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Killer yeasts are microorganisms, which can produce and secrete protein-

aceous toxins, a characteristic gained via infection by a virus. These toxins

are able to kill sensitive cells of the same or a related species. From a biotech-

nological perspective, killer yeasts are beneficial due to their antifungal/

antimicrobial activity, but also regarded as problematic for large-scale

fermentation processes, whereby those yeasts would kill starter cultures

species and lead to stuck fermentations. Here, we propose a mechanistic

model of the toxin-binding kinetics pertaining to the killer population

coupled with the toxin-induced death kinetics of the sensitive population

to study toxic action. The dynamic model captured the transient toxic

activity starting from the introduction of killer cells into the culture at the

time of inoculation through to induced cell death. The kinetics of K1/K2

activity via its primary pathway of toxicity was 5.5 times faster than its

activity at low concentration inducing the apoptotic pathway in sensitive

cells. Conversely, we showed that the primary pathway for K28 was

approximately three times slower than its equivalent apoptotic pathway,

indicating the particular relevance of K28 in biotechnological applications

where the toxin concentration is rarely above those limits to trigger the

primary pathway of killer activity.
1. Background
Killer yeasts are eukaryotic, single-celled fungi, which produce and secrete toxic

proteins that are lethal to sensitive cells; the phenomenon was first character-

ized in 1963 [1]. Several yeast species are recognized as possessing the killer

characteristic with the most extensively studied being Saccharomyces cerevisiae
[2]. The potential of killer yeasts due to their antimicrobial activity has been

explored widely, especially within the context of applications in the food indus-

try [3]. Although being acknowledged as a promising premise for a number

of biotechnological applications, killer activity of yeasts is also deemed

undesirable on other platforms.

These infected cells are often detected in wine fermentation processes

whereby killer yeasts contaminate starter cultures, killing the microbiological

fermenting agents. Ratios as low as one killer yeast for every hundred sensitive

yeasts was reported to eliminate the starter culture population within 24 h

[4–6]. Stuck fermentations, which are characterized by high concentrations of

acetaldehyde and lactic acid, are often a consequence and are typical of a

very distasteful wine product [7]. Wineries can incur substantial financial

losses due to stuck fermentations, and therefore, killer yeasts are considered

an important concern compromising success in commercial wine processing

[8]. Early research on wine microbial communities focused on devising control

strategies to manage killer yeasts in wine fermentation in order to reduce the

chance of spoilage [2]. More recently, the possibility of commercializing killer

yeasts in wine fermentation specifically due to their antifungal activity was

also investigated [9]. Within this remit, genetic modification techniques were
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explored as potential tools for constructing wine yeast strains,

which are resistant to, and/or possess the killer factor [10].

Starter cultures, into which these strains would successfully

be integrated, could assist the control and prevention of

contaminating fungal species via the production of toxins,

making wine production more reliable than before, and

reducing the costs associated with stuck fermentations

substantially [11,12].

Killer yeast systems are classified on the basis of the mol-

ecular characteristics of their toxins, the variations in the

encoding genetic determinants, the presence or the lack of

cross-immunity, and their killing profiles [13]. Saccharomyces
cerevisiae is by far the most studied yeast species with

regard to acquired toxic activity, with four distinct toxin pro-

teins characterized (K1, K2, K28 and Klus), thus it contributes

vastly to our understanding of killer yeasts and their infect-

ing viruses. The virus, L-A, is an icosahedral double

stranded (ds) RNA virus of the yeast S. cerevisiae with a

single 4.6 kb genomic segment that encodes its major coat

protein, Gag (76 kDa) and a Gag-Pol fusion protein

(180 kDa) formed by a-1 ribosomal frameshift, which

encode an RNA-dependent RNA polymerase. A number of

satellite dsRNAs, called M dsRNAs, encoding a secreted

protein toxin and immunity to that toxin are hosted in separ-

ate viral particles, whose replication and encapsidation are

supported by L-A. Each toxin is encoded by a single open

reading frame and is synthesized as a polypeptide prepro-

toxin. The preprotoxin comprises a hydrophobic amino

terminus representative of secretion and is modified via the

endoplasmic reticulum and the Golgi apparatus of the host

for activation of the toxin prior to its secretion [8,14–17].

Only those yeasts that possess both the M dsRNAs and

L-A, are able to produce effective toxins. Although the trans-

mission of L-A and M from cell to cell occurs exclusively

during the mating process but not via natural release from

the cell or entry by another mechanism, it is the high fre-

quency of yeast mating, which ensures the wide

distribution of these viruses in natural isolates. Moreover,

the structural and the functional similarities of these viruses

to dsRNA viruses of mammalian systems evoke further

interest in their study [14,17,18].

K1 comprises a- (9.5 kDa) and b-subunits (9.0 kDa) [13].

The b-subunit is responsible for receptor binding to sensitive

cells, and the a-subunit induces the lethal effect. K2 structu-

rally resembles K1 with subunits that are only marginally

larger than those of K1 [19], despite substantial differences in

the sequences of their dsRNA, their molecular weights, isoelec-

tric points and optimum pH [20]. The mechanisms through

which these toxin proteins kill susceptible cells display some

level of variance, although striking similarities also exist. K2

toxin, less extensively characterized than K1, was accepted to

have a similar mechanism of action to K1, apart from some

differences that occur at the plasma membrane and cell wall

level. The patterns of processing of both killer proteins by the

sensitive cells were also reported to be similar. Despite the

similarities of their toxins, K1 and K2 killer strains were

reported to be able to kill each other even though they are

immune to their own toxin [21]. K28 is also secreted as a hetero-

dimer of a- (10.5 kDa) and b-subunits (11 kDa) [22]. The

mechanism of K28-induced lethality was reported to be signifi-

cantly different than that of K1-induced lethality [23]. Klus was

recently isolated as a novel toxin produced by S. cerevisiae
[24,25], and its toxic action is not yet well understood.
Cells that are susceptible to these toxins were identified to

possess two different types of sites or receptors that bind the

killer toxin with different affinities [26]. The first step of

K1/K2 binding was reported as the low affinity, high vel-

ocity, energy independent adsorption of the killer toxin on

b-1,6-D-glucans embedded in the cell wall [27,28]. Once

bound, the toxin had a high affinity, low velocity, energy-

dependent interaction with Kre1p receptors, which are

glycosyl-phosphatidylinositol-linked glycoproteins located

on the cell membrane [29,30]. Subsequently, the a-subunit

of the toxin was shown to trigger the formation of voltage-

independent cation transmembrane channels, which would

then cause the leakage of Hþ and Kþ ions, followed by cell

death [31]. In contrast to K1 or K2, K28 was reported to

initially bind to a-1,3-linked mannose residues of a 185-kDa

cell wall mannoprotein [32]. The toxin would then interact

with the Erd2p receptor triggering toxin uptake into the cyto-

sol by receptor-mediated endocytosis [33]. The b-subunit of

K28 would be ubiquitinated and proteasomally degraded fol-

lowing the toxin’s uptake and retrograde transport through

the Golgi and endoplasmic reticulum to the cytosol, while

the a-subunit cleaved from its b-subunit and migrated into

the sensitive cell’s nucleus [34]. There the lethal subunit

would arrest cell cycle at the G1/S boundary, preventing

the separation of the daughter and the mother cells,

effectively killing both cells [34,35] (figure 1).

The primary mechanisms of action for these toxins are in

place at high concentrations of toxin availability. A secondary

mechanism was described relatively recently and was shown

to be in effect upon medium to low-concentration exposure to

toxins. The toxin proteins were shown to induce programmed

cell death at concentrations that were not sufficient to trigger

the primary action pathways [11,36–39]. The affected sensi-

tive cells were shown to enter an apoptotic state; exhibiting

markers such as DNA fragmentation, chromatin conden-

sation and phosphatidylserine externalization [38]. The

activation of the yeast metacaspase 1 (Yca1p) via toxins

would eventually yield to the release of reactive oxygen

species, triggering a cascade of events consigning the cell to

death via apoptosis [40,41]. This response appears to be uni-

versally induced at low concentrations, irrespective of the

nature of the toxin protein in question. Toxic action via pro-

grammed cell death has been proposed as the predominant

mechanism by which killer yeasts kill sensitive species in

natural environments where they are found in much lower

concentrations [42].

The secondary mechanism of toxic action, the oxidative

route was implicated to have high killing potential, and

thus play an important role along with the apoptotic route.

However, the threshold at which the switch between the pri-

mary and the secondary mechanisms occur, or the

relationship between the toxin binding kinetics and the

toxin-induced death kinetics are still unknown. How the sen-

sitive and killer members of the same species reach

equilibrium is still an unanswered question, too. In this

work, we built a deterministic model that could simulate

both the toxic activity of killer cells, and the toxin-induced

damage on the sensitive population upon exposure. The

model equipped us with a novel platform to (i) study the

toxic effects of killer yeasts on sensitive populations, (ii) pre-

dict how the system responds to varying levels of toxin and

(iii) develop strategies to control and contain killer popu-

lation and maintain the survival of the sensitive population.
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Figure 1. Schematic diagram of the toxin action pathways for K1, K2 and K28. Each toxin either induces cell death via the primary or apoptotic pathway depending
on concentration. K1 and K2 share a common pathway and mechanistic action and K28 has its own unique pathway. The abbreviations used are as follows: P.C.D,
programmed cell death; N, nucleus; R1, b-1,6-D-glucans; R2, Kre1p receptor; R3, a-1,3-linked mannose residues; R4, Erd2p receptor.
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We selected both the killer and the susceptible population to

be comprising S. cerevisiae and compiled the extensive quali-

tative and quantitative data available in the literature on the

kinetic action of the K1, K2 and K28 toxins at high and low

concentrations. We implemented a model structure and veri-

fied the models’ predictive power on independent datasets;

they were able to accurately match empirical data. We then

employed the models to gain in-depth novel insight into

how the mechanisms for toxic activity changed in response

to the extent of toxin exposure. The constructed models are

publicly available via EBI’s BioModels Database [43] via

access nos.: MODEL1804230001 and MODEL1804230002 for

K1/2 and K28, respectively.
2. Material and methods
2.1. Model structure and modelling platform
The model described the killer toxin activity, which comprised the

binding phase of the toxin to the cell wall and membrane, and

the sensitive cell activity, which comprised toxin-induced death

of the sensitive fraction of the population. These activities explain-

ing the mechanism were represented by chemical reactions

between molecular species and the dynamics were governed by

rate laws associated with each reaction. The model was built

using ordinary differential equations. The model was built and

simulated in the open-source software COPASI 4.22 (Build 170)

[44]. The timescale of the analysis was measured in minutes as it

allowed the observation of both the rapid toxin binding, and the

relatively slow toxin-induced death in the same frame. The con-

centration of both the toxins and cells were represented as the

number of molecules per millilitre (molecules/ml).
2.2. Experimental data
Experimental data were acquired from relevant publications.

Whenever data were only presented in the form of figures in

their respective publications, the open-source Java platform

Plot Digitizer 2.6.8 (http://plotdigitizer.sourceforge.net/) was

employed to get an accurate estimate of the raw data.

The specific masses of the toxins were acquired from [13] as

19 000 Da for K1, 21 500 Da for K2 and 21 500 Da for K28; conse-

quently, 1 pg of toxin equated to 3.125 � 1027, 2.8 � 1027 and
2.8 � 1027 molecules of K1, K2 and K28, respectively. Data from

Pichia membranifaciens PMKT and PMKT2 toxins, which were

reported to be analogous to K1 and K28, were employed to infer

kinetic information and to complement data on S. cerevisiae toxins

when no direct data were available [11,45,46]. Experiments from

which data were collected were carried out under the ideal con-

ditions for each toxin and so the same conditions are assumed to

exist for the model. There was an overlap of the optimal tempera-

ture and pH for all three toxins, and all data employed in the

study were reported at the same conditions of pH¼ 4.7 and T ¼
228C [31,47,48]. The analysis was conducted on the assumption

of a fixed-sized viable cell population where a dynamic equilibrium

between the natural death and growth rates was assumed to hold,

in order to detect the extent of death caused by the toxins.

2.3. Representation of the toxin binding phase
The main underlying assumption of the binding model was that it

assumed a well-mixed population of sensitive cells. Toxin proteins

were also assumed to be well-mixed within sensitive cells, so there

was no heterogeneity regarding how toxins would bind to individ-

ual cells, but instead would accumulate simultaneously across all

cells in the population; 16 800 000 molecules of K1 were calculated

to saturate the cell wall receptors of a single S. cerevisiae cell from

the data provided in [26]. The cell membrane Kre1p receptor was

reported to be saturated at a concentration 50-fold lower than

that needed to saturate the cell wall receptor [27], yielding a satur-

ation constant of 336 000 molecules. The kinetics of K1 binding to

the cell membrane was reported to be 6.333 times slower than

binding to the cell wall [26]. Kinetic data for cell wall and cell mem-

brane binding were available for K1 and K2 (table 1), but not for

K28. However, the number of cell wall mannoproteins was

reported to be similar to that of b-1,6-D-glucans [49] and K28 has

a similar mass to K1 and K2. The saturation constants, cell wall

and cell membrane binding rates were assumed as identical,

since no data were available to contradict this assumption. Further-

more, the binding rate of PMKT2 (K28 equivalent toxin) to a-1,3-

linked mannose residues was reported to have similar kinetics to

K1 [11], providing further support for the assumption made.

2.4. Representation of toxin-induced cell death
An individual S. cerevisiae cell of average sensitivity was reported

to be killed by at least 28 000 K1 or K28 molecules [27,50], which

was selected as the threshold value for the activation of the

http://plotdigitizer.sourceforge.net/
http://plotdigitizer.sourceforge.net/


Table 1. Kinetics of toxin cell wall binding.

toxin
protein

toxin concentration
(molecules/cell)

time to bind 50% of
molecules (min)

time until binding rate
plateaus (min) reference

K1 56 400 0.88 10 [26]

K1 1600 1.1 10 [26]

K2 1000 0.9 10 [28]

Table 2. Kinetics of toxin-induced cell death. LU, lethal units.

pathway
toxin
protein

toxin concentration
(molecules/cell)

time to kill 50% of
population (min)

time to kill 98% of
population (min) reference

primary K1 75 000 7 40 [35]

apoptotic K1 2600 40 220 [38]

primary K28 9.63 � 109 100 560 [35,51]

primary K28 3.75 � 106 90 560 [35,51]

apoptotic K28 2800 40 230 [38]

primary PMKT2 28 000 120 570 [11]
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primary pathway. Below this concentration (28 000 molecules/

cell), the model activated the secondary apoptotic pathway, as

was reported earlier [38]. Toxin-induced cell death was reported

to be ineffective at toxin concentration of 852 K1 molecules/cell

and 1080 K28 molecules/cell [38]. The threshold at which the

cells displayed the first signs of apoptotic cell death upon

exposure to toxin was adopted from the investigation of

PMKT2 activity, where, at this threshold, approximately 35% of

the cells showed signs of entering apoptosis after 90 min upon

toxin exposure, with the ratio rising to 95% after 180 min [11].

A similarity was assumed between the K1/2- and K28-induced

cell death kinetics due to the now well-acknowledged similarities

between the mechanisms of toxic action to induce apoptotic cell

death. Kinetic data for toxin-induced death were available for

both K1 and K28, but only at certain concentration levels (table 2).

Statistical inference studies on population cell death were

conducted by carrying out maximum likelihood estimation run-

ning on MATLAB R2018b (Mathworks). The average fraction of the

dead population was determined at the 20th minute post

exposure to toxin by fitting a logarithmic function to the death

kinetics provided for K1 and K28 in the event of primary or

apoptotic cell death in table 2. This information was employed

as prior knowledge about normally distributed populations of

cells. The maximum-likelihood estimates on the fraction of popu-

lation affected were determined for population sizes ranging

from 50 to 5 � 107 cells, noting that cell counts ranging from

105 to 107 are standard for a typical yeast population. The frac-

tional difference between the likelihood estimates and the

given a priori knowledge were used to evaluate how valid the

predictions would be for populations of varying sizes.
3. Results
A single model structure was employed to describe K1/K2 kin-

etics and K28 kinetics, with relevant constants to account for

the difference in rates of toxin binding and toxin-induced cell

death (see table 3 for constants). A modular system of toxin

binding and killing activities was implemented, and the

model complexity was increased in a stepwise manner such

that the final working model either made use of (during re-
construction) or explained (during benchmarking and

validation) virtually all of the empirical data available to date.

3.1. Molecular crowding around cell wall receptors
impedes binding at high toxin abundance

A common binding model proposing similar binding mech-

anisms for K1 and K28 was constructed, as suggested by

empirical data reported in previous studies, and the rate of

binding of the toxin on the yeast cell wall was captured by

parameter estimation from [26]. Binding of the toxin mol-

ecules on the cell wall receptors and on the cell membrane

was modelled separately. The simplest preliminary model

for binding was constructed only to account for the phenom-

enon occurring on the cell wall. Michaelis–Menten kinetics,

often employed to quantify the degree of interaction between

a ligand and a receptor population [52], was selected for this

model (equation (3.1)), but it failed to capture the initial

dynamics of cell wall binding, overestimating the amount

of toxin bound (figure 1). This simple model did not account

for any crowding of toxin molecules at the receptor binding

sites, and therefore allowed binding without any constraints

as long as unbound toxins were available. Consequently,

the possibility of any potential competition at the receptor

binding sites, which could slow binding down by restricting

access to the receptors despite their availability was overruled

in this initial model.

d[Cell WallToxin]

dt
¼ (VmaxCW � [UnboundToxin])

(KCW þ [UnboundToxin])
: ð3:1Þ

In order to account for this inefficiency in binding, the

rate law was modified to equation (3.2), improving the simu-

lation of the binding characteristics observed during the first

2 min following the exposure of sensitive cells to toxin mol-

ecules (figure 2a). This improvement suggested that a

potential interaction between the unbound toxin molecules

and those that were already bound to the cell wall receptors

could indeed hinder binding within the initial minutes upon



Table 3. Parameters of the rate equations used as the basis of the model.a

biological process parameter value units

cell wall binding kcatCW 1.23 1/min

cell wall binding KCW 9.07 � 109 molecules/l

cell membrane binding kcatCM 0.205 1/min

cell membrane binding KCM 9.07 � 109 molecules/l

toxin-induced cell death via primary pathway (K1 and K28) LUPrimary 28 000 LU

toxin-induced cell death via apoptotic pathway (K1) LUApoptotic(K1) 825 LU

toxin-induced cell death via apoptotic pathway (K28) LUApoptotic(K28) 1080 LU

K1-induced death kTID(K1) 5.0 � 1027 l . min/molecules

K28-induced death kTID(K28) 2.5 � 10213 l . min/molecules

adjusted K1-induced death kATID(K1) 2.5 � 1029 l . min/molecules

K1-induced apoptosis kTIA(K1) 4.0 � 1029 l . min/molecules

K28-induced apoptosis kTIA(K28) 5.0 � 1029 l . min/molecules

K1-triggered apoptotic death kAD(K1) 0.30 l . min/molecules

K28-triggered apoptotic death kAD(K28) 0.30 l . min/molecules
aIf the value of a parameter was obtained by parameter scanning, the median value is displayed above.
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exposure. The standard Hill equation proposes an alternative

kinetic form to capture the cooperativity of binding and was

originally selected by the authors to describe the binding kin-

etics. However, the predictions made by the model

employing the derived form of equation (3.2) was shown to

predict the empirical data more successfully than the Hill

equation derivate, and therefore the form presented below

was adopted in the final model structure.

d[Cell WallToxin]

dt
¼ (kcatCW � ([UnboundToxin])2)

(KCW þ [UnboundToxin])
: ð3:2Þ

The saturation of the cell surface receptors was described

by a saturation constant such that if the concentration of

bound toxin was higher than the value of that constant, no

further binding would take place (equation (3.3)). This

allowed the representation of a step-wise binding process

that was dependent on the availability of toxin molecules

per each cell.

d[Cell WallToxin]

dt
¼

[Cell WallToxin]

ViableCells
,1:68�107,

(kcatCW � ([UnboundToxin])2)

(KCWþ [UnboundToxin])

else, 0

8<
:

9=
;:

ð3:3Þ
d[Cell WallToxin]

dt
¼

[Cell WallToxin]

Viable Cells
, 1:68� 107,

(kcatCW � ([Un

(KCW þ [Un

else, 0

8<
:

�
[Cell MembraneToxin]

Viable Cells
, 3:36� 105,

(kcatCM � (½Ce

(KCM þ ½Ce

else, 0

8><
>:
This model of cell wall binding kinetics was simulated for

an arbitrarily selected population of 1 � 107 susceptible cells

that were exposed to varying initial concentrations of

unbound toxins in order to investigate the effect of saturation

on cell wall binding kinetics. The initial concentration of

unbound toxins varied in a 100-fold range. The analysis

showed that as long as the saturation of the receptors on

the cell wall was avoided, the binding kinetics remained con-

stant (figure 1b). Similar binding rates were reported in

experiments where the initial unbound toxin concentration

was varied by more than 50-fold, providing further support

for these findings [26,28].

The cell wall binding kinetics for toxin molecules was

extended also to describe cell membrane binding kinetics.

Although the membrane binding mechanism was assumed

to be similar to the mechanism for binding the cell wall, the

rate constant of binding, kcatCM, was reported to be 6.333

times slower [26]. The saturation of the cell membrane surface

by the toxins was also described by a conditionality, and the

final model for binding accounted for the unbound toxin

molecules to initially bind to the cell wall receptors (rep-

resented in equation (3.4)), and then to be translocated to

the cell membrane (represented in equation (3.5)).

The model predicted that the extent of toxin binding to

the cell wall rapidly increased and reached a maximum of

56 000 molecules/cell 103 s after the initial exposure to the
boundToxin])2)

boundToxin])

9=
;

ll WallToxin�)
2)

ll WallToxin�)

9>=
>;

ð3:4Þ
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Figure 2. Binding kinetics of toxin molecules. (a) Kinetic models of cell wall binding of toxins employing equation (3.1) shown in green and equation (3.2) shown
in blue. Experimental data shown in red (data points connected with a dashed line) was taken from [26]. Initial population of unbound toxins was fixed at 5.6 �
1011 molecules. (b) Simulations using the kinetic model for cell wall binding of toxin molecules (equation (3.3)) starting from different initial concentrations of
unbound toxins. The initial unbound toxin concentration was explored across a range of 2 orders of magnitude. (c) Predictive model simulations explaining the
kinetics of K1, K2 and K28 binding to the cell wall and the cell membrane with unsaturated receptors available on both surfaces. The initial toxin availability was
5.6 � 104 molecules/cell. (d ) Predictive model simulations explaining the kinetics of K1, K2 and K28 binding to the cell wall and the cell membrane with receptors
on both surfaces reaching full saturation. The initial toxin availability was 9 � 105 molecules/cell. Note that the total number of toxin molecules for 1 � 107

susceptible cells are displayed in (a – d ). Information on creating the figure from model simulations are detailed in electronic supplementary material, S4.
(Online version in colour.)

and
d[Cell MembraneToxin]

dt
¼

[Cell MembraneToxin]

Viable Cells
, 3:36� 105,

(kcatCM � (½Cell WallToxin�)
2)

(KCM þ ½Cell WallToxin�)
else, 0

8><
>:

9>=
>;
: ð3:5Þ
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toxin proteins. This bound toxin population was observed to

shrink later, as toxin molecules slowly migrated towards the

surface of the cell membrane. Toxin migration to the cell

membrane was observed slow down after approximately

20 min leading towards the saturation of the membrane

surface (figure 2c). The membrane receptor population was

shown to fully saturate at a toxin concentration of 336 000

molecules/cell or higher, and no further toxin molecule

movement was observed from the cell wall to the membrane,

and two distinct toxin populations bound to different

compartments of the cell were achieved (figure 2d ).
3.2. Integrating toxin-induced death dynamics and
toxin binding dynamics via the utilization of
lethality units

The model representing the kinetics of toxin binding to the

cell wall and the cell membrane was further extended to
represent the dynamics of cell death in a sensitive population

exposed to toxins released by the killer population. A func-

tional link was established between the toxin molecules and

the cells that were doomed to die upon exposure to these

molecules in order to facilitate the reconstruction of an inte-

grated model. A new measure called the lethal unit (LU)

was introduced into the model in order to represent a cluster

of toxin molecules, which would be sufficient to induce toxin-

associated death of a single yeast cell. The two different

routes of toxin-induced death; via the primary pathway or

via the apoptotic pathway required differently sized clusters

of toxin molecules to be defined into a single LU. Therefore,

the number of toxin molecules initially available per cell was

used by the model to determine the pathway through which

the toxins exerted their lethal effect. If the initial concen-

tration was above 28 000 toxin molecules/cell, the model

adopted the primary pathway of toxin activity to induce

cell death by converting every 28 000 molecules into a

single LU. Otherwise, 852 or 1080 toxin molecules leading
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the sensitive cell towards apoptosis were employed to

represent a single LU for K1 and K28, respectively

28 000 UnboundToxin ! 1 LUPrimary

825 UnboundToxin ! 1 LUApoptotic (K1)

1080 UnboundToxin ! 1 LUApoptotic (K28)

8<
:

9=
;: ð3:6Þ
The efficacy of the toxins on the cell population was

described by mass action kinetics. The cell death kinetics

via the apoptotic pathway and the primary pathway of

toxin activity were thus compared for both K1 and K28.

Our model simple mass action kinetic analysis showed that

K1 introduced at a concentration of 75 000 molecules/cell,
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killed off 50% of the sensitive population in 7 min. In 40 min,

98% of the whole population was dead (figure 3a). The apop-

tosis-inducing toxin lethality acted considerably slower on

the sensitive cells than the primary route of toxic activity.

The presence of K1 at a concentration of 2600 molecules/

cell could only kill 50% of the population after 40 min post

initial toxin exposure, while it took as long as 220 min

(greater than 3.5 h) for 98% of the cells constituting the

population to become inviable (figure 3b).

K28 had a substantially slower primary effect to induce

cell death than K1 did. The data showed that nearly

100 min was needed to reduce the viable cell population by

50% even at a toxin concentration as high as 9.63 � 109 mol-

ecules/cell. More than 560 min was required for 98% of the

cell population to become inviable (figure 3c). By contrast,

the apoptotic pathway for K28 was nearly as fast as that for

K1 to induce cell death, and in fact, the pertaining kinetics

were even faster than those for its primary pathway. The avail-

ability of 2800 K28 molecules/cell was sufficient to kill 50% of

the population within 40 min, and 98% of the population was

inviable after 230 min post exposure to toxin (figure 3d).

The rates of toxin-induced death displayed a nearly 16-fold

difference across different toxins available at different con-

centrations. The apoptotic pathways of K1 and K28 were

very similar, inducing death in 1.763% and 1.713% of the

population per minute, respectively. This similarity, despite

the substantial differences in the kinetic activity shown by

their primary pathways, supported the hypothesis that

toxin-induced apoptotic cell death could indeed be a universal

mechanism of toxin activity (figure 3e). The primary pathway

of K1 induced death 15.8-fold faster than that of K28, killing

0.613% and 9.687% of the population per minute, respectively.
3.3. Integrated model of the primary pathway of toxic
action

The integration of the binding models with the killing models

for K1 and K28 necessitated the introduction of a single par-

ameter, whose activity could be traced across both stages of

binding followed by killing. In order to build the integrated

model of toxin binding and toxin-induced death, the binding

equations needed to be modified such that the binding was

modelled based not on individual toxin molecules but on a

cluster of toxin molecules represented by a single LU. In

terms of the constants of the equation, this modification affected

the saturation constants. Once a single LU was bound to the cell

membrane, it was assumed to induce cell death subsequently,

and the same LU was used up in the killing model to convert

a viable cell into an inviable one. In this system, both K1 and

K28 were considered to be used only once, being bound on to

the cell wall, and then on to the membrane, followed by its

binding to the DNA. The toxin-induced cell death dynamics

were represented by the following mass action kinetics in

equations (3.7) and (3.8) for K and K28, respectively.

d[ViableCell]

dt
¼� (kATID(K1)� ([ViableCell])

1:5� [Kre1pToxin (K1)])

ð3:7Þ
and

d[ViableCell]

dt
¼� (kTID(K28)� [ViableCell]� [Erd2pToxin (K28)]):

ð3:8Þ
Kre1p and Erd2p are the respective cell membrane recep-

tors of K1 and K28, and toxin bound receptor concentration

represented the last step of the binding phase mechanism.

[ViableCell] represented the size of the population of sensitive

cells. [Kre1pToxin(K1)] and [Erd2pToxin(K28)] represented the

amount of K1 and K28 molecules bound to their respective

receptors. The second order rate constant for toxin-induced

death, kTID, was determined by parameter optimization.

The models of both K1 and K28 toxins successfully simu-

lated toxin-induced death dynamics reported earlier by

[38,51] (figure 4a,b). The initial dynamics observed in the

empirical data indicated faster cell death when the number of

viable cells was higher for K1. Possibly, the high cell numbers

could specifically facilitate the binding of an LU-equivalent

number of toxin molecules to Kre1p with reduced competition.

As the population of viable cells decreased, the ability for

unbound K1 molecules to find a viable cell to bind to decreased

accordingly. In order to achieve a model that could represent

this phenomenon, the order of the rate equation with respect

to the viable cell concentration was set as 1.5 (equation (3.7)),

allowing rapid K1 killer activity from toxin binding on the

cell wall and the cell membrane to the cell death. This modifi-

cation was not needed for the case of K28, indicating K1’s

superior efficiency in toxic activity, particularly during the

initial period of the population’s exposure to toxins.

3.4. Integrated model of the apoptotic pathway of toxic
action

Programmed cell death upon exposure to a low concentration

of toxins could be deemed a two-stage process where an LU

equivalent of toxin molecules bind to the cell membrane recep-

tors triggering apoptosis, followed by cell death. Although the

fate of the cell has already been determined at the initial stage,

apoptosis requires a set of controlled actions to take place,

introducing a time delay before the cells consigned to death

can actually be considered as inviable. We presented this

phenomenon in the model by introducing an additional

model step to mark when cells would be considered as apop-

totic. It represents the first stage of apoptosis described above,

where the cells start showing signs of programmed cell death,

and therefore are consigned to die, but are not technically dead

yet. Toxins were modelled to induce cell death following a

mass action rate law when at least a single LU equivalent of

toxin molecules were bound to the cell membrane receptors,

as in modelling of the primary toxin action pathway. The

fate determination and death for K1 and K28 binding were

represented by equations (3.9) and (3.10) and equations

(3.11) and (3.12), respectively.

d[ApoptoticCell]

dt
¼ kTIA(K1) � [ViableCell]

� [Kre1pToxin (K1)] , ð3:9Þ
d[InviableCell]

dt
¼ kAD(K1) � [ApoptoticCell]

� [Kre1pToxin (K1)] , ð3:10Þ
d[ApoptoticCell]

dt
¼ kTIA(K28) � [ViableCell]

� [Erd2pToxin (K28)] ð3:11Þ

and
d[InviableCell]

dt
¼ kAD(K28) � [ApoptoticCell]

� [Erd2pToxin (K28)] , ð3:12Þ
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Figure 4. Modelling of the primary and secondary mechanisms of toxin-induced death. (a,b) Kinetic models of toxin-induced cell death via the primary action
pathway for K1 (a) and K28 (b). The simulations were carried out using different maximum specific rate of cell death constants. The experimental data displayed in
the grey solid line was adapted from [38,51]. The model employed equation (3.7) for (a) and equation (3.8) for (b). The total (bound þ unbound) K1 concentration
is 75 000 toxin molecules/cell, and the total K28 concentration was 9.63 � 109 toxin molecules/cell. (c,d ) Kinetic models of toxin-induced cell death via the
apoptotic action pathway for K1 (c) and K28 (d ). The experimental data displayed in the grey solid line was adopted from [38]. The model employed equations
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model simulations are detailed in electronic supplementary material, S4. (Online version in colour.)
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kTIA was determined via parameter estimation from [11] by

identifying the duration for a cell that was exposed to 2800

PMKT2 molecules to displayed recognized apoptotic signals.

The loss of viability was predicted successfully for both

K1 and K28 (figure 4c,d ). The initial killer activity of the

model suggested a lag period before toxin-induced death

was observed, which was likely to be missed in experiments

due to incompatibility of the timescales. Experimental inves-

tigations to date focused on monitoring cell death over long

timescales and have failed to sample the population within

the first couple of minutes upon toxin exposure. The model

simulations were able to capture the delayed response in

the early dynamics of the response. The transition from the

apoptotic state to cell death was predicted to take place

rather quickly by the model, as shown by the dynamic

profile of the size of this intermediary population

(figure 4c,d ). Furthermore, a large variation in the second

order rate constant of death did not have a substantial

impact on the dynamics of toxin-induced death, suggesting

that the rate at which apoptosis was triggered in the

sensitive cell population was the important step in this

process. This further implied limited heterogeneity within

the population as to how long apoptotic processes would

take to kill the cell.
3.5. Modelling the killer activity of K1 and K28 toxins
on sensitive populations of the same species

Generalized models of the killer toxin activity on sensitive

yeasts were developed for two well-known killer toxins virally

acquired by yeasts with distinct mechanisms of action, K1 and

K28. Different stages and relevant design concerns discussed

in the sections above were used to reconstruct a modular

global model and were then specialized for K1 and K28

activity accordingly. The different constants optimized and

estimated for K1 and K28 from empirical data, which used

in their respective models, are presented in table 3.

The different modules were brought together under two

conservation laws, leading to the final working models for

simulating K1 and K28 activity: the total number of toxin

molecules bound and unbound to receptors remained con-

stant throughout the simulation, and the sensitive yeast

population maintained steady growth, with natural death of

the cells to replace the newly formed daughter cells, thus keep-

ing the mean number and the mean size of the cells as well as

the mean number of receptor molecules on cell wall and on the

cell membrane constant unless exposed to killer toxins. These

models were created and simulated using the open-source

COPASI software, and the constructed models were made
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available both as electronic supplementary material, S1 and

S2. They were also deposited in the BioModels database

with the following identifiers; MODEL1804230001 and

MODEL1804230002 for K1 and K28, respectively.
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4. Discussion
We constructed a deterministic model, which predicted the

killing dynamics of K1and K28 toxins, which agrees with

the existing empirical data. Since the dynamics of K1 and

K28 toxic activity was not investigated comparatively

before, our model provided a useful platform to conduct a

comparative analysis of the kinetics of these toxins and

their efficacy. The fastest toxic activity was observed in

response to K1 availability at high concentrations, when the

primary toxin pathway was employed, and this was 5.5

times faster than its action when the apoptotic pathway

was induced. Conversely, the route of action through the

K28 primary pathway was approximately three times

slower than the route of action via its apoptotic pathway.

K1 available at high concentrations was more effective in kill-

ing the sensitive cell population than K28, when the primary

pathways of toxicity were in order. However, the kinetics of

the apoptotic pathways were essentially equivalent for both

K1and K28. The large variability in the K28 primary pathway

could be due to the fact K28 arrests cells specifically at the

G1/S boundary phase of cell replication [11]. The rate at

which cells enter the G1/S boundary phase would depend

on environmental conditions and the state of the cell culture

[53]. Therefore, varying experimental conditions across differ-

ent datasets exploring K28 toxic activity would have led to

these differing results.

Killer toxins are unable to kill all the sensitive cells within

a population [54]. Although it would be less likely to expect

such ‘unresponsiveness’ in an ecosystem, within a minutes

time frame, although the fraction of cells that is not respon-

sive to the killer yeasts within longer time frames would

indicate that it is highly likely that death of 98% of the sensi-

tive population could never be achieved. This time frame

would naturally vary across different toxins, although the

lack of empirical data does not allow testing of this phenom-

enon using these models. Nevertheless, the death of 98% of

the population has been routinely achieved in the laboratory

environment, with extensive empirical data made available.

Such data have been employed in this study, and our

models successfully predicted the behaviour of the popu-

lation under such conditions in the light of these existing

empirical data.

The binding dynamics of the model showed that as long

as the bound toxin concentration did saturate the surface

receptors, the rate at which molecules adsorbed on the cell

surface was independent of toxin concentration. Model pre-

dictions showed that the binding kinetics of the K28

primary pathway and that of PMKT2, the analogous toxin

produced by P. membranifaciens were similar despite large

differences in the available concentration of the two toxins,

indicating that toxin-induced death was governed by the

binding of a single LU-equivalent of toxin molecules and

that further increasing the amount of toxin bound did not

necessarily speed up the rate of the process.

The empirical data on toxin binding, however, was lar-

gely disparate across different reports. Kurzweilová et al.
reported that 16 800 000 molecules of K1 could bind to a

single cell’s wall [26]. Recently, a modest figure of 555 K1

molecules/cell was proposed [28]. The number of b-1,6-D-

glucans on a haploid parent yeast cell wall was estimated

to vary in the range of 6 600 000–11 000 000 [27,55] and

would be even higher for diploid cells than these reported

here. Considering that a single toxin molecule can bind to

any of these primary receptors, which are available most of

the time, binding data reported by Kurzweilová et al. pro-

vided better representation of the binding kinetics for K1

than more recent reports did in the model simulations,

which complemented the other empirical data, particularly

on the mechanism of action of the apoptotic pathway.

K1 toxin was long disputed also to interact with the out-

ward-rectifier potassium channel of the plasma membrane,

Tok1p in addition to the Kre1p membrane receptor [56]. A

counterargument was proposed by Breinig et al. proposing

that Tok1p channels were only activated downstream, once

K1 had already triggered ionophoric disruption [30]. The

binding dynamics proposed by the model support the

hypothesis that the Tok1p channels would be activated

downstream along the toxin-induced death pathway rather

than at the initial binding stage.

Several aspects of design were important for modelling

the killer toxin dynamics. The total number of toxin mol-

ecules available, both bound to a receptor and unbound,

was assumed to be constant according to the main conserva-

tion law. This conservation was built on two assumptions:

the half-life of the killer toxins exceeded that of the simulation

period, so that the effect of toxin protein degradation could

be excluded. Although the authors are not aware of the avail-

ability of such data for S. cerevisiae K1, K2 or K28, a study on a

Schwanniomyces occidentalis killer protein, which displayed

75% identity and 83% similarity with killer toxin K2, was

reported to have a half-life of at least 8 h at 308C at pH 4.4

[57]; at a sufficiently close environment to those of optimal

yeast cultivations. Since the stability of K2 toxin depended

substantially on the environmental conditions, available

data [58] should be consulted in conducting the analysis

and evaluating the findings under the assumption of differ-

ent environmental conditions. The second assumption was

on the killer yeast population being maintained at a steady

rate, thus not introducing excess toxic proteins into the

environment, as was discussed earlier. Furthermore, the

toxin export through efflux pumps, and the binding equili-

brium of toxin to receptors in the cell wall and the plasma

membrane were excluded from the model, since there is no

evidence yet in support of potential resistance mechanisms

to be active against killer toxins. However, as more empirical

data becomes available on binding equilibria, these models

can flexibly be extended to include the rates of association

and dissociation of these molecules with the surface recep-

tors. We conducted a sensitivity analysis to investigate this

notion further, and tested how the primary mechanism and

apoptotic cell death were affected by changing the binding

rate of the K1 toxin on the cell wall surface. Increasing the

binding kinetics by three orders of magnitude only affected

the time the toxin molecules took to reach the maximum

extent of binding on the cell wall glucans, reducing it down

from ca 1.5 min to nearly instantaneous response. Slowing

down the cell wall binding kinetics, on the other hand,

extended the time it took the system to reach a steady state,

as would have been expected. Interestingly, the fraction of
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cells affected by the apoptotic mechanism was 21% higher as

the primary cell wall binding kinetics slowed down by 2–3

orders of magnitude. This indicated a preference of the

system to shift from the primary towards the apoptotic mech-

anism of action, as the cell wall binding kinetics of the

primary mechanism, which was the initial step in the process,

was forced to become limiting even further. Concurrently

reducing the membrane binding kinetics by three orders of

magnitude increased the concentration of the toxin-bound

cell wall glucans, but did not have any effect on the primary

or the apoptotic mechanisms.

Another important feature considered at the integration

stage was the possibility of the recycling of toxin molecules.

The notion of being able to reutilize toxin molecules, poss-

ibly similar to what the cell does in the case of the

currency metabolites, was evaluated as a potential strategy.

However, once passed through the nuclear membrane, K1

and K28 were reported to bind the DNA irreversibly [59],

also undergoing an irreversible structural modification.

Furthermore, no reports existed on the possibility of any

reuse of toxins, and this notion was thus excluded from

the design. Density of the cell culture, nutrient availability

and dispersal were all shown to affect the competitive ability

of toxin-producing yeasts [60,61], therefore, these parameters

would potentially need to be taken into consideration for

specific applications.

A distinct threshold of the initial concentration of toxin

molecules available per cell was adopted in this model to

determine whether the toxic effect would be exerted via the

primary or apoptotic pathway. Although this threshold was

very useful for comparing and contrasting the kinetics of

these two pathways of toxic activity and represented the

real kinetics of these mechanisms sufficiently well in the

light of existing empirical data, it should also be noted that

simultaneous activity of the primary and the apoptotic path-

ways was also reported across a range of toxin

concentrations; K1 was shown to kill cells via both the pri-

mary and apoptotic pathway in a range of concentrations

varying from 28 000 to 3000 toxin molecules/cell, but a

‘breaking point’ between the two mechanisms was also

reported in the same work at around 7500 molecules/cell

where the pathway rapidly switched from one pathway to

the other [38]. The flexibility of the constructed models

would allow the relevant modifications to be made to tailor

the time and concentration dependence of killer toxin

activity, if further experimental evidence backed up the tran-

sitional nature of these two mechanisms of action within

proposed ranges of concentration profiles.

A stable killer phenotype has been known to necessitate a

coordinated action by a group of host chromosomal genes

including SEC genes, required for general secretion of extra-

cellular proteins and glycoproteins, the KEX-encoded

proteases for preprototoxin processing and precursor matu-

ration of the yeast pheromone a-factor, in addition to a set

of chromosomal genes, which either directly or indirectly

affect dsRNA virus propagation, classified into two major

groups; the maintenance of killer genes, MAK, and the super-

killer genes, SKI [62]. The detailed mechanisms of action

pertaining to these are beyond the scope of the work here

and were thus excluded from the models constructed in

this work.

The initial phase of toxin-induced death simulated by the

model was observed to be consistently different from
empirical observations, where a short lag phase was observed

in model simulations introduced due to the binding of toxins

prior to cell death, which was not observed experimentally.

This discrepancy was thought to be caused by either of the

two following reasons, or the combination thereof: (i) the

deterministic nature of the model, which assumed synchro-

nous action for all members of the cell population, failed to

represent the heterogeneity caused by spatial or stochastic

variations in actual systems; and (ii) the most commonly

employed experimental technique used in measuring cell

death kinetics involves taking aliquots from the cell culture

to measure the toxin activity at specific time points. It is

quite common not to sample the culture within the first

15 min upon exposure and, therefore, the experimental data

available could just be an artefact of extrapolation as the

true kinetics were not recorded during this time period.

The model predictions, in fact, may provide the missing

details on the initial kinetics of cell death.

The deterministic models constructed here are valid when

dealing with a large number of cells. The model constants

employed here were based on data collected from in vitro
studies, where a well-mixed volume of a large number of

cells was investigated. However, in real ecosystems, the role

of stochasticity would be more prominent than in these ‘cre-

ated’ environments. Since these models could simulate the

behaviour of how an average cell would behave, they over-

look the possibility of the behaviour of individual cells

being very different and highly variant. To test this notion,

maximum likelihood estimates were determined for the

population and the fraction of the population that would be

killed upon toxin exposure for different population size ran-

ging from 50 to 5 � 107. The difference in the fraction of

population killed as a function of population size showed

an asymmetric distribution, with a skew (i.e. a bias) towards

estimating a lower fraction of the population to be killed than

what in vitro studies reported to be valid for the population

average. This observation was highly prominent in small

population sizes of 50 to 5000 cells. Furthermore, the results

indicated that the behaviour of individual cells could not be

predicted for small populations, since our analysis showed

that the estimates could be off by as much as 60%. By con-

trast, the difference was so low (less than 1%) for large

populations of 5 � 105 or more cells that, in practice, it

could safely be assumed that the empirical data collected

from in vitro studies would be valid for average cells from

large yeast populations (electronic supplementary material,

S3). One important thing to note would be that in our analy-

sis, neither different toxin types nor death by different

mechanisms of action could be classified into statistically

meaningful clusters. Therefore, although we observed very

clear effects of stochasticity in small populations, which

would indicate limited predictability of cell fate at the indi-

vidual cell level, the observations we made did not further

contribute to the current understanding of the differences

between cellular mechanisms of action or toxin types.

The action of cell membrane binding of K28 is complex

as the toxin does not simply bind to the cell periphery and

trigger downstream effects. Instead, the toxin is endo-

cytosed into the cell’s cytoplasm where it undergoes

extensive modification before it can exert lethality in the

cell’s nucleus. The mechanism of the pathway and most of

the intracellular modifications taking place are now well-

understood, albeit without any kinetic information available
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[18]. Therefore, all post-binding processes were lumped into

the equations representing toxin-induced death in the cur-

rent version of the model. Availability of kinetic data on

this mechanism would allow the reconstruction and

implementation of a more detailed model describing the

physiology of toxin binding and cell death. The model of

binding proposed in this work was nevertheless able to pre-

dict the overall killer activity of K28 successfully, however, it

lacks sufficient details on the mechanistic action, which

could only be implemented in the light of future empirical

kinetic data.

In this work, we investigated the K1 and K28 toxin killing

mechanisms of action in a dynamic model that incorporates

toxin-binding kinetics. We determined the relevant kinetic

rules and the kinetic rate constants, through which the overall

reaction kinetics observed and reported in the literature could

successfully be captured. The models proposed here are the

first of their kind in representing a direct killing mechanism

and an indirect apoptosis inducing mechanism in conjunction

and showed that the K1/K2 toxins and the K28 toxins were

not only effective via different mechanisms of action, but

also they displayed different dynamics. Since the kinetics of

K1 and K28 toxins were not investigated in a consistent

experimental set-up, which would allow comparable data

to be generated, the testing of our findings on the differences

in dynamics yet remains a challenge to be confirmed empiri-

cally. The models of killer toxin activity constructed here are

able to simulate how the dynamics of sensitive yeast popu-

lations are affected by exposure to different toxins at
various concentrations, enabling us to simulate excess

environments as well as mildly toxic environments, which

would be more likely to be encountered in the wild. These

models (BioModels Database [43], MODEL1804230001 for

K1 and MODEL1804230002 for K28) constitute a useful plat-

form to explore the dynamics of toxic activity and to offer

insights into the mechanisms and suitability of each toxin

and pathway for managing starter cultures. The predictions

achieved from such models could be used to predict optimal

ratios of killer and sensitive yeast cells and propose control

actions to maintain these optimal ratios. Accurate quantitat-

ive frameworks achieved through such models may assist

building resilient and productive starter cultures of mixed

fungal and yeast species for different biotechnological

applications.
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cerevisiae K2 toxin requires acidic environment
for unidirectional folding into active state.
Mycoscience 57, 51 – 57. (doi:10.1016/J.MYC.2015.
08.003)

59. Eisfeld K, Riffer F, Mentges J, Schmitt MJ. 2000
Endocytotic uptake and retrograde transport of a
virally encoded killer toxin in yeast. Mol. Microbiol.
37, 926 – 940. (doi:10.1046/j.1365-2958.2000.
02063.x)

60. Greig D, Travisano M. 2008 Density-dependent
effects on allelopathic interactions in yeast.
Evolution (N.Y) 62, 521 – 527. (doi:10.1111/j.1558-
5646.2007.00292.x)

61. Wloch-Salamon DM, Gerla D, Hoekstra RF, de Visser
JAGM. 2008 Effect of dispersal and nutrient
availability on the competitive ability of toxin-
producing yeast. Proc. R. Soc. Lond. B 275,
535 – 541. (doi:10.1098/rspb.2007.1461)

62. Schmitt MJ, Breinig F. 2002 The viral killer system in
yeast: from molecular biology to application. FEMS
Microbiol. Rev. 26, 257 – 276. (doi:10.1111/j.1574-
6976.2002.tb00614.x)

http://dx.doi.org/10.1016/j.femsyr.2004.04.007
http://dx.doi.org/10.1128/MCB.10.9.4807
http://dx.doi.org/10.1128/MCB.10.9.4807
http://dx.doi.org/10.1073/pnas.0510070103
http://dx.doi.org/10.1007/s12088-016-0589-1
http://dx.doi.org/10.1007/s12088-016-0589-1
http://dx.doi.org/10.1128/AEM.02501-10
http://dx.doi.org/10.1007/BF00314477
http://dx.doi.org/10.1128/EC.00287-14
http://dx.doi.org/10.1099/mic.0.27175-0
http://dx.doi.org/10.1016/S0092-8674(02)00634-7
http://dx.doi.org/10.1016/S0092-8674(02)00634-7
http://dx.doi.org/10.1073/pnas.87.16.6228
http://dx.doi.org/10.1099/00221287-133-12-3347
http://dx.doi.org/10.1099/00221287-133-12-3347
http://dx.doi.org/10.1038/srep31105
http://dx.doi.org/10.1038/nrmicro1347
http://dx.doi.org/10.1099/00221287-135-6-1529
http://dx.doi.org/10.1083/jcb.200503069
http://dx.doi.org/10.1111/j.1462-5822.2004.00469.x
http://dx.doi.org/10.1083/jcb.200408071
http://dx.doi.org/10.1083/jcb.200408071
http://dx.doi.org/10.1016/J.BBAMCR.2008.01.017
http://dx.doi.org/10.1016/j.tim.2008.03.003
http://dx.doi.org/10.1016/j.tim.2008.03.003
http://dx.doi.org/10.1016/j.bbamcr.2008.02.015
http://dx.doi.org/10.1016/j.bbamcr.2008.02.015
http://dx.doi.org/10.1093/nar/gku1181
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.1093/bioinformatics/btl485
http://dx.doi.org/10.3390/toxins9040112
http://dx.doi.org/10.3390/toxins9040112
http://dx.doi.org/10.1128/AEM.66.5.1809-1813.2000
http://dx.doi.org/10.1128/AEM.66.5.1809-1813.2000
http://dx.doi.org/10.4067/S0716-97602008000200007
http://dx.doi.org/10.1111/j.1432-1033.1979.tb12847.x
http://dx.doi.org/10.1111/j.1432-1033.1979.tb12847.x
http://dx.doi.org/10.1099/00221287-142-9-2655
http://dx.doi.org/10.1021/ed072p119
http://dx.doi.org/10.1371/journal.pcbi.1004604
http://dx.doi.org/10.1016/0147-619X(79)90015-5
http://dx.doi.org/10.1016/0147-619X(79)90015-5
http://dx.doi.org/10.1128/EC.00250-13
http://dx.doi.org/10.1016/S0092-8674(00)81659-1
http://dx.doi.org/10.1128/AEM.66.12.5348-5352.2000
http://dx.doi.org/10.1128/AEM.66.12.5348-5352.2000
http://dx.doi.org/10.1016/J.MYC.2015.08.003
http://dx.doi.org/10.1016/J.MYC.2015.08.003
http://dx.doi.org/10.1046/j.1365-2958.2000.02063.x
http://dx.doi.org/10.1046/j.1365-2958.2000.02063.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00292.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00292.x
http://dx.doi.org/10.1098/rspb.2007.1461
http://dx.doi.org/10.1111/j.1574-6976.2002.tb00614.x
http://dx.doi.org/10.1111/j.1574-6976.2002.tb00614.x

	Dynamic modelling of the killing mechanism of action by virus-infected yeasts
	Background
	Material and methods
	Model structure and modelling platform
	Experimental data
	Representation of the toxin binding phase
	Representation of toxin-induced cell death

	Results
	Molecular crowding around cell wall receptors impedes binding at high toxin abundance
	Integrating toxin-induced death dynamics and toxin binding dynamics via the utilization of lethality units
	Integrated model of the primary pathway of toxic action
	Integrated model of the apoptotic pathway of toxic action
	Modelling the killer activity of K1 and K28 toxins on sensitive populations of the same species

	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


