the C-terminal tail, the length of which differs
among the three NOS isoforms, has been suggested to modulate FAD-
FMN interactions in synergywith the auto-regulatory sequence and cal-
modulin binding [89,90]. The C-terminal tail of cNOS includes the
Ser1412 phosphorylation site,which is also likely to play a role in regulat-
ing NOS activity. Third, the beta-finger (a small insertion encompassing
the so-called CD2A loop) present in the flexible hinge region may play
an important role in the closed-to-open state switch, presumably by
modulating interactions with the FMN domain, especially in eNOS
[91–93]. The subtleties of such regulatory mechanisms at the atomic
level are still poorly understood.

Only one structure of the isolated rat nNOS FAD/NADPH-binding
domain and another of the human iNOS FMN- and calmodulin-
binding domains bound to calmodulin are available [43,94], as
shown in Table 1. Nevertheless, the crystal structure of the rat
nNOS reductase resolved by Garcin et al. [32] provided unprece-
dented insight into the structural features and organization of this
domain. This was the only successful attempt to crystallize the
three subdomains of a NOS reductase domain with the NADPH and
flavins cofactors in their respective binding pockets. The structure
revealed the extensive network of hydrogen bonds between the
three cofactors and the protonation state of the FMN, which ap-
peared as a semiquinone (Fig. 7). In addition, inspection of the
FMN/FAD domains interface revealed important hydrophobic con-
tacts and salt bridges, especially between the Glu816 and Arg1229

residues, both conserved in cNOSs. Arg1400, present in both nNOS
and eNOS (Arg1165), was suggested to play a role in the selective
binding of NADPH, and in locking of FMN in its electron-acceptor
state in the absence of calmodulin. The FAD-shielding residue
Phe1395 is thought to be involved in the repression of the electron
transfer (Fig. 5) in the calmodulin-free state by acting as an
aromatic shield between NADPH and FAD [95], as observed in the
crystal structure [32].

The functionality of the dimeric form of nNOSred observed in this
crystal is, however, a matter of controversy, as the dimer interface is
presumably between the NOSox domains rather than the NOSred in
the three isoforms, as suggested by recent models guided by cryo-EM
data [33,36,37,46]. Likewise, experimental studies show that iNOS
dimer is still functional even in the absence of the reductase domain
of one monomer [40], indicating that the essential dimeric interface is
localized between the two oxygenase domains. Modeling of the nNOS
open-state structure from other EM data suggests that interactions
between reductase domainsmight have a stabilizing effect [35]. This re-
mains compatible with the assumptions mentioned above, as the main
dimer interface is still found between the oxygenase domains. Dimer-
ization of the reductase domain of the homologous CYP102A1 system
has also been suggested [96].

The chronology of the NADPH and calmodulin binding events is
still under discussion. Volkmann et al. proposed that binding of
NADPH on the eNOS-calmodulin complex triggers electron trans-
fer [37], whereas it is more commonly considered that NADPH
binds calmodulin-free nNOS to lock the FMN domain in its
electron-donor state until activation upon subsequent calmodulin
binding [97,98].

Few studies involving computational biochemistry to investigate
NOSred structure have been reported. Homology modeling and
protein-protein dockingmethods have been used to build models from
cryo-EMdata (Section 2.3), andonly one study reportedMDsimulations
on eNOSred, providing a rationale for the effects of phosphorylation on
NOS structure on the basis of the analyses of short trajectories [99]. In
this study, Devika et al. performed 40-ns MD simulations using the
GROMOS96 43a1 force field on the human structure of eNOSred built



Fig. 6. Sequence alignment of the three humanNOS isoforms generatedwith ClustalW [188] for the reductase domain,with calmodulin-binding in orange, FMN-binding in red, connecting
regions in gray, FAD-binding in purple, NADPH-binding in blue, and the C-terminal tail in green. Phosphorylation sites are indicated by green squares, the phenylalanine shield and the
NADPH-interacting arginine by red circles, aromatic residues that may be involved in electron transfer from FMN to heme by black stars, and the salt bridge between the FMN and FAD
domains by light blue circles. The auto-inhibitory and beta-finger regions appear as dashed lines within the FMN and connecting domains, respectively.
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by sequence homology. The structure was rebuilt with Modeller and
structures of homologs as templates (i.e., the rat nNOSred with PDB
entry 1TLL, the rat FMN-like unit with PDB entry 1F20, and the human
FMN and calmodulin-binding domains in complex with calmodulin
with PDB entry 3HR4). Although the results provide insight into muta-
tional effects on the structure of eNOS reductase, MD simulations with
homology model as a starting structure should be considered with ex-
treme caution, as they can result in large deviations from the native
structure [100].

Molecular modeling has been of particular interest for studying
structural features of the homologous CPR system, and a number of
computational studies have been reported [101–103]. Thus, extensive



Table 1
Available X-ray and NMR structures of the domains of each NOS isoform, alongwith the PMID associated to the corresponding publication in Pubmed and the corresponding entry in the
Protein Data Bank (PDB). We did not report the structures of the heme domain in complex with inhibitors.

Isoform Organism Domain structure PDB ID PMID

nNOS Human Heme 4D1N 25286850
Rat Heme 4FVW, 3HSN, 2G6H, 1ZVI, 1LZX 23586781, 19791770, 16804678, 16033258, 12437343

Reductase 1TLL 15208315
FNR-like (FAD/NADPH) 1F20 11473123

iNOS Human Heme 1NSI 10409685
calmodulin binding + calmodulin 5TP6, 2LL6 28121131, 22486744
FMN/calmodulin binding + calmodulin 3HR4 19737939

Mouse Heme 3NQS, 1DWV, 1DF1 20659888, 10769116, 10562539
Heme mutant 3DWJ, 1JWJ 18815130, 11669619

eNOS Human Heme 3NOS, 4D1O 10074942, 25286850
calmodulin binding + calmodulin 2MG5, 2LL7, 2N8J, 1NIW 24495081, 22486744, 27696828, 12574113

Bovin Heme 1NSE, 2G6O, 1ED6 9875848, 16804678, 11331003
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unbiased and enhanced sampling MD simulations could provide addi-
tional insight, at the atomic level, into the numerous questions about
the inner structural organization of NOSred, such as: i) What are the
mechanisms of NOSred activitymodulation by the regulatory elements?
ii) Which structural changes are induced by PTMs in this domain (in-
cluding phosphorylation of several serines in cNOSs, phosphorylation
of Thr495 and S-glutathionylation of Cys689 and Cys908 in eNOS
[81,104–106])? iii) Are the regulatory mechanisms of the NOS isoforms
different? iv) Which amino acids are involved in the regulatory events,
ligand binding, and interaction among the sub-domains? v) How does
Arg1400 discriminate between NADPH and NADH? vi) How does
NADPH and calmodulin binding affect the structure and dynamics of
the reductase domain? Computational studies could provide new in-
sight into the conformational changes of NOSred triggered by its multi-
ple regulatory elements, which would be of utmost importance for
understanding the complex NOSred regulation.

2.3. Inter-Domain Interactions

The full-length structure of NOS remains elusive in X-ray crystallog-
raphy because of the flexibility of the NOSred domain. The structural
and dynamic processes that drive inter-domain electron transfer and
the regulatory effects of calmodulin binding are key to understand the
molecular mechanisms underlying NOS activity, and have been investi-
gated with structural biology methods.

As high-resolution structural data are limited to the isolated do-
mains, homology modeling, protein-protein docking, and MD simula-
tions have been used to characterize the sites of interaction between
the FMNdomain, calmodulin, and NOSox/NOSred. Cryo-EM techniques,
combined with homology modeling and/or protein-protein docking,
have been used to identify the architecture of holo-NOS and the changes
of FMN from the closed to the open state [35–37,46]. Other full-length
NOS models have been built with modeling approaches, directly from
the X-ray structures [32,34,43], and by integration of experimental
data from hydrogen-deuterium exchange mass spectrometry [33] or
electron paramagnetic resonance [44,45].

Overall, modeling of the multi-domain NOS structure indicates
that binding of calmodulin might regulate the swing of the FMN
domain from the reductase to the oxygenase domain, thus modu-
lating electron shuttling between the two redox partners. The
strong mobility of the NOSred domain with respect to the NOSox
dimer has been highlighted with the heme domain acting as an an-
chor within the full-length architecture. The three NOS isoforms
can adopt diverse intermediate conformations, ranging from the
closed to the open state. The binding of calmodulin is likely to con-
strain the movement of the FMN-binding domain toward the out-
put conformation [36].

The existence of a rotational pivot has been proposed, which would
guide the FMN domain toward the appropriate binding area on the
heme domain by restricting the conformational space accessible along
the swing from NOSred to NOSox [37,107,108]. The work of Ilagan
et al. [45], who reported a full-length model of rat nNOS (constructed
manually), suggested that the FMN subdomain has higher affinity for
the FNR-like unit than for the heme domain. In their study, calmodulin
binding induced the conformational changes required to destabilize this
balance and favored the open state, without increasing the binding af-
finity of FMN to the heme domain. Persechini et al. [46] suggested that
activation of eNOS by calmodulin binding is a two-step process. First,
unhooking of the FMN domain from the FNR-like unit would be trig-
gered by interactions of calmodulin with the numerous NOSred regula-
tory elements. Second, calmodulin would dock onto NOSox and
facilitate the docking of the FMN domain itself. Unfortunately, there is
no consensus on the exact activation mechanisms after calmodulin
binding, and the hypothesis that it might be different from different iso-
forms cannot be ruled out.

The nNOSred crystal structure published by Garcin et al. [32,34,43]
brought unprecedented insight into the contact area of the FMN sub-
domain with the FNR-like unit (Section 2.2). Despite the many investi-
gations on the subject, however, the FMN/NOSox domains interface is
not well described. Full-length NOS models designed from cryo-EM
densities provide information about the possible docking area of the
FMN domain onto NOSox, although detailed mapping of the interface
contacts is not available.

Recently, Hollingsworth et al. [109] published a MD study of the
iNOSox-FMN-calmodulin complex, and confirmed the role of intermo-
lecular salt bridges. Their model system, encompassing the iNOSox
dimer and the FMN and calmodulin-binding domains in the iNOS out-
put state (FMNdomain in its electron-donor state), was built bymanual
docking, guided by HDX-MS data [33]. 100-ns MD simulations with re-
straints on the iron atom of the hemewere conducted in themodel sys-
tem with and without calmodulin, using the CHARMM22 force field
with additional parameters generated by the same group. The results
suggest that the FMN/heme interface is stabilized by salt bridges. The
stability of this complex appeared to be enhanced by electrostati-
cinteractions of the two domains with the bound calmodulin. Hence,
calmodulin binding stabilizes the inter-domain interactions, and its ab-
sence leads to disruption of the interface contacts after 20-ns MD
simulation.

Sheng et al. [108] investigated the interactions of the iNOSox/FMN
domains with 60-ns MD and steered MD simulations and found spe-
cific residues that are important for the efficient binding of the FMN
domain to the NOSox docking surface. Their model was built with
the same X-ray structures as that of Hollingsworth et al., but they
docked the two domains (FMN and NOSox) with ZDOCK [110]. The
generated structures were then filtered according to criteria ob-
tained experimentally. The linker region was constructed with the
Scigress Explorer Ultra platform, and 60-ns MD simulations for dif-
ferent oxidation states of the system (i.e., before and after electron
transfer of FMN to heme) were performed using the CHARMM27
force field and in-house parameters for the heme, FMN, and BH4
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cofactors. The results suggest that conformation changes leading to
the swing of the FMN domain after the electron transfer are redox-
dependent. The inter-domain interaction network they report dif-
fers from that observed by Hollingsworth et al. [109], with many
more interactions between the FMN and the two NOSox monomers.
The distance between the FMN cofactor and the heme was found at
about 18 Å by Hollingworth et al. [109], bridged by a conserved tryp-
tophan residue that has often been proposed to shuttle the electron
between the two moieties [33,34,43]. Sheng et al. reported that the
Trp372 (equivalent to Trp592 in nNOS) center of mass remained
around 11.7 Å from FMN and 9.4 Å of the iron atom. This result differs
from that found for the cytochrome P450 structure, in which the
FMN-heme distance is only 6 Å, suggesting direct transfer from the
cofactor to the heme center [85]. The simulations by Sheng et al.
[108] suggest that, in some conformations induced by the dynamics
of the NOS system, electron transfer involves not only the conserved
tryptophan, but also shuttling through Tyr631 or Phe593, both located
near the FMN cofactor in the FMN sub-domain. This hypothesis is
supported by experimental studies that show a drastic decrease
in the rate constant of intermolecular electron transfer after muta-
tion of Tyr631 to Phe, which would disrupt important interactions
[111]. The differences between the two MD studies above might be
due to the use of different model structures of the iNOSox-FMN-
calmodulin complex in the simulations. Unfortunately, lack of exper-
imental data obviate a conclusion, highlighting the importance of
finding highly accurate models by multiple cross-validation with ex-
perimental data and a more extensive sampling of the conforma-
tional space in the simulations.

Enhanced sampling MD approaches would make it possible to ob-
serve structural rearrangements over a longer time, which is necessary
because the NOS system is prone to large conformational changes pro-
moted by different allosteric effects. Such simulations would also be im-
portant to confirm the long-term stability of the key interactions
identified in the short MD trajectories and other structural studies pub-
lished so far. It could provide insight into the role of calmodulin binding
in the activation of the different NOS isoforms and the effects of PTMs,
which might be isoform-dependent.

The complexity of the NOS architecture, a homodimer of up to
330 kDa with several co-factors, and regulatory events (PTMs, allo-
steric effects) makes it a challenging system to investigate with
molecular modeling and simulations. Nevertheless, force field pa-
rameters are available for most of the cofactors and ligands, and
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numerous structures of the isolated domains have been deposited in
the Protein Data Bank (Table 1). Several in silico investigations of the
structure of the homologous P450/CPR system have been published,
providing a framework for investigation of the full-length NOS struc-
ture [101,112]. The scientific community would gain much from fur-
ther use of computational methods, which would allow visualization
of the NOS full-length structure and details on its dynamics at the
atom level, which is essential for answering numerous outstanding
questions.

3. NOS Reactivity

NOS catalyzes the oxidation of L-arginine to L-citrulline and NO in a
two-stepmechanism involving dioxygen, the BH4 cofactor, and electron
transfers fromNOSred (Fig. 1). The production of electrons in the reduc-
tase domain is similar to that observed in P450 reductase, and the
mechanisms are well described [97,113,114]. First, the binding of
NADPH to NOS allows transfer of a first hydride to the FAD cofactor.
Then, electron transfer from FAD to FMN and proton addition lead to a
quasi-equilibrium state between the two-electron-reduced species
[FADH2/FMN ↔ FADH·/FMNH· ↔ FAD/FMNH2] until transfer of a sec-
ond hydride from NADPH, which results in the four-electron reduced
FADH2/FMNH2 state [115], as illustrated in Fig. 7. Completeflavin reduc-
tion, which is unlikely to take place physiologically, is gated by the re-
lease of NADP+ needed for de integro binding of NADPH and hydride
transfer toward the final stable two-electron reduced state of FMN, re-
quired for the transfer toward the heme [41,116]. Upon calmodulin
binding, the FMN subdomain can swing and dock onto NOSox, where
it delivers the electron to the iron center, triggering two-steps L-
arginine oxidation. The first mono-oxygenation reaction (first half-
reaction) results in the formation of the stable Nω-hydroxy-L-arginine
(NHA) intermediate, whose subsequent oxidation (second half-
reaction) leads to the production of L-citrulline and NO (Fig. 7). Al-
though NOS has many similarities to the CPR/P450 system [83], the
reactionmechanisms inNOS aremore complicated, as oxidation implies
participation of the BH4 cofactor in electron transfer. Although the
mechanisms of NOS reactivity are still mainly hypothetical, recent evi-
dence of P450-like reactivity suggests that it involves distinct heme-
oxy species [117]. Considerable research has been conducted on the
role of the pterin cofactor, the protonation state of the NHA intermedi-
ate, and the heme-oxy species formed during the two steps, as they are
essential for understanding the mechanisms of NOS reactivity
[11,97,118–121]. Although several computational studies (QM and
QM/MM calculations) have been reported, many aspects of NOS reac-
tionmechanisms remain hypothetical, especiallywith regard to the sec-
ond half-reaction. Below, we summarized the latest findings on
L-arginine oxidation mechanisms, in which computational studies
have been of major importance.

3.1. First Half-Reaction

O2 activation in NOS is catalyzed by the heme moiety (Fig. 7) in a
manner similar to that for cytochromes P450. Electron transfer from
FMN switches the iron from the ferric FeIII to the ferrous FeII state, stim-
ulating coordination of the dioxygenmolecule to the heme center [118].
After binding of O2, a second electron transfer induces formation of the
ferric-peroxide FeIIIO2

2- complex, which is required for the launching L-
arginine oxidation [122]. Several hypotheses have been proposed for
the mechanisms that lead to formation of the so-called compound I
(Cpd I) cation-radicaloid porphyrin ferryl-oxo FeIVO+· species, which
oxidizes the substrate [61,118]. The commonly preferred hypothesis is
a mechanism involving two proton transfers (one from the solvent
and the other from the L-arginine substrate) and formation of FeIIIOOH
species [118,119], as supported by theoretical QM and QM/MM studies
[123–125]. The first proton transfer would lead to the formation of the
so-called compound 0 (Cpd 0) anionic ferric-hydroperoxo FeIIIOOH,
and the second H+ addition would result in the generation of Cpd I
and a water molecule by heterolytic cleavage of the peroxide bond.
The latter species then oxidizes the deprotonated substrate, leading to
formation of the stable NHA intermediate and FeIII. Density functional
theory (DFT) calculations performed on a model of bovine eNOSox ac-
tive site published bydeVisser et al. [124] suggest that the latter process
involves formation of the unstable ferryl FeIVO- state (Cpd II). The initial
geometry, extracted from the PDB file 4NSE, involved the truncated
heme and coordinated cysteine, L-arginine, and surrounding amino
acids (Glu363, Trp358, Trp359). Geometry optimizations were performed
with Jaguar at the B3LYP/LACVP and 6-311+G* levels of theory for the
iron and the other atoms, respectively. It is well accepted that the sec-
ond electron transfer required for O2 activation is provided by the BH4

cofactor. The pterin moiety would allow fast electron transfer toward
the FeIIO2 intermediate, stimulating the L-arginine oxidation and
preventing uncoupling from the NADPH oxidation cycle [126,127].
The latter process is involved in numerous diseases, including vascular
diseases and cancer, and is therefore of major therapeutic interest
[25,82,128–130]. It depends on availability of L-arginine and/or BH4,
disruption of the NOSox dimer, and PTMs and results in FeIIO2

decay to the release of superoxide anion-radical O2·- rather than NO
[131–136]. Consequently, BH4 is a key player in NOS reactivity, as it en-
sures the bio-availability of NO and prevents oxidative stress
[57,127,130]. Many studies, including DFT investigations, suggest
that the pterin cofactor stays bound at the active site in its radical cat-
ionic state H4B+·, to be re-used during the second half-reaction
[120,137–139].
3.2. Second Half-Reaction

Continuation of NO· catalysis requires prior reduction of H4B+· back
to BH4 to prevent its further time-dependent oxidation to BH2 and NOS
uncoupling [140,141]. Without it, the NOSox active site does not have
the appropriate chemistry for reduction of the iron center from FeIII to
FeII, which is necessary for the O2 binding that initiates oxidation of
NHA [142,143]. Experimental evidence suggests that the electron is pro-
vided by NOSred in a calmodulin-dependent manner, similarly to the
iron center reduction, and is transferred from FMN through the heme
moiety [120,144]. Whether the electron is transferred to the metallic
center or shuttled towards the pterin radical may depend on the
redox state of BH4, and hence on the NOS catalytic cycle stage. Theoret-
ical investigations could provide insight to probe this hypothesis. Once
BH4 is reduced back to its neutral form, the second half-reaction can
take place.

Unlike the first step, the second half-reaction differs from other
known enzymatic mechanisms and is poorly understood. Nevertheless,
numerous experimental and theoretical investigations suggest possible
reaction intermediates for the formation of NO· [118]. As in the first
step, FeIII is reduced by electron transfers from NOSred and BH4 to
allow O2 activation. Various subsequent mechanisms have been pro-
posed. In most, NHA is considered to be in its protonated form
[119,125,145,146]. Oxidation to L-citrulline would then involve a pro-
ton transfer fromNHA to the ferric-peroxide FeIIIO2

2- species after forma-
tion of a tetrahedral complex that binds the guanidinium moiety to the
peroxide. Thiswould induce the release ofHNO, L-citrulline, and FeIIIOH.
Other possibilities, reviewed by Santolini et al. [118], would involve the
transfer of an electron back to H4B+·, terminating the BH4 cycle con-
comitantly with the binding of the newly formed NO· to the iron center
and release of water (Fig. 7). DFT and QM/MM investigations of this hy-
pothesis did not allow theoretical validation but suggested an alterna-
tive mechanism, involving double protonation of the active site to
formation of an FeIIIHOOH intermediate [146,147],whichmight eventu-
ally lead to the ferryl-oxo FeIVO+· compound (Cpd I) [145]. Hence, no
consensus has yet been found on the NOS second half-reaction
mechanism.
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Recent computational investigations, however, represent new
means for understanding the complex chemisty of NOS. Although,
it has been accepted that NHA reacts in its protonated state
[57,148–150], Shamovsky et al. [117] proposed a new mechanism fea-
turing neutral NHA (Fig. 7). They performed extensive DFT investiga-
tions on the active site of the murine iNOSox structure (PDB 1NOD) at
the M06-L/6-31+G* level of theory and extracted the coordinates of
the heme, NHA, BH4, and 11 surrounding amino acids from the crystal
structure to build the initial geometry. Constraints were applied to the
heme center during geometry optimization to maintain its location in
the crystal structure. Overall, their calculations suggest the participation
of BH4 in a sequence of electron transfers coupledwith a proton transfer
from thehemepropionate and involvement of a protonated Cpd II inter-
mediate (Cpd II-P) insteadof Cpd I (Fig. 7). They propose that thismech-
anism would explain several experimental observations and especially
the kinetics of the reaction and the elusive character of some intermedi-
ates. More details can be found in their elegant publication [117]. More
data are now required to validate or refute this promising hypothesis.

Many aspects of NOS reactivity remain to be elucidated, but the
work done so far gives encouraging results for further investigations.
QM and QM/MM methods have proved their value in this context, as
for their application to the P450/CPR system [151–154]. More extensive
use of computational approaches could shed light on NOS chemistry as-
pects, including: (i) the residues involved in electron transfer from
NOSred to NOSox in the different NOS isoforms; (ii) how the electro-
static properties of the active site drive the dual chemistry of NOSox;
(iii) rationalization of the different reaction yields found for the differ-
ent isoforms; and (iv) the chemical features of the NHA intermediate
and its stability at the active site.

4. Summary and Outlook

NOS is a highly complex chemical system with several layers of
regulation, involving numerous players that mediate the interactions
between the reductase and the oxygenase domains, both of which are
involved in the enzymatic reactivity. The two-step oxidation of L-
arginine necessitates a finely tuned organization of the active site, with-
out which uncoupling from NADPH and production of ROS rather than
NO· can occur.

Many studies have been conducted to unravel NOS molecular
mechanisms, including the usage of computational methods,
especially docking and QSAR to study ligand binding, and, to a lesser
extent, QM calculations to probe oxygenase reactivity. Nevertheless,
the full potential of molecular modeling is underexploited. Compu-
tational approaches could provide important insight on NOS struc-
ture and reactivity at the atom level. Homology modeling and
docking have already provided the models of individual domains
and of the holo-enzyme. Coarse-grained force fields could be consid-
ered for initial exploration of the dynamic behavior of the holo-
enzyme and to identify possible allosteric effects to guidemore accu-
rate all-atom approaches. Computational tools are now available to
treat systems, including intrinsically disordered regions, by coarse
graining, which would be necessary to model the flexible linkers be-
tween NOS domains [155]. Furthermore, extensive MD simulations
could provide information on the dynamic behavior of isolated do-
mains, long range reorganization induced by PTMs, and allosteric ef-
fects [156–161]. The integration of MD-derived ensembles with the
protein structure network paradigm could also help in predicting
structural pathways of communication as the basis of allosteric
mechanisms [162–166]. Methods of enhanced sampling MD would
be adequate for studying the allosteric effects triggered from distal
sites to the inter-domain interface [159,167–170]. In view of the
growing amounts of EM data, the application of integrative struc-
tural modeling and EM density maps could also provide important
information about NOS structural and dynamic features [171–173].
Conceptual DFT calculations and topological analysis of electron
density, which have been applied to P450 and other enzymes
[174,175], could provide unprecedented insight into the chemical
properties of NOSox active site during oxidation [176–178]. Use of
QM/MM and DFTB-QM/MMmetadynamics might also be considered
for studying electron transfer from the reductase to the oxygenase
domain and identifying the key players involved in this process
[179–181]. Overall, there is a wide range of possibilities for the
study of NOS molecular mechanisms with molecular modeling and
simulations, opening perspectives that could lead to important
breakthroughs on this topic.
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