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The Asian tiger mosquito Aedes albopictus is able to transmit various patho-

gens to humans and animals and it has already caused minor outbreaks

of dengue and chikungunya in southern Europe. Alarmingly, it is spreading

northwards and its eggs have been found in the UK in 2016 and 2017.

Climate-driven models can help to analyse whether this originally subtropi-

cal species could become established in northern Europe. But so far, these

models have not considered the impact of the diurnal temperature range

(DTR) experienced by mosquitoes in the field. Here, we describe a dynami-

cal model for the life cycle of Ae. albopictus, taking into account the DTR,

rainfall, photoperiod and human population density. We develop a new

metric for habitat suitability and drive our model with different climate

data sets to analyse the UK’s suitability for this species. For now, most of

the UK seems to be rather unsuitable, except for some densely populated

and high importation risk areas in southeast England. But this picture

changes in the next 50 years: future scenarios suggest that Ae. albopictus
could become established over almost all of England and Wales, indicating

the need for continued mosquito surveillance.
1. Introduction
About 10 invasive species become established in Europe each year [1] and the

UK alone spends about £ 1.7 billion annually to mitigate their impacts [2].

One of these species that has already invaded Europe and might now spread

to the UK is the Asian tiger mosquito, Ae. albopictus. This mosquito spreads

worldwide through its long-lasting and drought-resistant eggs that can be

transported over long distances, for example, in used vehicle tyres or lucky

bamboo pot plants [3]. The eggs can also undergo a diapause to resist colder

winter temperatures [4], allowing temperate regions significantly colder than

its original niche in South East Asia to be colonized. In Europe, Ae. albopictus
was introduced in the late 1970s to Albania [5], in 1990 to Italy [6] and more

recently into greenhouses in the Netherlands [7]. Since its introduction into

Italy, it has rapidly spread along the Mediterranean coast and is now expanding

its northern range [8].

This is a major concern as Ae. albopictus is an effective disease vector. It

can transmit a range of arboviruses affecting humans and animals, including

chikungunya, dengue and Zika viruses [9], as well as filarial worms [10].

In Europe, it was responsible for two outbreaks of chikungunya in Italy and

a few cases of dengue in Croatia and France in the last 10 years [11–13]. In

addition, it is a potent vector of zoonotic diseases because it feeds on mammals,

birds, reptiles and amphibians [14], although it feeds preferentially on humans

in urban areas [15]. So whether or not Ae. albopictus will spread from continental

Europe to the UK and subsequently become established is of significant public
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Figure 1. Life stages of Ae. albopictus. Eggs E hatch and become juveniles J (larvae and pupae). They develop to newly eclosed (immature) females I and finally to
mature female adults A. Adult female mosquitoes lay normal eggs E in the summer months or diapausing eggs Ed at the end of the season. Diapausing eggs
overwinter and are activated by a combination of longer day lengths, warmer temperatures and rainfall in spring.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180761

2

health interest. And there is evidence for recent introductions:

in September 2016, eggs were found in Kent, the English

county closest to France, by a surveillance team of Public

Health England [16], followed by another finding of eggs

and larvae in July 2017 at another site in the same county

[17]. Here, gravid females have probably been carried over

in cars or lorries and subsequently laid eggs when released

at motorway service points.

Mechanistic and statistical niche models have been devel-

oped to analyse the UK’s climatic suitability for Ae. albopictus,

suggesting that large parts of southern England are already

suitable [18–20]. Dynamical models, better suited to capture

the nonlinear behaviour of the mosquito’s development, have

been published more recently [21–24]. While all of these

models use seasonal or daily mean temperatures and rainfall

as drivers, it has become clear that the diurnal temperature

range (DTR) significantly affects the life cycle of insects too.

The DTR is the difference between the maximum midday

temperature and the minimum night-time temperature.

Studies on Aedes mosquitoes show that rates for development

and mortality differ substantially under constant temperature

conditions compared with a realistic diurnal temperature

cycle [25–27]. Models that already incorporate DTR have

been developed for aphids [28], moths [29], generic insects

[30] and its effect have been recently applied to a model for

Anopheles mosquitoes [31].

Here, we describe the development of a novel dynamical

model for Ae. albopictus that explicitly incorporates the effect

of DTR on its life cycle. We use mosquito occurrence data and

container index (CI) data to evaluate the model performance

before analysing the suitability of the UK for this invasive

mosquito under current climate conditions and under two

climate projection scenarios for the future.
2. Model and methods
Based on previous studies, we chose a compartmental,

climate-driven approach to model the life cycle of Ae.
albopictus [21,23,24]. The model comprises five differential

equations. Details on climate-dependent variables can be

found in electronic supplementary material, SI.1.

2.1. Dynamic life cycle model
The mosquito life cycle is described by five mosquito

classes: normal, non-diapausing eggs E, juvenile aquatic
stages J, immature female adults I, mature female adults A
and diapausing eggs Ed (figure 1). Normal, non-diapausing

eggs are laid during summer by mature females. Larvae hatch

after eggs complete a development period and are activated

by rainfall. The four larval stages and the pupal stage are com-

bined into a single aquatic juvenile class in the model.

Assuming a sex ratio of 50:50, juveniles then develop into

newly eclosed male and female adults. Newly eclosed female

mosquitoes do not directly show host-seeking behaviour.

Instead, they first spend some time in a resting stage, only

after which they take their first blood meal and start to lay

eggs [32].

At the end of the season, the egg laying process depends

on the photoperiod, P. When days are getting shorter,

females start to lay diapausing eggs that do not hatch

after a few days but overwinter. During the following

spring, these eggs are ready to hatch when temperatures

and photoperiod reach critical thresholds, and are eventually

activated by rainfall.

All transitions from one class to another depend on

temperature, T, and so do mortality rates. Because

Ae. albopictus’ water filled breeding sites are usually small

[33], we use air temperature as a proxy for water temperature.

With parameter definitions given in table 1, model

equations are as follows:

d

dt
E(t) ¼ b(1� v)A(t)� hdEE(t)� mEE(t),

d

dt
J(t) ¼ hdEE(t)þ hsgEd(t)� dJJ(t)� mJJ(t)� J(t)2

K
,

d

dt
I(t) ¼ 1

2
dJJ(t)� dII(t)� mAI(t),

d

dt
A(t) ¼ dII(t)� mAA(t)

and
d

dt
Ed(t) ¼ bvA(t)� hsEd(t):

Development rates, d, and mortality rates for eggs and

juveniles, mE and mJ, depend on the actual oscillating diurnal

temperature T. The development from juvenile to immature

females is halved in the equation for (d/dt)I(t), (1/2)dJ,

to account for the 50:50 sex ratio. Only the mortality rate

for adults is derived from field data that already include a

DTR. Daily mean temperatures, Tmean, are, therefore, used

for mA. T7 is the average temperature over the recent

7 days, used to trigger the spring hatching rate.



Table 1. Parameter definitions and values. Derivation and references of parameters are shown in electronic supplementary material, SI.1. Environmental drivers
are temperature, T, rainfall, R, photoperiod, P, latitude, L and human population density, H. Please note that the environmental carrying capacity, K, and the
egg activation by rainfall, h, are defined in equations (2.1) and (2.2) further down in the manuscript.

parameter value/formula

CTTS critical temperature over one week in spring (8C ) 11.0q

CPPS critical photoperiod in spring (hours) 11.25q

s(T, P) spring hatching rate (1/day)
0 if T7 , CTTS or P , CPPS

rS ¼ 0:1y if T7�CTTS and P�CPPS

�

CPPA(L) critical photoperiod in autumn (hours) 10.058 þ 0.08965 L

v(P) fraction of eggs going into diapause
0 if P . CPPA or t , 183
rA ¼ 0:5 if P� CPPA and t� 183

�
dE normal egg development rate (1/day) 1/7.1

dJ(T ) juvenile development rate (1/day) 1/(83.85 2 4.89 T þ 0.08 T2)

dI(T ) first pre-blood meal rate (1/day) 1/(50.1 2 3.574 T þ 0.069 T2)

mE(T ) egg mortality rate (1/day) � ln(0:955 exp (�0:5 ( T�18:8
21:53 )6))

mJ(T ) juvenile mortality rate (1/day) � ln(0:977 exp (�0:5( T�21:8
16:6 )6))

mA(Tmean) adult mortality rate (1/day) � ln(0:677 exp (�0:5( Tmean�20:9
13:2 )6) T 0:1

mean)

g(TDJF,min) survival probability of diapausing eggs (1/winter) 0:93 exp (� 0:5( TDJF,min�11:68
15:67 )6)

b(T ) egg laying rate (1/day)
33:2 exp �0:5

T � 70:3
14:1

� �2
 !

38:8� Tð Þ1:5 if T� 38:8

0 if T . 38:8

8><
>:

l capacity parameter (larvae . days /hectare) 106z
q[34].
yBest estimate.
z[22,35].
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Owing to the lack of information regarding the survival

rates of eggs over long time periods (several months), we

assume a survival probability g of diapausing eggs that is

dependent on the minimum winter temperature experienced,

TDJF,min. The survival probability is applied when eggs are

activated in spring, see electronic supplementary material,

SI.1 for details. Remaining diapausing eggs that have not

hatched until August are removed.

Larval mortality not only depends on temperature

but also on an environmental carrying capacity, K, represent-

ing juvenile competition and predation [36]. We use the

model by White et al. [37] and its extension by Erguler et al.
[24] to calculate K from rainfall, R, and human population

density, H

K(R, H) ¼ l
1� aevap

1� at
evap

Xt

x¼1

a(t�x)
evap (arainR(x)þ adensH(x)): (2:1)

As we model mosquito abundance in individuals per

hectare, we keep the parameters at aevap ¼ 0.9, adens ¼

0.001 km2 and arain ¼ 0.00001 mm21 [24] but multiply by

a scaling factor l to reach a maximum carrying capacity

ranging between 500 000 and 800 000 individuals per

hectare [22,35].

Similar to the carrying capacity, we model the hatching

of eggs depending on rainfall and human population

density. We use the rainfall-dependent approach by

Abdelrazec & Gumel [38] and assume that up to erat ¼ 20%
of eggs can hatch in densely populated areas regardless of

rainfall conditions:

h(R, H) ¼ (1� erat)
(1þ e0) exp (�evar(R(t)� eopt)

2)

exp (� evar (R(t)� eopt)
2)þ e0

þ erat
edens

edens þ exp (�efacH(t))
:

(2:2)

We set the optimal amount of daily rainfall to eopt ¼

8 mm, and use e0 ¼ 1.5 and evar ¼ 0.05 mm22 [38]. Density-

dependent parameters are set to edens ¼ 0.01 and e fac ¼

0.01 km2, such that egg hatching is increased in areas where

H . 500 people per km2.

Note that other studies split the juvenile stage into larvae

and pupae and some also split the mature female stage into

host seeking, gestating, and ovipositing stages [22–24]. We

also simulated these scenarios but they did not improve

model fit to presence or CI data. As there was also more para-

meterization data available for a reduced model, we kept the

model framework with a minimum number of equations. See

electronic supplementary material, SI.2 for further details.

The model is implemented in Octave v4.2.1 and Runge–

Kutta 4 is used to solve ODEs. All scripts and a short example

can be found in the electronic supplementary material.

2.1.1. Suitability index
We propose a suitability index E0 that relates to the basic

reproduction number R0 in epidemiological studies. In
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Figure 2. Spatial validation. White dots show established Ae. albopictus populations, yellow dots show one-time sightings. Background colours show the simulated
suitability index of the period 2006 – 2016. Red contour distinguishes suitable (E0 . 1) from unsuitable areas (E0 , 1). In the grey area, climate data from the
E-OBS dataset was incomplete for all years of the study period. (Online version in colour.)
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epidemiology, R0 is defined by the number of susceptibles

infected by a single infectious individual in an otherwise

uninfected population. Accordingly, we define our suitability

index by the number of eggs that are produced at the end of a

year, after placing a single (diapausing) egg at the beginning

of the year into an uncolonized location. The amount by

which the number of eggs has increased (suitable) or decreased

(unsuitable) defines the suitability index Ei of that year i.
Repeating this procedure for n consecutive years and taking

the geometric mean of the yearly suitability indices gives the

suitability index, E0, for the according period,

E0 ¼
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1Ei

q
,

with Ei¼ Ed(day¼ 365)/Ed(day ¼ 1). Note that the crucial scal-

ing of E0 depends on the carrying capacity, K. With our standard

settings, the model predicts about 1200 adult female Ae. albopic-
tus per hectare for August/September in Rome (figure 7). This is

well in the range of mark–release–recapture data, with an esti-

mated 1400 females per hectare [39]. See electronic

supplementary material, SI.3 for further details.
2.1.2. Diurnal temperature cycle
To calculate the DTR, we use the model by DeWit [40], which

is well suited to compute realistic temperatures throughout

the day from maximum and minimum temperatures [41].

Time points for temperature calculation are chosen according

to the time steps for our explicit numerical solver, e.g. if

k ¼ 1
100, we calculate 100 actual temperatures throughout the

day at 0.14, 0.19, . . . 24.00. Temperatures during day i are

calculated by

Ti(ht) ¼

Tmax
i�1
þTmin

i
2 þ Tmax

i�1
�Tmin

i
2 cos ht þ 10

10þ ts
p

� �
if ht , ts

Tmax
i þTmin

i
2 � Tmax

i �Tmin
i

2 cos ht � ts
14� ts

p
� �

if ts , ht , 14

Tmax
i þTmin

iþ1

2 þ Tmax
i �Tmin

iþ1

2 cos ht � 14
10þ ts

p
� �

else

8>>>><
>>>>:

with Tmax =min
i being the maximum or minimum temperature

of day i. The model assumes Tmin at sunrise ts and Tmax at

14.00 local time. The time of day in hours is given by ht,

and the time of sunrise, ts, is calculated using the daylight

model by Forsythe et al. [42], depending on latitude, L, and
the day of year, DOY. See electronic supplementary material,

SI.4 for further details on the daylight model equations.

2.1.3. Climate and population density data
We run our model with a range of different climate data sets

from historical records and future climate projections. For

mosquito suitability in the UK, we compare the observed

gridded climate datasets from E-OBS on a 25 � 25 km spatial

scale [43] and from UKCP09 on a 5 � 5 km scale [44]. The

E-OBS dataset is used for model validation over Europe

and the ERG5 Eraclito dataset [45] is used for the model

runs in the Emilia-Romagna region.

For future model runs across Europe, we use 25� 25 km

spatial scale climate projections from the NASA NEX-GDDP

project [46] for two different emission scenarios, the medium

RCP4.5 and the extreme RCP8.5 scenario. A subset of five gen-

eral circulation models from the full set of 21 was chosen to

represent the full range of uncertainty, see electronic sup-

plementary material, SI.5 for details. For future changes, we

focus on the period 2060–2069, the 2060s hereafter.

Human population density is based on the GPWv4 data-

set [47]. For the 2060s projections, we assume the total UK

population has increased from 65.5 million to 75 million

[48] but has not changed in its spatial distribution.

2.2. Validation
2.2.1. Mosquito data
To validate the spatial distribution of suitability simulated by

the model, we used Ae. albopictus occurrences [49], updated

with data from the recent literature [16,17,50–53], and classi-

fied into established populations and one-time sightings

according to the 2018 ECDC classification [8]. Occurrence

points that were less than 25 km apart from one another

were clustered together, resulting in a total of 234 out of

385 data points. We then checked whether each established

occurrence point fell into a grid cell that was calculated to

be suitable (E0 . 1).

Figure 2 shows the suitability index for the period 2006–

2016, which is highly consistent with occurrence data: 83% of

the established populations fall into a suitable grid cell, 17%

into unsuitable ones (excluding grid cells that are not covered
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by climate data). However, the model misses some points in

the southern Alps, the Bulgarian/Romanian Black Sea coast

and some southern German cities. This is possibly because

occurrences fall into warmer valleys or urban areas with

microclimate conditions that are not captured by the coarse

spatial resolution of the climate data. Also, the model predicts

suitable conditions for areas such as southern Germany in

most years but specific years with a very cold winter or

dry summer lower the 10-year suitability index (compare

electronic supplementary material, figure S7).

More densely populated areas, such as Madrid, Paris and

London appear as suitable; they act as heat islands, further

increasing mosquito development [54], and they supply mos-

quito breeding sites by man-made containers and irrigation.

We used observed CI data that are available for northern

Italy to validate our model not only in space but in time (see

electronic supplementary material, SI.7). While the onset and

end of the mosquito season is well captured by the model, it

sometimes over- or underestimates the peak in mosquito

numbers at interannual timescale. The Pearson correlation

between observed and simulated egg data is r ¼ 0.70 (95%

CI: 0.67 � r � 0.73, N ¼ 996).

2.2.2. Sensitivity analysis
To investigate the influence of each parameter on the final

model output, E0, we perform the elementary effects test

(EET) [55]. The EET measures the influence of single input

parameters on model outputs, as well as their degree of inter-

action with other parameters. Latin hypercube sampling is

used to vary parameters in the range of +10% of the stan-

dard setting [56]. The model is then run with the Italian

climate data until convergence and the total egg number

after 5 years is taken as reference. Octave scripts for these

methods come from the SAFE toolbox [57].

The critical temperature threshold in spring, CTTS, has

the biggest effect on E0, followed by parameters determin-

ing rainfall dependencies such as evar and arain, and egg

development, dE (figure 3). Other mosquito-specific
parameters range in the middle. Parameters such as initial

egg numbers, v0, or other hatching rate parameters, edens,

erat and eopt, have a limited impact on the model output for

the Italian climate settings. The distributions for mean and

standard deviation of EEs indicate that parameters with a

bigger effect on other parameters have a bigger effect on

the model output, E0.
3. Results
3.1. Diurnal temperature range
To analyse the effect of the DTR on mosquito population size,

we first run the model under constant conditions (5 mm
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rainfall per day, 12 h daylight, 100 humans per km2, starting

with 1 egg per hectare) for a range of different temperatures.

The model is run with constant mean temperatures (DTR ¼

08C) and afterwards with oscillating temperatures (08C ,

DTR � 128C), simulating the diurnal temperature cycle. We

then compare absolute mosquito numbers after 365 days by

dividing egg numbers that experienced DTR by egg numbers

at constant temperatures.

Figure 4 shows that oscillating temperatures have a posi-

tive effect on the population size at lower mean temperatures,

roughly for 148C , Tmean , 248C. This is actually the lower

bound of the mosquito’s suitable temperature niche, equili-

bria and stability analyses show that mosquito populations

could survive at constant temperatures between approx.

138C and 328C (see electronic supplementary material, SI.9).

Only when temperatures are very low (T , 138C), DTR has
a negative effect on the population numbers as mosquitoes

experience high mortalities at the reached minimum tempera-

tures. Electronic supplementary material, figure S12 shows

more detailed time series of population growth at different

temperature scenarios, these time series have been used to

create figure 4. Including the DTR in simulations increases

the suitability especially in northern regions compared with

model runs that only use daily mean temperatures (electronic

supplementary material, figure S11).
3.2. Current suitability of the UK
To analyse the UK’s suitability for this mosquito, we run our

model with two climate datasets for the recent period 2006–

2016. Figure 5 shows that simulations driven by climate datasets

with high and low spatial resolution agree in that the London
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area, the Thames estuary and parts of the southern coast are

already suitable for the mosquito. Other warmer areas around

the Severn estuary or in East Anglia, as well as populated north-

ern regions such as Merseyside or around Sheffield are close to

but not yet suitable. The Scottish Highlands, the Pennines and

the Welsh mountains are unsuitable. Note that we are looking

at a 10-year period to analyse the suitability for long-term estab-

lishment. We can also look at individual years, finding, for

example, that 2016 was suitable over a larger region of the UK

(see electronic supplementary material, figure S7).

3.3. Future suitability of the UK
Figure 6 shows the UK’s future mosquito suitability for two

emission scenarios, RCP4.5 and RCP8.5, for the 2060s.

Compared with recent UK suitability (figure 5), most of

England will have become suitable for the establishment of

Ae. albopictus populations in about 50 years when looking

at the means. Parts of Wales might become suitable, depend-

ing on the emission scenario. Scotland and Northern Ireland

remain mostly unaffected. However, there are large differ-

ences across the five climate models: only the southeast tip

of the UK will become suitable with the coldest climate

model, while almost the whole UK will become suitable

with the warmest model.

Focusing on changes in seasonal abundance, simulations

indicate that in current London, Ae. albopictus population

sizes would be small in early summer and reach relative

high number in July and August (figure 7). Future scenarios

show an expansion of this peak into September and an

overall increase in numbers. However, the length of the

peak mosquito season would be short and population sizes

remain low with respect to simulated values in Rome for

recent climate conditions. Simulations for figure 7 were

started 1 year ahead of the analysed period and mosquito

numbers transferred from the end of a year into the next.
4. Discussion
Numerous studies investigating the climatic dependencies of

Ae. albopictus have been published in recent years [4,58–63].

Taking these new findings into account and building on
other modelling studies [21,23,24], we developed a dynami-

cal model for Ae. albopictus that explicitly simulates the

effects of rainfall for egg hatching and larval development,

photoperiod for diapause induction and ending, and con-

siders minimum and maximum temperatures that shape

mortality and development rates of aquatic and adult stages.

The full temperature range experienced by mosquitoes

in the field tend to increase model development rates

throughout all stages. Mosquito populations at the lower

temperature range (148C to 248C) develop better with oscillat-

ing temperatures. Here, night-time temperatures do not affect

the development rates that are quite low anyway, while

higher temperatures during the day significantly increase

them [31]. Conversely, when mean temperatures are already

high, lower night-time temperatures decrease development

rates, while even higher temperatures during the day tend

to increase mortality rather than development rates [27].

Thus, the DTR can be crucial for suitability analyses and

should be considered for modelling the life cycle of mosqui-

toes and other insects [30,31], as it has already been done for

the modelling of temperature-dependent viruses or malaria

protozoans that mosquitoes can transmit [64–66].

Looking at the UK climate conditions for the past 10 years,

we find large parts of the UK rather unsuitable for Ae. albopic-
tus, except for some warmer and densely populated areas in

the southeast of England. This finding suggests the mosquito

has to be introduced into specific areas to enable long-term

establishment. This result differs from findings by other

modelling studies showing a medium to high suitability of

larger parts of England [19,20,24,67] with up to five months

adult mosquito activity in certain areas [18].

Our results are a bit more conservative because we

included a rainfall-dependent mechanisms for egg hatching

and larval mortalities in the model. Instead of constant egg

hatching, we assumed that rainfall events lead to eggs

being submerged under water and subsequent hatching.

Similar to the finding of Tran et al. [22], the introduction of

a rainfall-dependent egg hatching rate does not improve the

model output fit to empirical abundance or ovitrap data.

However, we found it enhances model performance in arid

and unpopulated areas such as central Spain and Turkey.

We further assumed that a high human population density

positively influences both the hatching of eggs and the survi-

val of larvae because the mosquito is able to develop indoors

[68], but also in arid but densely populated areas, where water

storage and sprinkling create breeding habitats [69].

While large parts of England might not yet be suitable for

a long-term establishment of this mosquito, individual years

(especially the warmer recent ones, like 2016) already show a

higher suitability which will continue to increase in the future

[70]. Looking 50 years ahead, our projections suggest that

Ae. albopictus, if introduced, could establish itself over most

of England and southern Wales during the 2060s. The mos-

quito could become abundant in London during future

summers; but even severe warming scenarios suggest that

population sizes would still remain small with respect to

current conditions in Rome, Italy. Large uncertainties related

to the selected climate model and the emission scenario are

due to the large variability of rainfall and temperature

projections in the multi-model ensemble.

The question whether Ae. albopictus is able to spread from

continental Europe to England is of great importance for

public health and veterinary services. This mosquito is a
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vector that can transmit pathogens that are present or con-

stantly introduced into the UK, such as several arboviruses

like Zika, dengue and chikungunya [71] and the canine

heartworm Dirofilaria immitis [72]. Moreover, it is a very com-

petitive species that could replace endemic mosquito species

and become a biting nuisance to the local population [73].

Finding parts of southeast England already suitable and pre-

dicting a strong increase in suitability for most of England in

the future, we highly recommend stringent vector surveil-

lance in southern UK ports and high importation risk areas

along motorways [3,74]. In addition, human and veterinary

health services should get prepared to deal with pathogens

transmitted by Ae. albopictus in warm summers [75], as it is

recently happening in southern European countries.

Data accessibility. The E-OBS climate dataset for Europe is publicly avail-
able, following registration, at https://www.ecad.eu/download/
ensembles/ensembles.php. The UKCP09 climate dataset for the UK
is available, following registration, at https://www.metoffice.gov.
uk/climatechange/science/monitoring/ukcp09/download/index.
html. The ERG5 Eraclito climate dataset for the Emilia-Romagna
region is publicly available at https://www.arpae.it/dettaglio_docu-
mento.asp?id=6147&idlivello=1528. The climate projections of the
NASA NEX-GDDP project are available, following registration, at
https://cds.nccs.nasa.gov/nex-gddp/. Population density data
from GPWv4 is publicly available, following registration, at http://
sedac.ciesin.columbia.edu/data/collection/gpw-v4. Model scripts
are available in the electronic supplementary material.
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53. Osório H, Zé-Zé L, Neto M, Silva S, Marques F, Silva
A, Alves M. 2018 Detection of the invasive mosquito
species Aedes (Stegomyia) albopictus (Diptera:
Culicidae) in Portugal. Int. J. Environ. Res. Public
Health 15, 820. (doi:10.3390/ijerph15040820)

54. Meineke EK, Dunn RR, Sexton JO, Frank SD. 2013
Urban warming drives insect pest abundance on
street trees. PLoS ONE 8, 2 – 8. (doi:10.1371/journal.
pone.0059687)

55. Morris MD. 1991 Factorial plans for preliminary
sampling computational experiments. Technometrics
33, 161 – 174. (doi:10.1080/00401706.1991.
10484804)

56. McKay MD, Beckman RJ, Conover WJ. 2000 A
comparison of three methods for selecting values of
input variables in the analysis of output from a
computer code. Technometrics 42, 55 – 61. (doi:10.
1080/00401706.2000.10485979)

57. Pianosi F, Sarrazin F, Wagener T. 2015 A Matlab
toolbox for global sensitivity analysis. Environ.
Model. Softw. 70, 80 – 85. (doi:10.1016/j.envsoft.
2015.04.009)

58. Thomas S, Obermayr U, Fischer D, Kreyling J,
Beierkuhnlein C. 2012 Low-temperature threshold
for egg survival of a post-diapause and non-
diapause European aedine strain, Aedes albopictus
(Diptera: Culicidae). Parasit. Vectors 5, 100. (doi:10.
1186/1756-3305-5-100)

59. Urbanski J, Mogi M, O’Donnell D, DeCotiis M, Toma
T, Armbruster P. 2012 Rapid adaptive evolution of
photoperiodic response during invasion and range
expansion across a climatic gradient. Am. Nat. 179,
490 – 500. (doi:10.1086/664709)

60. Brady J et al. 2013 Modelling adult Aedes aegypti
and Aedes albopictus survival at different
temperatures in laboratory and field settings.
Parasit. Vectors 6, 351. (doi:10.1186/1756-3305-6-
351)

61. Lacour G, Vernichon F, Cadilhac N, Boyer S, Lagneau
C, Hance T. 2014 When mothers anticipate: effects
of the prediapause stage on embryo development
time and of maternal photoperiod on eggs of a
temperate and a tropical strains of Aedes albopictus
(Diptera: Culicidae). J. Insect. Physiol. 71, 87 – 96.
(doi:10.1016/j.jinsphys.2014.10.008)

62. Rozilawati H, Masri SM, Tanaselvi K, Zairi J, Nazn W,
Lee H. 2016 Effect of temperature on the immature
development of Aedes albopictus Skuse. Southeast
Asian J. Trop. Med. Public Health 47, 731 – 746.
(doi:10.1111/j.1365-2915.2011.00971.x)

http://dx.doi.org/10.1371/journal.pone.0149282
http://dx.doi.org/10.1371/journal.pone.0149282
http://dx.doi.org/10.1016/j.actatropica.2011.04.004
http://dx.doi.org/10.1603/ME10204
http://dx.doi.org/10.1603/ME11242
http://dx.doi.org/10.1242/jeb.122127
http://dx.doi.org/10.1371/journal.pone.0120772
http://dx.doi.org/10.1371/journal.pone.0120772
http://dx.doi.org/10.1098/rspb.2013.2612
http://dx.doi.org/10.1098/rspb.2013.2612
http://dx.doi.org/10.1098/rsos.160969
http://dx.doi.org/10.1603/033.046.0105
http://dx.doi.org/10.1016/j.micinf.2009.05.005
http://dx.doi.org/10.1016/j.ecolmodel.2011.10.027
http://dx.doi.org/10.1603/0022-2585-38.4.566
http://dx.doi.org/10.1186/1756-3305-4-153
http://dx.doi.org/10.1007/s00285-016-1054-9
http://dx.doi.org/10.1111/j.1365-2915.2010.00898.x
http://dx.doi.org/10.1016/0168-1923(89)90064-6
http://dx.doi.org/10.1016/0168-1923(89)90064-6
http://dx.doi.org/10.1016/0304-3800(94)00034-F
http://dx.doi.org/10.1016/0304-3800(94)00034-F
http://dx.doi.org/10.1029/2008JD010201
http://dx.doi.org/10.1002/joc.2016.36.issue-4
http://dx.doi.org/10.5194/hess-16-3309-2012
http://dx.doi.org/10.1080/23754931.2015.1014272
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections
http://dx.doi.org/10.7554/eLife.08347
http://dx.doi.org/10.1371/journal.pntd.0004664
http://dx.doi.org/10.1016/j.actatropica.2016.11.024
http://dx.doi.org/10.1186/s13071-017-2488-7
http://dx.doi.org/10.3390/ijerph15040820
http://dx.doi.org/10.1371/journal.pone.0059687
http://dx.doi.org/10.1371/journal.pone.0059687
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1080/00401706.1991.10484804
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1080/00401706.2000.10485979
http://dx.doi.org/10.1016/j.envsoft.2015.04.009
http://dx.doi.org/10.1016/j.envsoft.2015.04.009
http://dx.doi.org/10.1186/1756-3305-5-100
http://dx.doi.org/10.1186/1756-3305-5-100
http://dx.doi.org/10.1086/664709
http://dx.doi.org/10.1186/1756-3305-6-351
http://dx.doi.org/10.1186/1756-3305-6-351
http://dx.doi.org/10.1016/j.jinsphys.2014.10.008
http://dx.doi.org/10.1111/j.1365-2915.2011.00971.x


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:201807

10
63. Kreß A, Oppold AM, Kuch U, Oehlmann J, Müller R.
2017 Cold tolerance of the Asian tiger mosquito
Aedes albopictus and its response to epigenetic
alterations. J. Insect. Physiol. 99, 113 – 121. (doi:10.
1016/j.jinsphys.2017.04.003)

64. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read
AF, Thomas MB. 2010 Influence of climate on
malaria transmission depends on daily temperature
variation. Proc. Natl Acad. Sci. USA 107, 15 135 – 15
139. (doi:10.1073/pnas.1006422107)

65. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB,
Kramer LD, Thomas MB, Scott TW. 2011 Impact of daily
temperature fluctuations on dengue virus transmission
by Aedes aegypti. Proc. Natl Acad. Sci. USA 108,
7406– 7465. (doi:10.1073/pnas.1101377108)

66. Wang X, Tang S, Cheke RA. 2016 A stage structured
mosquito model incorporating effects of precipitation
and daily temperature fluctuations. J. Theor. Biol. 411,
27 – 36. (doi:10.1016/j.jtbi.2016.09.015)

67. ECDC. 2012 The climatic suitability for dengue
transmission in continental Europe. Technical report.
See https://ecdc.europa.eu/sites/portal/files/media/
en/publications/Publications/TER-Climatic-
suitablility-dengue.pdf.

68. Dieng H, Saifur RGM, Hassan AA, Che Salmah MR,
Boots M, Satho T, Jaal Z, AbuBaskar S. 2010 Indoor-
breeding of Aedes albopictus in northern peninsular
Malaysia and its potential epidemiological
implications. PLoS ONE 5, e11790. (doi:10.1371/
journal.pone.0011790)

69. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. 2007
Spread of the tiger: global risk of invasion by the
mosquito Aedes albopictus. Vector Borne Zoonotic Dis.
7, 76 – 85. (doi:10.1089/vbz.2006.0562)

70. Liu-Helmersson J, Quam M, Wilder-Smith A,
Stenlund H, Ebi K, Massad E, Rocklöv J. 2016
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