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Cooperation is prevalent in nature, not only in the context of social interactions

within the animal kingdom but also on the cellular level. In cancer, for example,

tumour cells can cooperate by producing growth factors. The evolution of

cooperation has traditionally been studied for well-mixed populations under

the framework of evolutionary game theory, and more recently for structured

populations using evolutionary graph theory (EGT). The population structures

arising due to cellular arrangement in tissues, however, are dynamic and thus

cannot be accurately represented by either of these frameworks. In this work,

we compare the conditions for cooperative success in an epithelium modelled

using EGT, to those in a mechanical model of an epithelium—the Voronoi

tessellation (VT) model. Crucially, in this latter model, cells are able to move,

and birth and death are not spatially coupled. We calculate fixation probabil-

ities in the VT model through simulation and an approximate analytic

technique and show that this leads to stronger promotion of cooperation in

comparison with the EGT model.
1. Introduction
Tumour development is an evolutionary process whereby cells undergo a series

of genetic changes leading to acquired capabilities that confer some growth

advantage. In Hanahan and Weinberg’s seminal paper [1], six such capabilities

or ‘hallmarks of cancer’ were identified to be necessary for normal cells to

become malignant: self-sufficiency in growth signals, insensitivity to anti-

growth signals, evading apoptosis, limitless replicative potential, sustained

angiogenesis, and tissue invasion and metastasis. Many of these rely on the pro-

duction of diffusible growth factors [2], the effects of which are felt not only by the

producer cell but by other cells in the neighbourhood. As such production of these

growth factors can be considered an example of cellular cooperation [3,4].

Models of the evolution of cooperation for diffusible growth factors [5–7]

have been developed using the framework of evolutionary game theory for

well-mixed populations. These models have also been extended to consider

spatial effects by placing cells on a lattice [8–10] or a fixed graph [11,12]. For

the most part these models use periodic boundary conditions; however, there

has been some investigation into edge effects [13]. Further examples of the

application of game theory to cancer evolution include the reprogramming of

energy metabolism [14–16], micro-environment dependency [17,18], environ-

mental poisoning [19] and invasion [20]. See [21] for a recent review of

evolutionary game theory applied to somatic evolution.

Cell populations are not well mixed but organized into tissues or tumours,

thus the recent move to incorporate spatial structure is important. Introducing

population structure can have a significant effect on evolutionary dynamics

[22], in particular, in promoting cooperation [23]. The established framework

for modelling games on structured populations, used in the models mentioned

above, is evolutionary graph theory (EGT) [24–30] in which individual cells are

placed on the vertices of a graph and neighbours are joined together by edges.

Individuals interact and play games with their neighbours, thus deriving their

fitnesses. The population evolves via some update rule which dictates how

birth and death occur while maintaining the fixed graph structure. When a
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cell divides, it is necessary for a neighbouring cell to die in

order that one of the offspring can occupy the empty vertex.

Two commonly used update rules are the birth–death and

death–birth rules which essentially differ in the order in

which birth and death events occur.

There are several shortcomings of EGT in application to

somatic evolution. Tissue and tumour structures are not fixed

but dynamic, due to processes of cell division, extrusion and

motility. Furthermore, the necessity of births and deaths occur-

ring next to each other is not only unrealistic, but the choice of

update rule is one of the main determinants of evolutionary

outcomes [31]. Recent work has introduced a new ‘shift

update’ with the aim of addressing the unsuitability of the tra-

ditional update rules for cellular structures. The model works

extremely well in one dimension [32], predicting enhanced

cooperative success compared to other update rules. However,

the extension into two dimensions [33] is not straightforward

as the shifting of cells disrupts cluster formation of cooperators.

This can be resolved by introducing a repulsive force between

cells of different types and choosing energy-minimizing shift

paths. If the force is strong enough, the shift dynamics is

again an effective promoter of cooperation. However, it relies

on this somewhat artificial preferential sorting.

Dynamic graph models of evolutionary games also exist;

however, they mostly focus on switching connections between

vertices, either at random or to increase fitness [34–37]. These

types of models are relevant in social networks, for example,

where agents can choose who they interact with and can

break social ties with individuals who do not cooperate [38].

They are not good models, however, for populations of cells

which are spatially constrained in two- or three-dimensional

structures. Furthermore, they still require birth and death to

be coupled.

More relevant is the framework developed in [39,40] which

uses a topological tissue model [41] to generate a dynamic

graph representing cellular interactions. In this dynamical

tissue model, birth and death can be spatially decoupled; how-

ever, graph topologies do not necessarily correspond to normal

tissues. In particular all-defector populations have abnormal

polygon distributions, and cooperators on the boundary of a

defector cluster can end up with unrealistically high numbers

of neighbours. The introduction of forces in a spatial tissue

model could resolve these issues.

In order to elucidate what impact, if any, the dynamic

nature of cell populations and spatial decoupling of birth

and death has on the evolution of cooperation, we will consider

evolutionary games on a mechanical model of an epithelium—

the Voronoi tessellation (VT) model [42,43]. Epithelia are the

tissues which form the surfaces in the body, such as skin,

and the linings of organs. We choose this particular tissue struc-

ture as it can be modelled in two dimensions as a sheet of

polygonal cells [44]. Furthermore, epithelial cells are highly

proliferative compared to other cell types and the source of

85% of cancers making them of particular interest in models

of cancer evolution.

We consider cells interacting via an additive Prisoner’s

Dilemma game, whereby cooperators pay a cost c in order

to produce some benefit b for their neighbours. While other

games, such as multi-player public goods games, may pro-

vide more realistic cancer models, the additive Prisoner’s

Dilemma is preferred in this study due to its simplicity as a

single parameter, two-player game. Furthermore, it is well

studied in the EGT context and thus it is straightforward
for us to compare with the VT model. In particular, we calcu-

late the fixation probabilities for single mutant cooperators

arising in a population of defectors in both models.

We begin, in §2, by introducing EGT and looking at how it

can be applied to the evolution of cooperation on epithelia, con-

sidering results for an additive Prisoner’s Dilemma game with

both birth–death and death–birth update rules. We then, in §3,

introduce the VT model of an epithelium, again considering

the evolution of cooperation under a Prisoner’s Dilemma, but

this time with spatially decoupled birth and death. We calcu-

late approximate fixation probabilities as well as looking at

simulation results. Finally, in §4, we compare these results

with the EGT model, finding that cooperation is significantly

more successful in the VT model. By running further simu-

lations, implementing an explicit death–birth update in the

VT model and a migration analogue into the EGT model, we

identify the decoupling of birth and death to be the primary

mechanism for the discrepancy.
2. Evolutionary graph theory
2.1. The model
EGT provides a framework for modelling the evolution of

traits on fixed population structures represented by a static

graph G. Individuals, labelled i ¼ 1, 2, . . . , N for a population

size N, are represented by the vertices, while the edges corre-

spond to neighbour connections. We, therefore, define the

adjacency matrix

Aij ¼
1, if i and j are neighbours

0, otherwise:

(
(2:1)

In the additive Prisoner’s Dilemma, the trait or type of an

individual i is given by si [ f0, 1g, with si ¼ 0 denoting a

defector (D) and si ¼ 1 a cooperator (C ). The state of the

population is then given by the N-dimensional vector s.

For a population in state s, individual i obtains a pay-off

fi(s) from its neighbours which is calculated according to a

pay-off matrix, given by

C D

C
D

b� c �c
b 0

� � (2:2)

where b . c and c . 0. The pay-offs are thus

fi(s) ¼ �csi þ b
X
j[G

Aijsj

ki
, (2:3)

where ki ¼
P

j[G Aij is the degree of vertex i (i.e. the neigh-

bour number). Fitness is then defined to be

Fi(s) ¼ 1þ dfi(s), (2:4)

where d . 0 is the selection strength parameter and the con-

stant 1 takes into account other contributions to fitness. We

can let c ¼ 1 without loss of generality, thus the game is defined

by a single parameter.

Evolution proceeds via a spatial extension of the Moran

process [24,45] whereby, at each time step, an individual

dies and another reproduces. The offspring occupies the

vacant vertex thus keeping the graph structure constant.

There are several potential mechanisms for this, known as

update rules. Here, we consider two common rules:
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Figure 1. Fixation probabilities for a Prisoner’s Dilemma game in the EGT
model with c ¼ 1 and d ¼ 0.025. Solid lines plot theoretical fixation prob-
abilities for a single cooperator on a hexagonal lattice (HL, green) and a
Delaunay triangulation (DT, blue), obtained from equation (2.5). The critical
benefit-to-cost ratio, which occurs where fixation probability is equal to
r0 ¼ 1/N (grey, dotted line.), is (b/c)* � 6.7 for the HL and DT. Simulation
results are also shown for both cases and fit well with the theoretical fixation
probabilities when (b/c) . 4. However, as equation (2.5) was derived in the
weak selection limit we only expect it to be accurate near the critical ratio.
(Online version in colour.)

Figure 2. Voronoi tessellation (VT, black) and Delaunay triangulation (DT,
red) of a set of points representing cell-centres. The VT divides the plane
into polygons such that every point in a polygon is closer to its corresponding
cell-centre than any other. The DT partitions the plane into triangles and is
the dual graph to the VT. Spring forces act along the lines of the DT. (Online
version in colour.)

Table 1. Summary of critical benefit-to-cost ratios, (b/c)*, for the different
models: a Moran process with death – birth update on a Delaunay
triangulation and a hexagonal lattice; a Voronoi tessellation model. Results
are shown for both the theory and simulations.

theory simulation

EGT model with DT (death – birth) 6.69 6.74

EGT model with HL (death – birth) 6.68 6.67

VT model (decoupled update) 2.78 2.83

VT model (death – birth) — 7.26
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— birth–death: an individual is chosen to reproduce with

probability proportional to fitness; its offspring takes the

site of a neighbour selected uniformly at random to die;

— death–birth: an individual is chosen to die uniformly at

random; it is replaced by the offspring of a neighbour

chosen with probability proportional to fitness.

For a well-mixed population, represented by a complete

graph, these two updates rules are equivalent; however, for

an arbitrary population structure, the choice of update rule

leads to strikingly different dynamics. In the following, we

will consider the dynamics in both cases for graph structures

representing an epithelium.

2.2. Fixation probabilities
In order to consider game dynamics on an epithelium within

the EGT context, we consider two different graph structures.

Epithelial cells have six neighbours on average; therefore, a

hexagonal lattice (HL) is a simple approximation. A VT, how-

ever, gives a more realistic representation of an epithelium

[46–48]. There is some variance in neighbour number, but

the mean is still 6. The Delaunay triangulation (DT) corre-

sponding to a VT gives the appropriate graph connecting

neighbouring cells. See §3.1 and figure 2 for more detail on

these terms.

We measure the success of a cooperative mutant by com-

paring its fixation probability (rC) to that of a neutral mutant

(r0 ¼ 1/N). Thus if rC . 1/N we say that cooperation is a

beneficial mutation or that it is ‘favoured by selection’. The

critical benefit-to-cost ratio, denoted (b/c)*, is the point

where the cooperator fixation probability is equal to the

neutral fixation probability, i.e. rC ¼ 1/N.

For a death–birth update rule, we calculate the fixation

probabilities against benefit-to-cost ratio (b/c) for an HL

and DT with a population size of N ¼ 100 and periodic

boundary conditions. Results are plotted in figure 1 in

which each data point is the result of 1 � 105 simulations.
Analytical results are calculated using the theory developed

in [30], where the authors derive an equation

rC ¼
1

N
þ d

2N
(�ct2 þ b(t3 � t1))þO(d2) (2:5)

for the fixation probabilities on any graph. Here, tn is the

expected coalescence time from the two ends of an n-step

random walk, where the initial vertex is chosen proportional

to degree. Thus these quantities are purely properties of the

graph and can be calculated computationally by solving a

recurrence relation. We use a small selection strength, d ¼

0.025, and there is a good fit between simulation and theory

in the range shown for b . 4. Furthermore, the heterogeneity

in the DT seems to have a negligible effect on fixation probabil-

ities compared to the dependence on benefit-to-cost ratio.

Critical benefit-to-cost ratios are calculated for both graphs

from simulations and equation (2.5) and summarized in table 1.

The results are very different for a birth–death update rule:

cooperation is never favoured by selection under an additive

Prisoner’s Dilemma game and rC , 1/N for all b , c, c . 0

[25,28,31]. Thus within the EGT framework cooperation is

only a successful evolutionary strategy on an epithelial struc-

ture with a death–birth update above a critical benefit-to-cost

ratio of approximately 6.7.

The HL seems to be a reasonable approximation to the struc-

ture. Using the more realistic DT with neighbour number



Table 2. Table of parameters used in the Voronoi tessellation model [44].

parameter description value

m spring constant 50.0

s natural separation of mature cells 1.0

e initial separation of sister cells 0.1

h drag coefficient 1.0

Dt time step (h) 0.005

l division and apoptosis rate (h21) 12.021
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heterogeneity does not significantly alter fixation probabilities

or the critical benefit-to-cost ratio, at least in the weak selection

limit we are using. We note, however, that these results are for

an average pay-off and that an accumulative pay-off (in which

pay-offs are simply summed over interactions) can amplify

differences due to heterogeneity. We should also note that

cooperation is possible in well-mixed populations or graph-

structured populations with birth–death update for games

other than the Prisoner’s Dilemma, such as the snowdrift or

stag-hunt games, and it is possible to generalize (2.5) to analyse

these [30].

Whether or not these results are illuminating in terms of a

real epithelium is an important question, however, and as we

have noted previously there are some serious shortcomings

to the model, first that population structure is static and sec-

ondly the troubling dependence on the update rule. Which

update rule is closest to reality is unclear and while there

likely is some coupling in birth and death processes in a

real epithelium, there is certainly no absolute requirement

for birth and death events to occur next to each other.

In order to explore whether these factors are important to

the dynamics we will move on to consider the VT model of

an epithelium in which cells are able to move past each

other and birth and death are spatially decoupled.
3. Voronoi tessellation model of an epithelium
In order to analyse the dynamics of evolutionary games on a

more realistic population structure, we will use the VT model

[42,43] developed for the colonic crypt epithelium. In the fol-

lowing, we will explain how the mechanical model works

and generates a time-dependent graph structure on which to

study evolutionary game dynamics. We will then derive an

approximation for the fixation probability and use these results

along with simulation to compare with the EGT model.

3.1. The model
The VT model represents a tissue as a set of points corre-

sponding to the centres of individual cells. These points lie

in a fixed domain with periodic boundary conditions. Cells

move freely in space and exert spring-like forces on one

another, such that

Fij(t) ¼ �mr̂ij(t)(jrij(t)j � sij(t)) (3:1)

is the force exerted by cell j on its neighbour i. Here, m is the

spring constant and rij ¼ ri 2 rj, where ri is the position vector

of cell i and r̂ij is the corresponding unit vector. The natural

separation between cells sij(t) ¼ s is constant and the same

for all neighbour pairs. The exception to this is for newborn

sister cells for whom sij grows linearly from e to s over the

course of an hour.

The total force acting on cell i is then

Fi(t) ¼
X

j[N i(t)

Fij, (3:2)

where N i(t) is the set of cells neighbouring i. By assuming

that motion is over-damped due to high levels of friction

we obtain the equation of motion for each cell in the form

of a first-order differential equation

h
dri

dt
¼ Fi(t), (3:3)
where h is the damping constant. This is solved numerically

using

ri(tþ Dt) ¼ ri(t)þ
Dt
h

Fi, (3:4)

whereDt is a sufficiently small time step for numerical stability.

Parameter values used in our simulations are taken from [44]

and based on studies of the colonic crypt [42,49]. These

are summarized in table 2. While changes in these values

affect the dynamics, our main result is robust (see the electronic

supplementary material information where we consider

changes to m).

The neighbour connections between cells are determined by

the VT of the set of cell-centres (figure 2). The VT divides the

plane into polygons, where each polygon is defined as the

region of the plane closer to its generator (i.e. cell-centre) than

any other. Each cell can, therefore, be represented as a distinct

region with a well-defined area and neighbour set. The dual

graph to the VT is the DT in which the cell centres are the

graph vertices and neighbours are connected by edges. The

DT, therefore, gives the adjacency matrix Aij(t) from which we

can calculate cell fitnesses. As it is defined by the cell-centre pos-

itions, the DT must be recalculated after every time step during

which cells may have moved, died or reproduced.

As in the previous model, we allow the system to evolve by

a Moran process whereby birth and death events occur simul-

taneously. The key difference is that we decouple the locations

of these events. We also implement the process in continuous

rather than discrete time, noting that a translation to continu-

ous time in the previous model does not affect fixation

probabilities [30] and therefore the results are directly compar-

able. In the continuous time Moran process, update events

occur at exponentially distributed times with rate l. When an

update event occurs, a mother cell is chosen at random from

the population with probability proportional to fitness. This

cell divides creating two daughter cells, which are exact

clones of the mother. A cell is also chosen to die (i.e. to be

extruded from the tissue) uniformly at random. This process

is represented in figure 3.

To calculate fixation probabilities for a single mutant coop-

erator invading a defector population in the VT model, we run

simulations as follows. We begin with defector cells placed on a

regular HL with periodic boundary conditions and the simu-

lation algorithm proceeds until the system has relaxed into a

dynamic equilibrium. We then choose a random cell to

become a cooperator and continue the simulation until only

cooperators or defectors remain. The simulation algorithm con-

sists of the following steps: (i) DT is performed to determine



Figure 3. Spatially decoupled update rule in the Voronoi tessellation model. When an update event occurs, a mother cell is chosen to reproduce with probability
proportional to fitness (blue). A second cell is chosen to die uniformly at random (red). The mother cell divides and the dead cell is removed from the tissue. (Online
version in colour.)
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cell neighbours; (ii) forces are calculated and the cells moved

accordingly; (iii) an update event occurs with probability

NlDt, in which case fitnesses are calculated according to the

evolutionary game and the decoupled update rule is applied.

3.2. Approximating the fixation probabilities
Due to the complexities of the VT model, it is not possible to

derive exact analytical solutions as was done for EGT [30].

Instead, we look for approximate solutions by considering

the expected fitness for different cell types in populations

with a given number of cooperators [50]. While the graph is

dynamic and dependent on the spatial distribution of points,

it is also planar and mechanically constrained. Furthermore,

if we begin with a single mutated cell, its progeny are likely

to remain in a cluster as the clone grows. Thus we assume

that variation in fitnesses for cells of each type will be small

for a given number of cooperators in the population and that

the average over a large number of states is a good approxi-

mation. Comparing our theoretical results to simulations,

we find that fixation probabilities calculated based on this

assumption are good approximations.

Let us denote a state with n cooperators Sn ¼ (sn, G),

where sn is the vector of cell types and G is the graph. Then

we define Tþ/2(Sn) to be the probability that when an event

occurs the number of cooperators is increased/decreased

by one, i.e.

Tþ(Sn) ¼ 1� n
N

� �P
i[G siFiP
i[G Fi

(3:5)

and

T�(Sn) ¼ n
N

1�
P

i[G siFiP
i[G Fi

� �
: (3:6)

We can then define the average transition probabilities for a

state with n cooperators to be T+
n ¼ hT+(Sn)i where the aver-

age is taken over a large ensemble of possible states.

Substituting in for the fitnesses (2.4) and taking the weak

selection limit d� 1 we obtain

Tþn ¼
n
N

N � n
N

(1þ dhfC � fi0)þO(d2) (3:7)

and

T�n ¼
n
N

N � n
N

1� n
N � n

dhfC � fi0
� �

þO(d2), (3:8)

where k.l0 denotes an average over a large ensemble of possible

states for the neutral process d ¼ 0 and

fC ¼
1

n

X
i[G

sifi and f ¼ 1

N

X
i[G

fi (3:9)
are the average cooperator fitness and average fitness,

respectively. From (2.3) and (3.9), we obtain

hfC � fi0 ¼ �c 1� n
N

� �
þ b LCC

n �
n
N

� �
, (3:10)

where

LCC
n ¼

1

n

X
i,j[G

sisjAij

ki

* +
0

(3:11)

is the normalized average number of degree-weighted

cooperator–cooperator interactions in a system with n co-

operators. This can be calculated computationally by running

simulations for a neutral process and tracking clones (groups

of cells with common ancestry). At each time interval, we cal-

culate the contribution to LCC
n for all clones in the system,

treating each lineage as a group of n cooperators in a popu-

lation of defectors. See figure figure 4 for a plot of LCC
n with

N ¼ 100.

We use the equation for cooperator fixation probability

derived in [51] for a well-mixed population

rC ¼ 1þ
XN�1

m¼1

Ym
n¼1

gn

" #�1

(3:12)
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royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180918

6

with gn ¼ T�n =Tþn . In that case, the transition probabilities and

thus gn are defined exactly for each value of n. For the VT

model, we substitute in the mean transition probabilities

given by equations (3.7), (3.8) and (3.9), to obtain

rC �
1

N
þ d

N
�c(N � 1)

2
þ b

XN�1

m¼1

Xm

n¼1

LCC
n � n=N
N � n

 !( )

þO(d2) (3:13)

for the fixation probability in the weak selection limit.

The critical benefit-to-cost ratio is then obtained by setting

rC ¼ 1/N giving

b
c

� ��
�N � 1

2

XN�1

m¼1

Xm

n¼1

LCC
n � n=N
N � n

 !" #�1

: (3:14)

Figure 5 compares equation (3.13) with simulation results

for the VT model. It shows there is a reasonable fit between

our approximation of fixation probabilities with the simulation

data in the region 2.0 , b , 3.5, where we have once again set

c ¼ 1. These values are close to the critical benefit-to-cost ratio

and therefore represent the region in which we would expect

the weak selection limit to hold, thus this equation for fixation

probabilities is a reasonable approximation. The critical

benefit-to-cost ratios calculated from simulation and equation

(3.14) are given in table 1. For both, we get a value of b/c ¼
2.8 correct to one decimal place. This is significantly less than

the critical benefit-to-cost ratios calculated for the EGT model

with death–birth update. In the next section, we will look

further at comparing these models and attempt to identify the

mechanism by which cooperation is promoted in the VT model.
4. Comparing the models
Figure 6 shows the results of these simulations along with the

theoretical EGT results for the HL graph with death–birth

update and the critical benefit-to-cost ratios are summarized

in table 1. It is clear that cooperators are much more successful

in the VT model, in particular, the critical benefit-to-cost ratio

for the VT model is less than half that for EGT with death–
birth update. The question then arises as to what mechanism

is causing this amplifying effect in the VT model, the two

obvious candidates being the effect of cell motility and the

decoupling of birth and death. One way to test whether cell

motility is enhancing the evolutionary success of cooperation

is to introduce an analogue into the EGT model whereby we

allow cells to swap sites with their neighbours. At each time

step, a swap occurs with probability m. When this happens, a

cell is chosen uniformly at random to switch places with one

of its neighbours. Note that this process is independent of

cell fitness. The parameter m is, therefore, a measure of the

strength of migration and by setting m ¼ 0 we regain the orig-

inal EGT model. Figure 7 plots fixation probability against



Figure 8. Death – birth update rule in the Voronoi tessellation model. When an update event occurs, a cell is chosen to die uniformly at random from the popu-
lation (red). From the neighbourhood of the dead cell (yellow), a mother cell (blue) is then chosen with probability proportional to fitness. The mother cell divides
and the dead cell is removed from the tissue. (Online version in colour.)
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benefit-to-cost ratio for a range of m values and demonstrates

that increasing migration within this framework actually

decreases the evolutionary success of cooperation. It, therefore,

seems unlikely that the ability of cells to move past each other

in the VT model is the reason for enhanced cooperative success.

In order to determine whether the spatial decoupling of

birth and death promotes cooperation, we consider the VT

model with a death–birth update rule. To implement this, we

follow the simulation algorithm as defined in §3, the only

change being in choosing which cells reproduce and die

when an update event occurs. First, a cell is chosen for extrusion

uniformly at random. Fitnesses are then calculated for the

neighbouring cells and one of these is chosen to divide with

probability proportional to fitness. This process is shown sche-

matically in figure 8. It can be seen clearly in figure 6 that

changing the update rule in this way suppresses the evolution-

ary success of cooperation in comparison to the decoupled

update rule. Indeed, in this case, we obtain b/c ¼ 7.3 which is

greater than for the EGT model with death–birth update.

Combining these two results, we conclude that it is the

spatial decoupling of birth and death which leads to the ampli-

fication of cooperative success in the VT model. Indeed, this is

an intuitive result and is consistent with results from the shift

dynamics models [32,33]. A cooperative strategy is only

beneficial if cells are able to form a cluster of cooperators. If

birth and death are constrained to occur next to each other,

as is the case for death–birth and birth–death update rules,

then the cluster can only grow at the boundary. If a cell were

to reproduce inside a cooperative cluster, it would result in

the death of a neighbouring cooperator, leaving the size of

the cooperator population unchanged. For the decoupled

birth and death update in the VT model, this is not the case.

If a cooperator inside the cluster reproduces, it will lead to an

increase in the size of the cooperator population with prob-

ability 1 2 n/N, where n is the number of cooperators and N
the total number of cells. The fact that migration appears to

suppress the success of cooperation could also provide an

explanation as to why, if a death–birth update is enforced in

both cases, cooperators fare better in the EGT model than

in the VT model.
5. Conclusion
EGT has become the accepted framework for modelling

the evolution of cooperation on structured populations, ran-

ging from complex social networks to collective cellular

behaviour organized in tissues. While it may be an
appropriate tool for the former, we have demonstrated that

a static graph model is not sufficient to capture the dynamic

behaviour of an epithelium.

We have shown using the theory developed by Allen et al.
[30] and simulations that for a Prisoner’s Dilemma on an

epithelium-like structure in EGT, cooperation is successful if

b/c . 6.7 for a death–birth update, where we have used an

averaged pay-off. This inequality holds when we model the

epithelium as an HL as well as a DT, suggesting that there is

a marginal effect on fixation probabilities due to heterogeneity

of neighbour number. However, the choice of an averaged pay-

off could be suppressing the effect of heterogeneity compared

to an accumulated pay-off, as it does for scale-free networks

[52,53]. It would be advisable therefore to compare fixation

probabilities on the two structures for an accumulated pay-

off, although we do not expect a substantial difference.

Vertex degree in scale-free networks follow a polynomial dis-

tribution and therefore exhibit large variance, whereas degree

variance in DTs is comparatively small.

For a birth–death update on the other hand, cooperation is

not successful for any benefit-to-cost ratio under a Prisoner’s

Dilemma game. The fact that the dynamics are so sensitive to

the choice of update rule is troubling and neither update rule

is a realistic representation of birth and death in an epithelium.

For the VT model, we are able to spatially decouple birth and

death. We showed, using simulation and approximate theoreti-

cal results, that using a decoupled update rule in the VT model

promotes cooperation compared to the EGT examples. Further-

more, when the VT model was run with a death–birth update

this effect was suppressed and cooperation actually fared

worse than in the EGT model, leading us to conclude that the

decoupling of birth and death is the main mechanism for

increased success of cooperation in the VT model. This is con-

sistent with previous work looking at shift dynamics on a static

graph which found that decoupling birth and death led to

increased cooperative success in one dimension [32], and in

two dimensions if a repulsive force was introduced between

cells of different types [33]. The fact that cells can move and

change neighbours in the VT model, however, does not

appear to increase the likelihood of cooperation fixating.

Indeed we found that introducing migration into an EGT

model actually suppressed cooperation, and it is, therefore,

possible that cell motility is acting to reduce cooperative

success in the VT model.

As it is the update rule which seems to influence the evol-

utionary success of cooperation most substantively, the

question arises as to which, if any, reflects the behaviour of a

real epithelium. Clearly, it is unrealistic that when a death
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occurs, it is immediately followed by a neighbour undergoing

division, or vice versa, as for the death–birth and birth–death

update rules respectively. However, it is also not the case that

birth and death events are completely spatially independent.

Cell extrusion can be induced in areas of overcrowding within

a tissue, which could be caused by high levels of proliferation.

Similarly, if local density is low, e.g. due to a high instance of

cell death, cells can be induced to reproduce [54,55]. It is difficult

to see how this more subtle link between birth and death

could be implemented in an EGT model; however, the VT

model could be extended to include density-dependence for

division and/or extrusion. Furthermore, a density-dependent

model would allow us to maintain an (almost) constant

population size without enforcing that birth and death occur

simultaneously, another unrealistic assumption.

In our discussion of whether cooperation is successful on

an epithelium we have limited ourselves to the additive Pris-

oner’s Dilemma game, whereas evolutionary game theory

models of cancer have used a variety of social dilemma

games. Extending our analysis to a general two-strategy
game should be relatively straightforward, indeed we can

use the critical benefit-to-cost ratio to calculate the structure

coefficient and derive a general condition for evolutionary

success for a two-player, two-strategy game [56]. However,

it has been argued that multi-player public goods games

are more realistic for cancer modelling, and can lead to

very different results. Recent work has considered the

dynamics of these types of games on lattices [9] and DT

graphs [12] in an EGT framework, it would, therefore, be

an interesting comparison, but non-trivial extension, to

consider them on the VT model.
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