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Stress exposure can leave long-term footprints within the organism, like in

telomeres (TLs), protective chromosome caps that shorten during cell replica-

tion and following exposure to stressors. Short TLs are considered to indicate

lower fitness prospects, but why TLs shorten under stressful conditions is

not understood. Glucocorticoid hormones (GCs) increase upon stress

exposure and are thought to promote TL shortening by increasing oxidative

damage. However, evidence that GCs are pro-oxidants and oxidative

stress is causally linked to TL attrition is mixed. Based on new biochemical

findings, we propose the metabolic telomere attrition hypothesis: during times

of substantially increased energy demands, TLs are shortened as part of the

transition into an organismal ‘emergency state’, which prioritizes immediate

survival functions over processes with longer-term benefits. TL attrition

during energy shortages could serve multiple roles including amplified signal-

ling of cellular energy debt to re-direct critical resources to immediately

important processes. This new view of TL shortening as a strategy to resolve

major energetic trade-offs can improve our understanding of TL dynamics.

We suggest that TLs are master regulators of cell homeostasis and propose

future research avenues to understand the interactions between energy

homeostasis, metabolic regulators and TL.
1. Introduction
All living beings, from unicellular organisms to humans, have to endure chal-

lenges in their daily lives. To overcome the strains of nutrient shortage,

competition, intense work load or psychological pressure, organisms have evolved

a complex array of physiological and behavioural solutions. Nevertheless, major

challenges can leave long-term footprints in the organisms’ functioning, affecting

life-history decisions such as the relative investment in growth, fecundity, somatic

protection and longevity. One biomarker that has been used to assess the cumulat-

ive effects of conditions experienced in early and late life is the length of telomeres

(TLs) [1–5].

TLs are complexes comprising DNA repeats of (T2AG3)n, proteins and RNA,

which protect chromosomes from degradation caused by an incomplete DNA

replication. This occurs because during replication, the ends of linear chromo-

somes cannot fully be copied, leading to a continuous shortening of these DNA

repeats with each round of replication [6]. A critical lower threshold of erosion

can result in severely compromised cells, including DNA damage responses, cel-

lular senescence, arrest of cell replication and apoptosis [7–9]. TL maintenance

mechanisms exist, but often are unable to prevent their attrition [10–13]. Short

TL lengths or high TL attrition rates in early life and adulthood are associated

with lower life expectancy and higher disease risk in various species including

humans [14–22]. However, recent reviews found the evidence for a causal role

of TLs in organismal deterioration including fitness to be mixed in humans [23]

and non-model animal species [24]. It has been recently proposed that for fitness
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not only TL length matters, but also the state of the protein and

RNA structures surrounding TLs [25–29].

Findings of age-related gradual declines in TL length in

proliferative (e.g. germinal cells, stem cells) and quiescent tis-

sues (e.g. cardiac muscle, liver and pancreas) indicate that the

rate of cell division cannot entirely explain TL dynamics [30].

One mechanism currently considered to be a second major

cause of TL attrition is cellular oxidative stress [31–34],

which can arise when the concentration of pro-oxidant

molecules in the organism is high relative to that of antioxi-

dant substances [35]. This condition can result primarily

from increased metabolic rate but also from other processes

including inflammation or exposure to exogenous noxious

compounds [36–39]. TLs are thought to be particularly sensi-

tive to oxidative insult because they contain many guanine

triplet sequences, which are more vulnerable to oxidation

compared to other bases [31]. However, although biochemical

evidence for a negative association between oxidative stress

and TL length exists in vitro [31], many field studies in intact

organisms have not been able to find such patterns [40] (but

see [32,34]). A caveat of the hypothesis that oxidative stress

causes TL attrition is that the consequences of oxidative

damage should primarily become evident mostly during cell

division, when the damaged DNA has to be replicated

[32,41], irrespective of whether this damage happened before

or during the replication. This mechanism can therefore not

fully explain stress-induced TL attrition in post-mitotic tissues

where cell replication is rare or absent [42]. The high correlation

in TL lengths among tissues with different rates of cell division

also supports the notion that TL dynamics are not caused by

cell replication alone [43].

Recent reports have highlighted interactions of TLs with

key metabolic pathways of cells [30,44–46] (figure 1; further

details below). Based on this evidence, we propose the

metabolic telomere attrition hypothesis, which suggests that ener-

getic limitations will be an additional cause of TL attrition.

Biochemical evidence has also suggested a signalling function

of TLs within metabolic pathways [7,30,46,47], providing a

scope for TLs to convey critical information on cellular states

for life-history decisions. Such TL functions would be in line

with the recently advanced hypotheses that (i) TL attrition

can be adaptive because TLs are costly to maintain (costly

maintenance hypothesis), and (ii) because the signalling func-

tion of TL attrition can regulate life-history decisions according

to cell integrity (functional telomere attrition hypothesis) [48].

The metabolic telomere attrition hypothesis goes beyond these

proposed explanations by introducing specific metabolic

processes as potential regulators of TL dynamics (table 1).

(a) Glucocorticoid-induced telomere attrition to cope
with energy imbalances?

TL loss can be promoted by stressors like energy limitation,

work load, disease, oxidative imbalance or noxious stimuli

[4,49–51], which often result in an upregulation of gluco-

corticoid hormones (GCs [52–56]). GCs have fundamental

metabolic functions by stimulating gluconeogenesis, lipolysis

and proteolysis, by modulating the immune system, and by

regulating the synthesis and action of a number of hormones,

kinases and other enzymes [52,57,58]. GCs have extensive

pleiotropic actions on metabolic processes, and during

times of increased energy demands, activate specific path-

ways to release endogenous energy stores while inhibiting
processes that are not essential to cope with major challenges

[52]. Elevated GC levels can cause TL shortening in ver-

tebrates including humans (reviewed in [54,59]). The effects

of GCs on TLs are particularly evident during development,

an energetically highly demanding phase of life. For example,

endogenously or exogenously elevated GC levels reduced TL

lengths in nestlings from different avian species [60,61]. Simi-

lar effects were found when GC exposure occurred before

birth, either when bird eggs were injected with GCs [62] or

when maternal GC concentrations were experimentally elev-

ated [63]. The accepted explanation for this phenomenon is

that elevated GCs increase cellular oxidative stress [54,59]

by downregulating endogenous antioxidant defences and/

or increasing the production of reactive oxygen molecules

[54,59,64]. However, recent experimental studies that investi-

gated the potential of GCs to promote oxidative stress were

not able to find such an effect [65–68]. GCs can also impair

TL lengths by downregulating the expression of telomerase,

the enzyme that can counteract the loss of telomeric nucleo-

tides. However, to our knowledge, only one study thus far

has examined a GC-induced inhibition of telomerase tran-

scription, but without assessing consequences for TL length

[69]. Since telomerase also has functions that are unrelated

to TL maintenance, e.g. to protect mitochondria from

oxidative stress [70,71], at present there is no conclusive evi-

dence that GCs shorten TLs by suppressing telomerase.

However, as outlined above, GCs interact intimately with

metabolic processes and are typically upregulated during

times of high energy need to mobilize internal resources,

often at the deficit of other processes that also require these

resources as fuel.
2. The metabolic telomere attrition hypothesis
Biochemists recently proposed the existence of active TL

shortening processes that are activated when the cell is in

energetic debt and needs to reduce its anabolic metabolism

through a key regulatory kinase called ‘target of rapamycin’

(TOR; figure 1) in yeast, mice and humans [44,47,72–74].

In this proposed pathway, various factors that affect an indi-

vidual’s energy balance cause the upregulation of metabolic

mediators like GCs and AMP-activated protein kinase

(AMPK), which in animals typically increase when energy

reserves are low [75–77]. This upregulation of GCs and

AMPK could either be direct or mediated by low cellular ade-

nosine-triphospate (ATP) levels ([47]; figure 1). There is also

evidence that GCs and AMPK can interact with each other at

different levels to regulate cellular homeostasis [78,79]. GCs

can inhibit TOR via REDD1 (‘Regulated in development and

DNA Damage’ response proteins [76]), while AMPK can

do it directly (figure 1). TOR in turn plays a crucial role in

physiological trade-offs by regulating cell proliferation, differ-

entiation, growth and anabolic processes [80–82]. The

inhibition of TOR causes a downregulation of enzymes and

proteins that maintain TL length in yeast [44,72,83,84] and

humans [74,85]. The view that TL length is a regulated process

is supported by the recent discovery that Ku-proteins, which

are regulated by TOR (figure 1), can affect TL length in both

directions and through two pathways: first, when Ku-

proteins are present, they can directly interact with telomeric

repeats to increase telomerase expression, thus promoting

TL maintenance [86]. Conversely, TOR inhibition leads



Figure 1. Simplified illustration of the main biochemical pathways for a metabolic control of TL length as proposed by the metabolic telomere attrition hypothesis.
Immune activation, psychological stressors, growth, nutrient shortage and work load can negatively affect the cellular energy balance, leading to increased con-
centrations of metabolic regulators like glucocorticoids (GCs) and AMP-activated kinase (AMPK), partly through low ATP levels (i.e. at high AMP/ATP ratios, which
activate AMPK). AMPK can inhibit the kinase TOR (target of rapamycin), which downregulates enzymes and proteins that maintain TL length. Likewise, GCs may also
be able to inhibit TOR via REDD1 (‘Regulated in development and DNA Damage’ response proteins). TOR inhibition in turn suppresses Ku-proteins, which inhibit the
TL maintenance enzyme telomerase while increasing exonuclease concentrations and thus the excision of nucleotides from TLs. Extensive TL shortening can cause
ageing processes (dysfunctional mitochondria and cellular senescence pathway—left non-barred/yellow loop), while moderate TL attrition can promote immediate
survival functions (functional phenotype pathway—right barred-blue loop). For example, when low levels of protein p53 are secreted, they promote moderate TL
attrition, leading to mitochondrial functionality that includes increased concentrations of enzymatic antioxidants, improved oxidative phosphorylation and the gen-
eration of new mitochondria. By contrast, at high concentrations p53 disrupt mitochondria function, thereby decreasing cellular ATP levels while increasing the
concentrations of oxidative molecules by depleting and/or downregulating antioxidant enzymes. The latter pathway is part of the ageing circuitry. Solid
arrows, known activating processes; dashed arrows, proposed activating processes; black ‘Ts’, inhibiting processes. (Online version in colour.)

royalsocietypublishing.org/journal/rsbl
Biol.Lett.15:20180885

3

to a suppression of Ku-protein expression, resulting in an inhi-

bition of telomerase expression and TL attrition (figure 1).

Second, Ku-proteins appear able to bind to telomeric RNA

repeats called TERRA (TElomeric Repeats containing RNA

with repetitive UUAGGG sequences [87]). When bound to
TERRA, Ku-proteins can induce TL shortening by promoting

the expression of the enzyme exonuclease 1, which cleaves

nucleotides from telomeric DNA ([44,86]; figure 1). The inter-

actions between Ku-proteins and TERRA are not yet fully

understood and their importance in regulating TL dynamics



Table 1. Assumptions, predictions and experimental tests of the metabolic telomere attrition hypothesis. Note that when TL attrition is moderate ( pale blue panel
1), no oxidative stress is expected (in contrast to predictions of the oxidative stress telomere attrition hypothesis). When TL attrition is severe (yellow panel 2),
oxidative damage is expected to increase (similarly to the oxidative stress telomere attrition hypothesis). However, the mechanisms envisioned for the association
between oxidative stress and TL attrition differ between the two hypotheses, with the metabolic telomere attrition hypothesis viewing oxidative damage more as a
consequence of TL attrition than a cause. TOR, target of rapamycin; GC, glucocorticoid; AMP/ATP: adenosine monophosphate/adenosine triphosphate.

TL attrition
expected when

function of TL
attrition

examples of
manipulations to
inhibit TOR and
induce TL attrition

panel 1: physiological traits
expected to change
following TL attrition above
lower critical threshold
(functional loop; figure 1)

panel 2: physiological traits
expected to change
following severe TL
shortening (dysfunctional
loop; figure 1)

metabolic

adjustments

promote

catabolism over

anabolism (via

TOR inhibition)

re-establish energy

balance and

promote immediate

survival; signalling

functions within

cells

dietary caloric restriction

limitation of specific
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physical exercise

increased work load

growth under limited

resources

GC increases

increased pro-oxidants,

affecting AMP/ATP ratio

AMP/ATP �
TOR �
mitochondrial efficiency

( production of ATP) �
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body condition �

AMP/ATP �
TOR �
mitochondrial efficiency

( production of ATP) �
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mitochondrial dysfunction)

body condition �
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is only starting to emerge. However, in humans, TERRA may

be regulated by the energetic state of an individual, and poss-

ibly within relatively short time frames. For example, only

45 min of endurance exercise induced TERRA expression in

muscle cells of athletes [45]. The authors speculated that the

role of the TERRA activation was to protect TLs from the oxi-

dative insult generated by the exercise (though oxidative

stress was not measured in this study). According to the

metabolic telomere attrition hypothesis, TERRA could have

instead been activated to promote TL shortening in skeletal

muscle cells in response to the energetic imbalance caused by

the exercise [86]. In trained mice, 30 min of running perfor-

med at 65% of their peak speed induced a reduction in

the TL-sheltering protein TRF1 [88], which could explain the

shortening of TLs observed in mice exposed to chronic exercise

[89]. Together with the previous example, this study suggests

that when facing energetic challenges, organisms can trigger

a rather swift reorganization of TL-associated complexes like

TERRA and sheltering proteins, which are involved in TL

dynamics. We are still far from understanding these processes

but studying the gene expression of components involved in

TL regulation will constitute important first steps towards

fully elucidating these pathways.

Within the framework of the metabolic telomere attrition
hypothesis, we could envision several functional reasons for

an active TL length regulation: first, TL attrition could serve

an important signalling function in the metabolic regulation

of the cell (which would also provide a mechanism for the

‘functional attrition hypothesis’ [48]). There is biochemical

evidence in mice [30,47] that TL shortening can either cause

dysfunctional mitochondria and thus cellular senescence or

maintain functional mitochondria and healthy cells depend-

ing on the level of proteins like p53 that are secreted

following TL attrition ([47,90]; figure 1). At low concen-

trations, p53 increases levels of enzymatic antioxidants and

boosts the production of mitochondrial ATP as well as the

generation of new mitochondria ([47,91,92]; figure 1,
‘functional phenotype’ loop). By contrast, at high concen-

trations, p53 disrupts mitochondria function, thereby

decreasing ATP production and cellular energy levels,

while increasing concentrations of pro-oxidative molecules

through the depletion and/or downregulation of antioxidant

enzymes (figure 1). This TL–mitochondria–oxidative stress

axis pathway is part of the ageing circuitry [30,90].

Second, TLs could be regulated because they are costly to

maintain (see also ‘costly maintenance hypothesis’ [48]). On

theoretical grounds, costs are plausible because the TL structure

is rather complex, consisting of DNA–protein and DNA–RNA

complexes, and because an elaborate TL maintenance machin-

ery exists (figure 1). However, it is methodologically difficult

to quantify such costs. Nevertheless, tantalizing evidence in

yeast suggests that alterations in the ratio of the four dNTPs

(nucleoside triphosphates like ATP, GTP, CTP and TTP, which

comprise the nucleotide building blocks of DNA) can dramati-

cally affect TL length, both positively and negatively [93].

Nucleoside concentrations can vary with nutritional state,

biosynthesis potential, rate of cell replication and other con-

ditions [94], and directly affect cell replication [95,96].

Whenever nucleotide shortages occur, cells preferentially acti-

vate salvage pathways to obtain nucleotides from existing

sources like DNA before resorting to de novo biosynthesis

because the former is less expensive in terms of ATP-require-

ments [94]. If a cell cannot obtain enough nucleotides, it will

stop proliferating and trigger the replicative stress response

[95,97,98]. These observations raise the intriguing possibility

that during energy shortages, cells may induce these salvage

pathways to gain ready-to-use nucleotides through TL shorten-

ing, as a beneficial short-term strategy to avoid the costs of the

replicative stress response. However, it is currently unclear

whether the gain in nucleotides (or other resources) achieved

via TL attrition would be sufficient to prevent the cell from

entering such a detrimental state. The central role of nucleotide

metabolism in affecting cell replication is only beginning to be

understood, but it seems to be a central feature for regulating
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cell proliferation [95]. Further studies in this field are needed to

obtain a more complete picture of these processes.
oyalsocietypublishing.org/journal/rsbl
Biol.Lett.15:20180885
(a) Telomere attrition acting as a signal for life-history
decisions?

A third functional role for TL shortening during energy

shortages could be to act as a cellular signal to support life-

history decisions (see also ‘life-history regulation hypothesis’

[48]). Energetic limitations necessitate trade-offs in resource

allocation to processes that compete for access to the same

reserves [99,100]. A common vertebrate trade-off is the one

between investment in current versus future reproductive

events (the latter requiring investment in self-maintenance

processes to increase the probability of surviving and repro-

ducing again). GCs are thought to mediate this trade-off,

with baseline concentrations supporting traits that increase

reproductive success (e.g. parental provisioning [101–105]),

and high stress-induced concentrations inhibiting reproduc-

tive behaviour and promoting the ‘emergency life-history

state’ to support immediate survival processes [106].

Further, it is known that long TLs can silence certain genes

located in the subtelomeric region (called telomere position

effect—TPE). This gene silencing appears to be an evolutiona-

rily conserved strategy found in several species from yeast to

humans that allows metabolic adjustment to changes to

environmental conditions [107,108]. These genes are activated

by decreasing the TPE when TLs become shorter (but much

before a DNA damage response is induced [107,109]), provid-

ing a mechanism by which organismal performance can be

programmed according to TL length [110,111]. Overall, these

functions suggest that TLs are regulators of cell function,

sensors of energetic stress and mediators of life-history trade-

offs. During periods of energy limitation, moderate TL attrition

could support GC-induced metabolic changes associated with

prioritizing processes that increase immediate survival (via the

functional phenotype pathway; figure 1). In this way, TL attri-

tion would help to re-direct resource investment in processes

that promote survival and future reproduction instead of

investment in current reproduction. Once energy balance has

been restored, cellular processes could return to their former

state, TL length could be maintained again and life-history

decisions reversed. Evidence of TL restoration after attrition

has also been reported [4,18,112,113], but thus far, it is unclear

whether TL-lengthening represents a methodological artefact

or has a biological significance [114–116]. Within the concept

of the metabolic telomere attrition hypothesis, TL restoration

is conceivable, and in the following, we will summarize

some tentative biomedical evidence that might support its

existence. For example, telomerase is active in all tissues

during development, while in adults, it is present only in mito-

tic tissues and stem cells (at least in humans), but its activity can

vary greatly with life-history stage, tissue type and across

species [117–119]. Telomerase is quite conserved and present

in almost all organisms ranging from yeast to humans

[10,70,120]. TL-lengthening via mechanisms other than telo-

merase have also been described in somatic cells [121].

Further, androgens are used to treat TL-related human dis-

eases, because they are able to restore TL loss by activating

the expression of telomerase reverse transcriptase (TERT, one

of the subunits of telomerase [122,123]). Interestingly, in

these experiments, androgenic TERT regulation was achieved
through the oestrogen receptor, i.e. either following the enzy-

matic conversion of androgens into oestradiol or through

direct effects of oestradiol [123]. This would explain why TL

elongation is also observed after oestrogen treatment [124].

Similar results were obtained in mice suffering from aplastic

anaemia induced by short TLs, where testosterone implants

caused TL elongation by upregulating telomerase activity

[125]. The latter study also showed that the effect of testoster-

one on TLs was independent of that on cell proliferation,

which can be promoted by androgens [125]. Thus far, studies

on the effects of sex steroids on TLs have been conducted on

individuals afflicted by diseases and treated with pharmaco-

logical doses of sex steroids. Hence, the actions of naturalistic

sex steroid concentrations on TL dynamics have not yet been

tested, but it is likely that similar pathways would be activated.

Since the metabolic telomere attrition hypothesis predicts that TL

shortening should occur when cells have to switch to a cata-

bolic state, the converse is also expected in that TL restoration

should occur when cells are in an anabolic state. Sex steroids

typically promote anabolic processes, in contrast with the cata-

bolic effects of GCs [126,127]. Indeed, androgens are known to

activate TOR-mediated anabolic processes by inhibiting both

REDD1 and AMPK [128], which in turn activate TOR

(figure 1).

(b) Telomere attrition solves trade-offs?
The metabolic telomere attrition hypothesis assumes that TL attri-

tion is strongest during times of energy limitation, and that TL

shortening has a functional role as a signal for life-history

decisions. These proposed functions raise questions about the

evolutionary processes that could have shaped such pathways.

In particular, could TL attrition be a solution of energetic tra-

de-offs that has been shaped by evolutionary forces (see also

[48])? Several recent reports indeed indicate that TL shortening

might be an optimal strategy under certain circumstances. TL

attrition typically is very high during the early growth phase,

which is a highly energy-demanding phase [18,34,129]. Indi-

viduals’ growth rates can determine their health and fitness

prospects [130]. Evidence supporting the existence of trade-

offs between TL length and growth is accumulating (reviewed

in [34]). For example, king penguin (Aptenodytes patagonicus)

nestlings with a higher TL attrition were in better body con-

dition [131]. Similarly, male and female common terns

(Sterna hirundo) with shorter age-corrected TLs were in better

body condition, arrived earlier on the breeding grounds and

produced more offspring [132]. Furthermore, male common

terns with higher baseline GC levels achieved higher reproduc-

tive success and had shorter TLs, showing that short TLs can be

associated with higher fitness [133]. In line with the latter find-

ing, Atlantic salmon (Salmo salar) individuals with the shortest

TLs at the time of migration had the greatest probability of sur-

viving [134]. A caveat of the studies reviewed above is that they

are correlative and did not determine causal relationships. Fur-

thermore, they did not offer thorough mechanistic

explanations for their findings. Nevertheless, they fit with the

predictions of the metabolic telomere attrition hypothesis that

during times of energy limitations, a diversion of resources

away from TL maintenance to other processes could be ben-

eficial by improving body condition, performance and

fitness. There are also reports of negative relationships between

TL length and fitness proxies [17,18,21,135–137], which would

not be in contrast with the metabolic telomere attrition. For
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example, after reaching a certain lower threshold, short TLs are

expected to negatively impact body condition by promoting

dysfunctional mitochondria and cell senescence (figure 1).
 lsocietypublishing.org/journal/rsbl
Biol.Lett.15:20180885
3. Testing the metabolic telomere attrition
hypothesis

Several testable predictions arise from the metabolic telomere
attrition hypothesis (table 1):

(1) TL shortening is expected whenever organisms face

major energetic challenges that are perceived by the cell

(via TOR) and induce specific metabolic adjustments

like a promotion of catabolic over anabolic processes to

re-establish energy balance. Thus, TL attrition is likely

to occur in life-history stages characterized by high meta-

bolic demands, like growth [138], migration and

reproduction [137], during challenging environmental

conditions [135], and in the wake of energetically costly

processes like immune activation [50], high work load

[133], antagonistic challenges [139] or poor availability

of resources [140].

(2) During times of energy shortages, organismal changes

should occur (and will have to be studied in detail) at

two levels: (i) in the physiological mechanisms that link

energetic state, cell metabolism and TL dynamics like

mitochondrial functioning, phosphorylation status of

target kinases or gene expression; (ii) in the relationship

between TL attrition and the resulting condition of the

organism. Repeated assessments of TL lengths and meta-

bolic processes in individuals of different body condition

experiencing demanding conditions are needed to test

this prediction [4]. Ideally, such tests should be carried

out in natural populations, which are exposed more fre-

quently to settings that require resource trade-offs

[133,135,137–140] than populations living in sheltered

laboratory conditions.

(3) TL dynamics will be influenced by a range of metabolic

regulators, including GCs, thyroid and sex hormones,

insulin, energy-sensing kinases and proteins.

(4) Shortened TLs have a cell signalling function in trigger-

ing metabolic adjustments that boost mitochondrial

activity to increase ATP production. This prediction

could be tested by evaluating the metabolic efficiency

of cells with short versus long TLs, paying specific

attention to the expression of TOR regulators and TOR

actions to disentangle the causes from the consequences

of TL dynamics. This could also improve our under-

standing of the role of metabolically induced oxidative

stress in determining TL length.

(5) Oxidative stress could be indirectly related to TL length

through specific cell signals between TLs and mitochon-

dria ([47]; figure 1), without being the cause of attrition.

For example, severe oxidative stress can impair mitochon-

drial ATP production, thus increasing the AMP/ATP

ratio, which in turn inhibits TOR and shortens TL lengths

([141]; figure 1). TL attrition to a dysfunctional degree

causes mitochondrial dysregulation, which in turn can

lead to a high production of radical oxidative molecules

and low antioxidant concentrations. In this case, oxi-

dative stress would cause TL shortening primarily

through metabolic pathways and not, or not only, by
damaging TL integrity through oxidation. Similarly,

administration of antioxidants could benefit TL mainten-

ance because it has positive effects on mitochondrial

metabolism [30], thus improving the energetic state of

the cell, and not because it mitigates oxidative damage

(table 1).

(6) Within early-life stages, individuals that still undergo

growth, i.e. high cell replication, should be more likely

to show significant TL attrition during metabolically

challenging conditions than individuals that already

have completed growth.

(7) Individuals with longer TLs are more likely to lose telo-

meric nucleotides, as has been observed in some

passerines [20,142], because these are actively adjusted

in relation to metabolic needs. Cells with longer TLs can

tolerate more extensive erosion without entering cellular

senescence than cells with short TLs. Consequently, TL

loss relative to starting length is expected to predict fitness

outcomes for individuals [18,20]. However, once the

lower threshold of TL loss has been surpassed, afflicted

cells would become senescent, with negative fitness con-

sequences for the organism. Note that it has been difficult

to assess the lower threshold at which short TLs become

dysfunctional. In humans suffering from certain diseases,

a lower threshold of 2.6 kb was assumed to indicate dys-

functionality [143], but much shorter TL lengths have

been measured in humans and generalizations to other

taxa have proven difficult [144]. Moreover, most biomedi-

cal and ecological studies use methods that provide

average and relative estimates of TLs rather than chromo-

some-specific and absolute ones [145]. It will be crucial

that future studies attempt to delineate lower TL length

thresholds at the level of individuals, populations and

species to improve our understanding of the cellular

and organismal consequences of TL attrition [144,146].

(8) Species with higher metabolic rates and smaller body

sizes are expected to suffer more readily from energy

shortages and should, therefore, be more prone to TL

shortening than large species with low metabolic rates.

A meta-analysis on rodent species supports this predic-

tion by showing a negative correlation between

telomerase activity in several tissues and body size

(which in turn is negatively correlated with metabolic

rate [118]). These results were interpreted as being an

evolved tumour protection strategy by turning off telo-

merase in large, long-lived species [118,119]. However,

another, not mutually exclusive explanation is that smal-

ler species need to maintain high telomerase activity to

restore their larger TL losses.

(9) Hibernating species offer an ideal model to test the meta-
bolic telomere attrition hypothesis as the increased

longevity of hibernating species relative to that of non-

hibernating species with a comparable life-history strat-

egy seems to be related to TL dynamics [147,148].

Dormice (Glis glis) that show high torpor levels and low

arousal frequencies limit their TL attrition, while post-

torpor feeding can elongate TLs [147–149]. This fits the

predictions of the metabolic telomere attrition hypothesis:

TLs are finely regulated according to an individual’s ener-

getic state, with TL attrition being almost absent during

torpor, when hardly any energy is needed owing to the

substantially reduced metabolic rate. TLs can even be

elongated following torpor when individuals become
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active again, increase their metabolic rate and have plenty

of access to food resources [149].

(10) Other models suitable to test the metabolic telomere attrition
hypothesis are species that have to fast for a long time. For

example, king penguin chicks show an extended growth

phase during which they have to endure long periods of

food shortages during winter [131]. The growth of smal-

ler chicks during this time is more strongly reduced than

that of larger chicks, but they later exhibit catch-up

growth to compensate for their reduced size. As a conse-

quence of the accelerated compensatory growth rate,

these smaller chicks incur a greater oxidative damage

and an accelerated TL loss compared to chicks that had

a size advantage from the outset [131]. However, it is

hard to disentangle the costs of catch-up growth and

lack of nutrients in this experiment. The authors also

found a negative association between TL loss and oxi-

dative damage, supporting the hypothesis that a fast

growth rate causes oxidative damage and in turn

eroded TLs. However, this study also found that ‘inde-

pendently of the growth trajectory, ending with a good

body condition was also associated with a higher loss

of telomere sequences’ [131]. These puzzling results are

actually in line with our hypothesis of an adaptive sol-

ution to a metabolic trade-off between TL and growth.

In harsh environmental conditions, allocating resources

to functions other than TL maintenance may allow king

penguin chicks to achieve a better body condition and

consequently to increase their survival probabilities [150].

4. Conclusion
While a shortening of TLs with age is a matter of fact, the

mechanisms underlying TL attrition and their organismal

consequences are still unresolved [23,48]. New insights into

TL biology are gradually but dramatically changing our
view of TL dynamics. Recent studies in different species

have shown that TLs are transcribed by RNA polymerase

into long RNAs repeats (TERRA, see also above [27,151]).

The main functions of TERRA still have to be established,

but thus far, it is clear that they have an essential role in

the dynamics and functioning of TLs [28,152].

Our understanding of the relationship between TLs and

oxidative stress is also changing. Although it is generally

assumed that oxidative stress accelerates TL erosion in vitro
[31], it is now becoming evident from in vivo studies that

the picture is much more complex, with TL length and

metabolism being more tightly linked than initially thought

and not consistently explained by the production of reactive

oxygen species [44,45,47]. The relationship between TL attri-

tion and metabolism as proposed by the metabolic telomere
attrition hypothesis may in fact explain some contradictory

results concerning the pathways leading to TL shortening

as well as resulting fitness consequences (table 1). This

review proposes that one pathway of TL erosion is linked

to energetic trade-offs, with shortened TLs also fulfilling an

important signalling function for life-history trade-offs. We

suggest viewing TL length not only as a biomarker for cumu-

lative damage but also as a determinant of organismal

condition, integrating the impacts of both past and current

lifetime experiences.
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