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Eukaryotic flagellar swimming is driven by a slender motile unit, the

axoneme, which possesses an internal structure that is essentially conserved

in a tremendous diversity of sperm. Mammalian sperm, however, which

are internal fertilizers, also exhibit distinctive accessory structures that further

dress the axoneme and alter its mechanical response. This raises the following

two fundamental questions. What is the functional significance of these struc-

tures? How do they affect the flagellar waveform and ultimately cell

swimming? Hence we build on previous work to develop a mathematical

mechanical model of a virtual human sperm to examine the impact of mam-

malian sperm accessory structures on flagellar dynamics and motility. Our

findings demonstrate that the accessory structures reinforce the flagellum, pre-

venting waveform compression and symmetry-breaking buckling instabilities

when the viscosity of the surrounding medium is increased. This is in agree-

ment with previous observations of internal and external fertilizers, such as

human and sea urchin spermatozoa. In turn, possession of accessory struc-

tures entails that the progressive motion during a flagellar beat cycle can be

enhanced as viscosity is increased within physiological bounds. Hence the

flagella of internal fertilizers, complete with accessory structures, are predicted

to be advantageous in viscous physiological media compared with watery

media for the fundamental role of delivering a genetic payload to the egg.
1. Introduction
The mammalian sperm flagellum differs crucially from the simplest flagellar

axonemes found in nature [1,2]. In addition to the intricate 9 + 2 axonemal

scaffolding of the simple structure, each of the nine concentric axonemal micro-

tubule doublets is attached to an outer dense fibre (ODF), forming a complex

known as the 9 þ 9 þ 2 flagellum [3,4], as depicted in figure 1a. These ODFs

consist of highly condensed, modified intermediate cytoskeletal filaments

strengthened by disulfide linked keratin proteins, and taper along the flagellum

length, terminating prior to the distal end. The 9 þ 9 þ 2 complex is further

surrounded by a proteinaceous keratin-like material, which forms the fibrous

sheath (FS) that provides two further longitudinal columns that are diametri-

cally opposite and also taper along the flagellum, from the mid-piece to the

principal piece, in effect structurally replacing two of the ODFs at the principal

piece [2–4] (figure 1a). In addition, the mammalian flagellum is proximally

sheathed by mitochondria in the mid-piece, and all of this flagellar structure

is enveloped by a cell membrane.

Despite the mechanical significance of the ultrastructural flagellar com-

ponents exhibited by mammalian sperm, little is known about their

biological function nor the evolutionary pressures that led to these critical

flagellar adaptations [4]. Since the first electron micrograph observations, it

has been conjectured that the ultrastructural complex is necessary to provide
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Figure 1. A comparison between mammalian sperm and the naive axonemal flagellum. Reprinted from [2,3] with permission from Elsevier. (a) A mammalian
flagellum, depicting the additional reinforcing structures (red shading) and cross-sections of the mid-piece, characterized by the presence of nine outer dense fibres
exterior to the axoneme and a fibrous sheath (yellow shading); all reinforcing fibres gradually taper along the flagellum, ending prior to the distal tip of the sperm.
(b) Wave-compression and symmetry-breaking buckling instabilities in a high-viscosity methylcellulose solution for sea urchin sperm, which possess a flagellum
without accessory structures of length approximately 42 mm; reproduced/adapted with permission from [11]. (c) Human spermatozoa, with reinforcing accessory
structures on a flagellum of length approximately 50 mm, swimming in a similar highly viscous methylcellulose solution, which highlights a suppression of buckling
instabilities; reproduced with permission (licence no. 4543770361396) from [10]. (d ) Modelling predictions for the non-dimensional absolute compression, as a
function of time t and arclength s for a naive flagellum undergoing buckling instability in high-viscosity medium [12]. The predicted transition can cause
high curvatures and asymmetric waveforms, inducing circular swimming paths, depicted in (e), with a smaller circular radius for spermatozoa with larger
heads. Note that (d ) shows that high elastohydrodynamic internal compression is predicted at regions where the ultra-structural components are larger in mam-
malian flagella (black arrows in (d )). Plots (d,e), have been adapted from the simulations in [10]. (Online version in colour.)
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the structural and mechanical support to stabilize the long

flagella observed in most mammalian spermatozoa [2,3,5–9].

In particular, Lindemann [9] hypothesized that only a reinforced

flagellum would be capable of harnessing the increased

power from the larger number of molecular motors present

in a long flagellum, which is especially relevant for motility

within the highly viscous fluids of the mammalian female

reproductive tract [10].

Such ideas are reinforced by experimental observations

of sea urchin sperm, which possess flagella that consist of

a simple axoneme with no additional ultrastructure [11].

In particular, when migrating in a high-viscosity methylcellulose
solution with a similar viscosity to cervical mucus in the

mammalian reproductive tract [10], such sperm reveal a

rich flagellar dynamics (figure 1b and [11]), consistent

with theoretical predictions of flagellar buckling instabilities

[12]. Woolley & Vernon [11] further reported symmetric

wave-compression behaviour, as also illustrated in figure 1b,

and even more extreme levels of flagellar wave confine-

ment if the head is attached to the coverslip, indicating

sensitivity to dynamical constraints of the sperm head.

Elastohydrodynamic systems are well known for their sensi-

tivity to boundary conditions [13,14]. Indeed, nonlinear

flagellar instabilities [10] are dramatically changed upon
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different end conditions, from fixed to free sperm head

constraints. In particular, the magnitude of the symmetry-

breaking events is highly dependent on the head size of

free swimming spermatozoa, where tight circular swimming

trajectories are associated with large head sizes, as depicted

in figure 1e. By contrast, a very distinct behaviour is observed

for human spermatozoa migrating in methylecellulose

solutions of similarly high viscosity [10], as depicted in

figure 1c, where the flagellar waveform is characterized

instead by a smooth flagellar meandering envelope with a

gradual increase of the wave amplitude along the flagellum.

In particular, the human sperm flagellum responds very

differently to viscosity increases compared with sea urchin.

This may be observed by contrasting figure 1b with

figure 1c. The latter highlights how the ultrastructural com-

ponents of the mammalian flagellum are likely to have a

major impact on the flagellar waveform, and thus the cell

swimming behaviour in high-viscosity media.

Despite such observational evidence for the structural

significance of accessory structures on flagellar bending

propagation and modulation [4,10,11], their influence on

the swimming behaviour of mammalian spermatozoa has

been markedly overlooked in the literature. In the inaugural

theoretical study, Lindemann and colleagues [8,9] modified

the geometric clutch model [15] to incorporate the effect of

accessory structures, by assuming a linear tapering of the

elastic stiffness along the arclength for immobilized sperm

cells. The model successfully predicted a reduction in the

maximum flagellar curvature caused by the additional stiff-

ness, together with a qualitative agreement for bull sperm

experiments. In 2007, Riedel et al. [16] investigated the effects

of perturbative, and thus small, structural inhomogeneity, via

a linear decay of the bending rigidity. In particular, several

existing models incorporating molecular motor coordination

dynamics [15,17,18] were compared with the flagellar beating

of bull spermatozoa. A satisfactory fitting was reported for

the self-organization model with a load-dependent detach-

ment rate of motors [18,19], if the variation of the elastic

stiffness along the flagellum is negligible. The model curve

fitting was not significantly improved by the flagellar taper-

ing of the bending stiffness [16]. This suggested that the

flagellar ultrastructural components may play a minor role

in shaping the flagellar waveform at the perturbative level,

and thus at the leading linear-order approximation con-

sidered. More recently, the role of temporal nonlinearities

arising from the second harmonics of the flagellar beat was

also shown to contrast very well with experiments, without

recourse to the spatial structural inhomogeneity present

along the human sperm flagellum [20]. These results are,

however, in contrast with estimates from videomicroscopy

experiments [4] for the distribution of hydrodynamic, elastic

and internal sliding bending moments, which did not treat

flagellar mechanical heterogeneity as a perturbation, nor

was the flagellar beat truncated in the frequency domain

[4]. In another empirical investigation, Lindemann and

co-workers [21,22] estimated the internal sliding forces by

considering an exponential decay of the flagellum stiffness.

An approximately constant magnitude of the sliding force

along the arclength was reported, agreeing with [4]. The

flagellar elastic tapering was equally observed to influence

the beating pattern of hyperactivated mammalian sperm

[23], which was biochemically regulated within a model

assuming a significant varying tensile stiffness. To date,
theoretical investigations focusing on the effects of ultrastruc-

tural flagellar apparatus on sperm swimming in high-viscosity

fluids are still lacking in the literature.

Here, our fundamental aim is to extend the elastohydro-

dynamic formulation presented in Gadêlha et al. [12] to

study the mechanical role of accessory flagellar structures

and their tapering in mammalian spermatozoa (figure 1a).

Hence we investigate the impact of the flagellar bending

stiffness decreasing monotonically and significantly with

arclength for a virtual model of a free swimming human

sperm. In particular, we will explore the observation high-

lighted in [12] that the ultrastructural components reinforce

regions along the flagellum where high compression is

expected, as illustrated in figure 1d. In the absence of flagellar

reinforcement, this compression mechanics is predicted to

subsequently induce asymmetric waveforms and circling

trajectories, as shown in figure 1e. Hence we explore the con-

sequences of flagellar reinforcement by accessory structures

for waveform formation and cell motility in light of such

mechanics, together with a consideration of how the under-

lying model dynamics is altered by the heterogeneity of the

structural mechanics.
2. Flagellar ultrastructure elastohydrodynamic
formulation

To proceed, we generalize the planar sliding filament mech-

anism [12,16,17,19,24–31] to incorporate the role of tapering

in the accessory flagellar structures of mammalian sperm

cells. The model axoneme filaments are represented by a

pair of parallel, planar elastic Euler–Bernoulli rods, depicted

in figure 2a, and associated with a reinforcing structure, rep-

resented by the light shading. The model filaments are

assumed to be homogeneous, inextensible and separated by

a constant gap space b, which corresponds to the axoneme

diameter. Dynein motors induce active sliding stresses

along the axoneme, thus inducing a relative sliding couple

acting on the model axonemal filaments and the paired ultra-

structural components. However, at the connecting piece of

the sperm head junction, the axonemal filaments are highly

constrained [11] and we assume no interfilament sliding is

permitted at this point; thus the filaments bend due to the

dynein couples, which is the basis of the sliding-filament

mechanism.

We describe the position of the flagellum, relative to the

laboratory frame of reference, by its neutral line X(s, t)
(figure 2a), noting that t is time and s denotes the distance

along the flagellum with 0 � s � L, where L is the filament

length. The local flagellum coordinate system is represented

as an orthonormal pair with a positive orientation {ŝ, n̂},

where ŝ ¼ Xs ; @X=@s is the tangent vector and n̂ is the

vector normal to the flagellum centreline (figure 2a). The fla-

gellar dynamics is inertialess to an excellent approximation

and is governed by balancing the viscous drags and couples

per unit length with the internal forces and torques, both

structural and dynein induced, per unit length.

We generalize the elastohydrodynamic formulation

presented in [12] by incorporating the effect of the ultrastruc-

tural components, captured by the effective elastic stiffness

E(s) that varies along the arclength s. Non-dimensionalizing

with respect to the length scale L, time scale v21 and force

density E0/L3, for a given beating frequency v and a constant
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ŝf(s)

E(s)

e(
s)

Figure 2. A schematic of the sliding filament mechanism modified by the ultrastructural components of mammalian spermatozoa. Relative to a laboratory fixed
frame {x̂, ŷ}, the vector X(s, t) describes the position of the flagellum neutral line (dashed curve) at time t. The internal shear force f (s, t) is acting tangentially and
in opposite directions on each sliding filament (solid black arrows) within the axoneme (light yellow shading) with diameter b, with the flagellar reinforcing
structure given by the light blue shading. Note that the relative spatial extents of the shaded regions are not to scale. The reinforcing structures are paired
with each sliding filament, with a spatial heterogeneity that is captured by an effective elastic stiffness E(s), which monotonically decays with the arclength s.
(b) Tapering functions, as discussed in §2.2: (i) e1, represents the absence of additional structures, (ii) e2, a linear taper [8,9], (iii) e3, a cotangent taper, correspond-
ing to the qualitative trend in flagellum stiffness measurements [21,22], and (iv) an inverse cotangent taper, relative to the function e2. (a) Human sperm model;
(b) tapering function. (Online version in colour.)
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axonemal elastic stiffness E0, the modified dimensionless

elastohydrodynamic equation for a mammalian flagellum is

given by

Sp4Xt ¼ �(eXss)ss � (g� 1)(eXs � Xssss þ 2esXs � Xsss)Xs

þ (TXss þ gTsXs)þ (fsn̂þ gf n̂s),
(2:1)

where the subscripts s and t, respectively, denote differen-

tiation with respect to arclength and time. The sliding force

density within the axoneme is given by f (s, t) and g ¼ j?=jk
is the ratio between the perpendicular, j?, and parallel, jk,

fluid dynamic resistance coefficients. The function e(s)

represents the flagellar bending stiffness relative to the

axoneme stiffness, referred to here as the tapering function,

as we discuss in §2.2 and in figure 2b. The dimensionless

sperm-compliance parameter,

Sp ¼ L
vj?
E0

� �1=4

, (2:2)

characterizes the relative importance of elastic forces to vis-

cous drag [32]. The non-dimensional tensile force T(s, t) is

the Lagrange multiplier for the inextensibility constraint,

and it is implicitly determined by the identity Xs � Xs ¼ 1,

gTss � (Xss �Xss)T ¼ �3eg (Xsss �Xsss)� e(3gþ 1)(Xss �Xssss)

� es(7gþ 2)(Xss �Xsss)� ess(2gþ 1)(Xss �Xss)

� (gþ 1)(n̂s �Xs)fs � g (n̂ss �Xs)f :

(2:3)

In the absence of structural components, the tapering func-

tion is a constant, e(s) ¼ 1, and the governing equations are

equivalent to earlier models [12,19,25,33]. A variety of deri-

vations of active elastohydrodynamic systems have been

presented in the literature, and thus these are not reproduced

here. Instead, we direct the reader to excellent discussions

and detailed derivations in [12,19,25,29,31,32,34–38] and

their appendices.

Empirical estimates of the effective sliding moment den-

sity [4], resulting from the coupling between the dynein

molecular motor activity and the passive cross-linking pro-

teins within the flagellum [10,16,39–41], indicate that the

observed flagellar waveform of human sperm migrating in

high-viscosity fluid can be captured by a simple travelling

wave of dynein contraction, with a single characteristic
frequency and approximately constant magnitude along the

flagellum length [10,42,43]. This in situ observation has

motivated the use of a simple prescribed travelling wave to

model the internal sliding density,

f(s, t) ¼ a cos (ks� t), 0 � s , 1, (2:4)

where a, k are, respectively, the dimensionless force amplitude

and wavenumber. This allows the investigation of pure elasto-

hydrodynamical effects arising from flagellar structural

tapering, unbiased by further complications associated with

dynein control. We further consider the distal end of the fla-

gellum to be free from sliding forces owing to the lack of

structural and motor elements at the very distal-most part of

the flagellum [2,3,5,6,44].
2.1. Boundary conditions
The equations governing the flagellar dynamics are comple-

mented by boundary conditions, in which either the

movement of the flagellar endpoints is specified or a balance

of forces and torques at each end is imposed [45]. In particu-

lar, at the distal boundary, s ¼ 1, the flagellum is free to move

and, therefore, the external contact forces and torques are

zero, i.e.

0 ¼ Fext ¼ �eXsss � esXss þ f n̂þ TXs

and 0 ¼Mext � Xs ¼ eXss:

)
(2:5)

At the proximal end, s ¼ 0, the flagellum is driving the sperm

head and thus experiences a non-dimensional viscous drag

force, Fhead, and moment, Mhead, given by

Fhead

Mhead

� �
¼ L4R r

L
, t

� �
U
V

� �
, (2:6)

where L ¼ L(hv=E0)1=4, and h denotes the fluid viscosity. R
represents the dimensionless grand-resistance matrix for the

sperm head, and depends on the head morphology, though

we consider a ‘human-like’ sperm head geometry taken

from [46]; in addition r denotes the distance between the

head centre of mass and the sperm head–flagellum junction

at s ¼ 0. The torque and force balance at s ¼ 0 yield the

required boundary condition for the flagellum in terms of

the motion of the sperm head from a specification of the
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head velocity field (U, V) via

Fhead ¼ eXsss þ esXss � f n̂� TXs

and Mhead � Xs ¼ �eXss � n̂

ð1

0

f(s0) ds0,

9=
; (2:7)

where the linear and angular velocity coupling with the basal

flagellar movement via Xtjs¼0 ¼ U and [Xs � (ẑ� Xts)]js¼0 ¼ V

closes the system.
org/journal/rsif
J.R.Soc.Interface
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2.2. Ultrastructure tapering function
The dimensionless tapering function e(s), depicted in

figure 2b, captures the arclength variation of the bending

stiffness associated with the tapering of the flagellar ultra-

structure. These reinforcing components gradually decrease

in size, terminating prior to the distal tip of the flagellum

(figure 1). Here, the tapering function, e(s), measures the fla-

gellar bending stiffness relative to the bending stiffness of the

axoneme, E0 ¼ 0.9 � 10221 Nm2 [47–49], taken from demem-

branated sperm axonemal flagella of sea urchin Lytechinus
pictus. Direct measurements of bending stiffness for human

sperm flagella are not available; however, estimates can be

inferred from rat sperm measurements, given the similarity

of the ultrastructural components [4]. Mammalian flagellar

structural properties are observed to allometrically scale

with geometry, consistent with a fixed material [1], with the

exception of the anomalous bull and guinea pig sperm.

Since the cross-sectional area of the human mid-piece ODF

is one-eighth that of the rat [1], the prediction for the bending

stiffness of human flagellum yields 4 � 10221 Nm2 in this

region, which is about four times the stiffness of the axoneme.

Owing to the absence of quantitative studies on the elastic

properties of accessory structures in other sections of the fla-

gellum, we smoothly fitted the upper and lower bound of

bending stiffness so that 1 � e(s) � 4. We considered four dis-

tinct cases for comparison purposes, illustrated in figure 2b:

(i) a constant function e1, representing the absence of

additional structural components characteristic of simple fla-

gellar axonemes [47–49], (ii) a linear decaying taper e2, as

used in [8,9,16], (iii) a cotangent decaying function e3, motiv-

ated from spatially resolved data [21,22], and therefore the

biologically relevant case, and finally (iv) an inverse cotan-

gent decay e4, representing the mirror image of e3 relative

to the linear function e1.
2.3. Resistive force theory
One should note that the above framework captures the vis-

cous interaction between the flagellum and the surrounding

medium by resistive force theory (RFT), which approximates

the local drag on a flagellar element by using the leading-

order term of slender-body hydrodynamics [50]. Although

RFT is theoretically only valid for sufficiently slender fila-

ments that are of sufficiently low curvature and sufficiently

far from intersection or self-intersection, its region of validity

is still not entirely clear, given reasonable accuracy is regu-

larly observed in comparison studies [14,32,34,51,52]. In

particular, agreement with the high-precision microscopy

imaging of bull sperm flagella is especially relevant in the

context of this study [16,41].

Furthermore, RFT is popular in negotiating the com-

plications of elastic and hydrodynamic interactions,

including relaxational and forced dynamics of stiff polymers
[13,14,29,51,53–58], as well as flagellar dynamics (e.g.

[16–19,25,27–29,52,53,59–64]). While RFT is an approximation,

its popularity in these previous elastohydrodynamical investi-

gations arises from investigation objectives that are concerned

with the overall mechanism rather than precise prediction.

Under such circumstances, RFT is generally fit for purpose,

and brings the additional convenience of mitigating the

extreme numerical stiffness of elastohydrodynamic systems,

especially in the presence of buckling instabilities, and we

analogously inherit these motivations and considerations in

implementing RFT for the current study.
2.4. Model parameter estimation
Numerical simulations were carried out for a free swimming

cell with a ‘human-like’ sperm head geometry taken from

[46], with dimensions 4.5 � 2.8 � 1.12 mm, and assuming a

fluid dynamic resistance ratio g ¼ 2. For human sperm exper-

iments [4,10,12], the sperm number may vary from Sp ¼ 4, for

a low-viscosity, watery, in vitro fertilization medium, up to

Sp¼ 24, for a cervical mucus substitute, assuming Newtonian

behaviour. We focus our attention on the consequences of a

high-viscosity medium and thus the high sperm number

regime Sp¼ 20 2 25, although we also display results for Sp

as low as 5 for comparison.

Estimates for the sliding force density magnitude, a, may

be inferred from measurements of the sliding bending

moment density [4], extracted from spatial and temporal

cinemicroscopy for a swimming cell, or from direct

force measurements of molecular motors [65,66]. Indirect

measurements of the sliding bending moment density

extracted from human sperm indicate a maximum magni-

tude of 8 � 10210 N, when the tapering of the structural

components is taken into account. Taking the axonemal

diameter b ¼ 200 nm [21], with a maximum flagellar length

of L ¼ 60 mm, the upper limit of the dimensionless force den-

sity magnitude yields a ¼ 3200. The inferred sliding bending

moment density in [4] is also in agreement with direct

measurements of the total force that a dynein motor can gen-

erate, which ranges between 2 and 8 pN per motor domain

for, respectively, the inner arm axonemal dynein and cyto-

plasmic dynein [65,66]. In this context, we may also add

the intrinsic contribution from the inter-doublet elastic resist-

ance within the axoneme, observed to be 2 pN per structural

repeat for a flagellar axoneme [67], which yields an average

sliding force density magnitude of a ¼ 2400. Here, we will

allow the sperm-compliance parameter to vary in the range

5 � Sp � 25, with a sliding force density magnitude no

larger than a ¼ 2000, noting that the above values for a are

estimates only, and the non-physiological behaviour of flagel-

lar self-intersection can manifest once a is too large. For

comparative purposes in the Results section, it is convenient

to display a in terms of the sperm-compliance parameter;

thus, hereafter, the force amplitude a is rescaled by E0/‘3,

where ‘ ¼ L/Sp, also known as the penetration length [68].

Motivated by the observed flagellar waveform in different

viscosities (figure 1 and [10,11]), we restrict our investigation

to sliding force wavenumbers that are even multiples of p,

k ¼ 2p, 4p and 6p. Previous investigations have revealed

that, in general, wavenumbers that are odd multiples of p

do not generate realistic wave patterns [12]. The further prop-

erty of a consistent wave amplitude without a significant

decay as the waveform progresses depends on the interplay
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the parameter space, as indicated, plotted at equal time intervals over one period (darker curves denote later times and the sperm head is only shown at final time
for clarity). In particular, there are four columns and three rows. In columns (a,b) one has the profiles e1 and e3, with the sperm number then increasing on
descending the rows. In columns (c,d) the wavenumber is increased, as is the sperm number; again, one has the profiles e1 and e3 with sperm number increasing
on descending the rows. The values of force amplitude a, for each row, from (a) to (d) are, respectively, a ¼ 2.24, 2.54, 1.96, 2.37, a ¼ 2.02, 2.93, 2.04, 2.55 and
a ¼ 2.54, 3.63, 1.30, 2.21, after non-dimensionalization with E0/‘3, where ‘ ¼ L/Sp. (Online version in colour.)
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between k and Sp, and can be predicted from linear analysis

[12,60]. Hence, we focus our investigation on the cases

where a noticeable forward motion is achieved as a result

of the flagellar beating. Typically, this corresponds to small

(large) k for low (high) Sp, also in agreement with flagellar

wavenumber viscous modulation in human spermatozoa

[10]. Furthermore, the sliding force density magnitude a
was gradually increased, within the range of validity above.

This is necessary as higher force magnitudes are required

for large amplitude motion when Sp is increased in elastohy-

drodynamic systems [12,31,68], though the relationship

between the force and amplitude is nonlinear [12,32]. The

described approach has allowed an investigation of the

entire spectrum of beating patterns for each (Sp, k)-pair.

For sufficiently large a, however, flagellar self-intersection

occurs, even though the force magnitude is within its range

of validity. In such cases, the numerical simulation is

terminated and the upper limit of the force density is

restricted so that flagellar self-intersection does not occur in

the simulations.
3. Results
We begin by presenting a general overview of the distinct

flagellar behaviours across a wide range of sperm-

compliance factors, from as low as Sp ¼ 5 to as high as

Sp ¼ 25. We firstly contrast large amplitude beating patterns

for the flagellar axoneme and human sperm flagellum cases,

given, respectively, by the tapering functions e1 and e3.

Figure 3 illustrates the time evolution for six distinct pairs

of sperm-compliance number and wavenumber (Sp, k), and

force amplitude a, as detailed above. The flagellar waveform

associated with low (Sp, k) is characterized by a large wave

amplitude and a significant forward motion, as demon-

strated for (Sp ¼ 10, k ¼ 2p). Meandering formation and
wave-compression are distinctive characteristics of large

(Sp, k) in figure 3.

For large values of Sp, when the reinforcing flagellar

components are absent, extensive wave confinement is

observed (figure 4), in addition to the flagellar symmetry

breaking, driving the cell in a circular trajectory; see plot

(e1, Sp ¼ 25, k ¼ 6p) in figure 3. This is in contrast with the

case e3 with a reinforced, tapering flagellum, akin to the

human sperm, with the same values of Sp and k, where

both flagellar wave confinement and symmetry-breaking

buckling are not as pronounced in the results of figure 3.

Instead, the meandering formation is characterized by a

wave envelope that gradually changes with arclength. At

low (Sp, k), however, the waveform is only weakly modified

by the tapering function e3, as shown in figure 3 for Sp ¼ 5,

10, k ¼ 2p. Hence, below we focus on the region of the

parameter space where the flagellar ultrastructure is most

relevant, i.e. for large (Sp, k).

However, before continuing with our analysis, we take a

brief interlude to discuss the mechanism behind the flagellar

symmetry breaking described above (figures 3 and 4) [12].

The latter is a direct consequence of a dynamical buckling

instability of the beating flagellum [12], though it is fre-

quently found in filaments under large tangential forces

[14,29,57,58,69,70]. In this case, the excess in elastohydro-

dynamic friction experienced by the flagellum causes the

compressive forces to increase beyond a critical value

(figure 1d ), which the elastic structure cannot support and

thus buckles (figure 1e) to release the excess in compression.

Upon buckling, however, the flagellum is still driven by the

same internal, periodic internal force, which continuously

maintains the emerging asymmetric bending pattern, thus

leading to circular trajectories for free swimming sperm

cells (figure 1e), as described in [12].

The stabilizing effect of the ultrastructural components

for high viscosities is further illustrated in figure 4, which
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Figure 4. Snapshots of the flagellar evolution for the tapering functions (a – d) e1 2 e4, and seven distinct pairs of wavenumber and sperm-compliance number (Sp, k),
as indicated, plotted at equal time intervals over one period (darker curves denote later times and the sperm head is only shown at final time for clarity). The same force
amplitude, a, given by the upper limit of the tapering case e1 consistent with the absence of self-intersection (as discussed in the final paragraph of §2.4) is used for the
other stiffness functions e2, e3 and e4. The value of a for each row, from top to bottom, is thus a ¼ 2.08, 1.96, 2.04, 2.09, 2.22, 1.81, 1.3, non-dimensionalized by E0/‘3,
where ‘ ¼ L/Sp. Red markers depict the initial and final position of the flagellum centroid over a period. (Online version in colour.)
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plots the time evolution of the beating shape for each taper-

ing function e1, e2, e3, e4 and seven pairs of (Sp, k). In this

instance, the same force amplitude, a, given by the upper

limit of the non-tapering, pure axonemal case e1 is used for

each e2, e3 and e4 case, for each (Sp, k)-pair. The resulting

waveform for the tapering functions e2 2 e4 is characterized

by the formation of a wave envelope with a gradual change

of the wave amplitude and wave compression with increas-

ing arclength, while still maintaining a meandering form.

The wave envelope, however, carries critical signatures of

the tapering function: narrow wave envelopes are observed

for the tapering cases e2 and e4, while wider envelopes are

associated with the tapering function e3.

Furthermore, figure 4 also allows one to examine whether

the waveform changes are dominated by the increase in

overall stiffness with use of tapering functions e2, e3, e4

compared with e1, or whether the waveform changes are

induced by the introduction of stiffness heterogeneity.

Firstly, noting the quarter-power dependence of the

sperm-compliance factor on inverse stiffness in equation

(2.2), changing Sp from 20 to 15 represents a factor of 3

increase in the stiffness, while changing Sp from 25 to 15

represents approximately a factor of 8 increase. However,

these factors of 3 and 8 changes in the homogeneous stiff-

ness are insufficient to radically change the structure of

the flagellar waveform, as seen from the persistence of

wave confinement for e1 on reducing Sp from 25 to 15 in

figure 4a. By contrast, changing from homogeneous stiff-

ness to any of the tapering cases e2, e3, e4, with Sp ¼ 25,

for example, has an extensive impact on the waveform,

modulating the wave envelope and suppressing waveform

compression. Hence one can observe that it is the tapering,

rather than the overall increase in stiffness, that dominates

the observed waveform differences between homogeneous

flagellar stiffness on the one hand and tapering flagellar

stiffness on the other.

We proceed to consider the distance travelled per period,

as depicted by the red markers in figure 4. For all tapering

functions considered e2 2 e4, an increase in the total
swimming distance is observed as Sp increases (for clarity,

see also figure 5 for the travelled distance over one period).

In general, the swimming distance is larger for e3 than for

e2, e4 for each (Sp, k)-pair. However for lower values of the

sperm-compliance number, and hence less viscous media

together with typical wavenumbers, for example (Sp ¼ 10,

k ¼ 4p), the beating shapes associated with the tapering func-

tions e2 2 e4 are marked by a sharp decay in the wave

amplitude in the central part of the tail. As a consequence

of such an erratic waveform, forward motion is relatively

small for sperm with reinforced flagella, in distinct contrast

with the untapered, e1, case, where the associated sperm pos-

sesses a notable forward motion in figure 4. Hence in less

viscous media the modelling indicates a trend that there is

a modest mechanical advantage for swimming with the

absence of accessory structures.

The effect of ultrastructural components on the distance

travelled per beat cycle is further shown in figure 5, where

the flagellar wave and waveform centroid (red markers)

across the allowed range of a instead are displayed for one

period in (a–d ) for Sp ¼ 15, 20, 25 and k ¼ 4p, respectively,

for both stiffness functions e1 and e3, as indicated. For both

cases, the irregular wave amplitude along the flagellum

switches to a regular wave envelope, subsequently followed

by a wave compression that is much more extensive for the

naked axoneme, case e1. Furthermore, one can again observe

the trend of a modest increase for the predicted swimming

distance per beat cycle for the reinforced flagellum, case e3,

as Sp increases from figure 5a to figure 5d by comparing

the red tracers along each column with the converse trend

for the undressed axoneme, case e1, as quantified and further

emphasized in table 1. In particular, it should be noted that

while RFT may not be trustworthy at the highest waveform

compression depicted in figure 5, owing to the near flagellar

self-intersection, the trends in the movement per beat cycle

emerge from far less extreme waveform patterns, away

from flagellar self-intersection.

In figure 6, we present a qualitative comparison with

the observations of sea urchin and human spermatozoa in



(a)
e1, k = 4p e3, k = 4p

(b)

(c)

(d)

Figure 5. Comparison between the stiffness functions e1 and e3: the flagellar
waveform and centroid displacement (red markers) for the maximum tra-
velled distance over one beat cycle, within the allowed range of the
internal force magnitude, as discussed in §2.4. (a – d ) are respectively for
Sp ¼ 10, 15, 20, 25 for k ¼ 4p. Except for the final time, the sperm
head has been omitted for clarity. (Online version in colour.)

Table 1. Sp is the sperm number and de3 denotes the distance moved by
the centroid over a beat cycle for the reinforced flagellum, with stiffness
function e3, in figure 5, while de1 is defined analogously for the naked
axoneme with stiffness function e1. Hence by examining the ratio of these
distances, one has that the reinforced flagellum travels significantly
further per beat cycle at a high sperm number of 25 in figure 5, relative to
the naked axoneme, with the converse observation at a lower sperm
number of 10.

Sp 10 15 20 25

de3/de1 0.77 0.83 1.03 1.53
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methylcellulose solutions from figure 1b,c; a detailed descrip-

tion of the model and empirical parameters are provided

in the figure caption. This firstly indicates the broad differ-

ences in waveforms across different tapering accessory

structures. In particular, a comparison of the flagellar wave-

forms of the predicted beat patterns highlights the presence

of extensive flagellar compression in figure 6a for both obser-

vation and simulation, where no accessory structures are

present, as indicated by the bare axoneme in figure 6b. This

contrasts the observations and simulations of sperm with a

dressed axoneme in figure 6b. However, while one can

readily find qualitative agreement between modelling and

observation for both species, it is not feasible to attempt a

quantitative test of the simulation framework by comparison

with observation, for instance, since the viscosity measure-

ments for the sea urchin experiments are lacking and the

active forces should be assigned in the simulations. Nonethe-

less, the qualitative agreement further motivates the study of

how accessory structures and their tapering impacts the fla-

gellum waveform and, for example, the presence or the

absence of waveform compression.

The maximum curvature, kmax, and maximum absolute

tension, Tmax, over one period are depicted in figure 7 for

(Sp ¼ 25, k ¼ 4p), as a function of the scaled sliding force

magnitude, a. The maximum curvature and tension for the

tapering function e1 is characterized by the presence of

a sharp transition, depicted by the points ‘a’ and ‘b’ in
figure 7. For the purpose of comparison, the same jump tran-

sitions ‘a’ and ‘b’ from figure 7a are depicted in figure 7b, in

addition to the associated beating shape, shown on the right

side of figure 7b. The beating patterns for ‘a’ and ‘b’ are separ-

ated by a transition from a diffuse waveform in ‘a’ to a large

wave confinement in ‘b’. A distinct behaviour is found for

the tapering functions e2 2 e4, in which the maximum curva-

ture and tension are always lower than the ones observed for

the constant tapering function e1. In this case, while the rapid

transition in kmax is gradually decreasing in magnitude for

the stiffness functions e3, e2 and e4, respectively, in figure 7a,

no sharp increase in magnitude is detected for Tmax. Instead,

Tmax is non-monotonic and decreases after the transition, as

illustrated near the points ‘c’ and ‘d’ in figure 7b.

This transition is also associated with flagellar wave com-

pression, as portrayed by the beating patterns in ‘c’ and ‘d’,

for the tapering function e3 in figure 7. After the waveform

compression transition, Tmax decreases with the sliding

force density magnitude between points ‘d’ and ‘e’ before

reverting to an increasing behaviour once more between ‘e’

and ‘f’. Despite the non-monotonic behaviour in Tmax between

‘d’ and ‘f’, the variation in kmax is monotonic in this region,

as also portrayed by the beating patterns of ‘d’, ‘e’ and ‘f’.

A similar behaviour to e3 is observed for e2 and e4, with the

appropriate scaling, as larger values of Tmax are permitted in

these cases. The tapering functions e3, e2, e4 are able to with-

stand increasing values of Tmax, respectively, before a

transition associated with wave compression occurs, as seen

from figure 7b. By contrast, the absence of wave compression

and buckling for waveforms with Sp [ f5, 10g in figure 3

also highlights that the sharp transitions in maximal curva-

tures and tensions shown in figure 7a,b are absent at low

sperm-compliance factors.
4. Discussion
Since the discovery of the flagellar ultrastructural com-

ponents in mammalian spermatozoa, the biological function

of this accessory complex has generated extensive debate

[2,3,5–9]. Several studies, from electron microscopic to

biochemical techniques, have revealed detailed information

about the morphology, internal structure and molecular

basis of these structures [2,3,5–8], ultimately unveiling their

passive reinforcing nature. Despite this crucial advance, the

functional significance of this adaptation of the sperm flagel-

lum by passive, reinforcing structures is unclear. To provide

further insight into such questions, we have considered the

physical principles of the flagellar ultrastructural components

for free swimming spermatozoa in a viscous fluid. The struc-

tural response of a virtual sperm flagellum is modified by the

addition of reinforcing elastic components that gradually

taper along the length of the flagellum. The fluid–structure

interaction is simplified to the level of RFT, while keeping

the geometrically exact nature of the flagellar elastic structure,

as well as taking into account the presence of the sperm head.

The internal forcing is represented via the sliding filament

model of eukaryotic flagellar motility, which is ultimately

responsible for generating complex flagellar waveforms that

are examined in detail through numerical simulations.

While geometrically linear theory [16] and temporal non-

linearities of the beat [20] support the idea that gradual,

spatial tapering of structural components play a minor role



(b)(a)

Figure 6. A comparison of predictions of the virtual sperm flagellar waveform and observation in a highly viscous medium. (a) The sea urchin micrographs
from figure 1b are reproduced, together with net plots of predicted flagellar waveforms (upper: Sp ¼ 25, k ¼ 6p, a ¼ 1.3, as in figure 4a, bottom row;
lower: Sp ¼ 25, k ¼ 4p, a ¼ 2.09, as in figure 4a, 4th row). The naked axoneme cross-section in the plot emphasizes both that sea urchin sperm has no
accessory structures and that the modelling predictions are for virtual sperm with the homogeneous non-tapering stiffness function, e1. (b) Human sperm micro-
graphs from figure 1b are reproduced, together with plots of simulated waveform netplots (upper: Sp ¼ 20, k ¼ 4p, a ¼ 2.55, as in figure 3d, 2nd row; lower:
Sp ¼ 25, k ¼ 6p, a ¼ 2.21, as in figure 3d, 3rd row). The dressed human sperm flagellum cross section in the plot emphasizes both that the human sperm has
accessory structures and that the modelling predictions are for virtual sperm with the tapering stiffness function, e3. The sea urchin and human sperm micrographs
are, respectively, reproduced with permission (licence no. 4543770361396) from [10] and with permission from [11]. For the observations in (a), the high viscosity
was achieved by adding 2% methylcellulose to the medium with different molecular weights specified by a nominal viscosity of, respectively, 1.5 Pa.s (upper) and 4
Pa.s (lower). For (b), 1% methylcellulose was added for the upper frame and 2% methylcellulose added for the lower frame. However, the methylcellulose used had
the same molecular weight, specified by a nominal viscosity of 4 Pa.s for a 2% methylcellulose aqueous solution at 208C. The resulting methylcellulose solutions in
(b) were explicitly measured using a cone-and-plate rheometer [10] with an effective viscosity given by 0.14 Pa.s (upper) and 1.6 Pa.s (lower), while the beating
frequency was 11 Hz (upper) and 3 Hz (lower). Explicit measurements for the fluids in the observations of (a) are not available, though the averaged beat fre-
quencies reported in [11] for nominal viscosities of 1.5 Pa.s (upper) and 4 Pa.s (lower) are, respectively, 3.8 Hz (a) and 2.8 Hz (b). The flagellum length reported for
(a) was approximately 42 mm while for (b) it was is 50 mm. The sperm number for each case (a, upper; a, lower; b, upper; b, lower), respectively, is Sp ¼ 23, 27,
20, 26. However, the Sp estimates for the experiments in (a) are likely to carry systematic errors as the viscosity of the medium was not explicitly measured.
Micrographs in (a,b) reprinted from [3] with permission from Elsevier. (Online version in colour.)
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(Online version in colour.)
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in shaping the flagellar waveform, we have demonstrated

that these reinforcing flagellar appendages are fundamental

for the emerging beating pattern, as well as the resulting

swimming behaviour of the spermatozoa. A wide range of

beating patterns emerged, from large amplitude waveforms
and substantial sperm head yawing, for a low (Sp, k)-pair,

to the meandering flagellar wave envelope formation, when

(Sp, k) is large. In all cases, the flagellar accessory structures

acted to significantly reduce the maximum flagellar curvature

when compared with the naive flagellar axoneme, i.e. when
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the additional elastic components are absent. Such a

reduction of flagellar curvature was also reported by the

pioneering theoretical work by Lindemann [8].

Our numerical simulations further revealed the emer-

gence of a wave-compression instability in the regime of

high sperm compliance, illustrated in figure 4 (e1, Sp ¼ 25,

k ¼ 4p), similar to the symmetric waveform confinement

reported for sea urchin sperm migrating in high viscosity

[11] (figures 1b and 6). This wave-compression instability is

characterized by an extreme wave confinement and formation

of symmetric flagellar ‘loops’ in the limit of self-intersection,

with a vanishing time-averaged curvature, resembling

Euler elasticas [29,30]. The wave-compression instability we

observe here is, however, triggered dynamically by internal

sliding moments driving the flagellum, further augmented

by large elastohydrodynamic friction for a high sperm-

compliance number [12], or equivalently for high viscosity.

As the sliding force magnitude increases, the internal flagellar

compression rises until a critical value, which the flagellar

structure cannot support; the flagellar waveform thus tends

to collapse onto itself, releasing excessive internal stresses.

As a result, the maximum absolute compression is character-

ized by a transition associated with a concomitant rise in

the maximum curvature along the flagellum (figure 7) as the

sliding force magnitude a is increased. This causes the

beating patterns ‘a’ and ‘b’ in figure 7 to change from a

spread waveform in ‘a’ to a large confinement in ‘b’. Naive

flagellar axonemes are also predicted to be susceptible

to a symmetry-breaking buckling instability, as previously

reported in [12], in which asymmetric waveforms, instead,

drive the sperm cell in circular swimming trajectories, as illus-

trated in figure 4 (e1, Sp ¼ 25, k ¼ 6p). Asymmetric waveforms

were also observed experimentally for sea urchin sperm

swimming in a high-viscosity medium [11], in the absence of

chemotactic cues, as depicted in figures 1b and 6.

These results provide evidence that asymmetric beating

patterns and extreme wave confinement, as in figures 1b
and 6, for sea urchin flagellar axoneme in a high-viscosity

medium [11], may emerge dynamically, via compression-

driven and buckling instabilities due to the large effective

drag experienced by the flagellum, without recourse to vari-

ations in structure or signalling influencing the molecular

motors within the flagellum. In this case, the sperm flagellum

becomes unable to sustain the high internal compression,

ultimately compromising the sperm migration in a high-

viscosity medium. Sea urchin sperm however are not generally

prone to flagellar compression and buckling as they fertilize in

low-viscosity seawater. Internal fertilizers, on the other hand,

are required to migrate in high-viscosity liquids, and therefore

are susceptible to flagellar waveform compression and

buckling without ultrastructural flagellar adaptation.

Hence the ultrastructural components found in mamma-

lian spermatozoa are implicated as important for sperm

migration in high-viscosity media, with further indirect

support from the qualitative agreement between prediction

and observation for the flagellar waveform in figure 6. By

reinforcing the flagellum in regions where high compression

may occur [12], between the mid- and principal pieces, the

flagellar accessory complex is predicted to be able to prevent

flagellar compression and buckling instabilities in a high-

viscosity liquid [10,11], as shown in figure 4. Analysis of

this figure has also revealed that the inhibition of wave com-

pression and buckling is predominantly due to the tapering
of flagellar stiffness rather than the overall stiffness of

the flagellum, with the latter simply perturbing the sperm-

compliance factor, Sp, owing to its quarter-power dependence

on the inverse stiffness.

Furthermore, the tapering, heterogeneous stiffness of

the ultrastructural complex is seen to stabilize the flagellar

structure by reducing internal compression (figure 7), conse-

quently decreasing the overall curvature along the flagellum.

This regulates the absolute tension, thus suppressing large

jumps in Tmax, as illustrated in figure 7b. As a result, for an

increasing sliding force amplitude, the beating patterns are

characterized by a gradual increase in the wave amplitude

along the flagellum, with the formation of a wave envelope

and the decrease of waveform compression (figures 4 and 7).

The shape of the wave envelope depends on the functional

form of the ultrastructural tapering, associated with the func-

tions e2 2 e4. In particular, we have seen that the larger the

gradient of stiffness in the distal regions of the flagellum, as

depicted in figure 2b, the greater the stabilizing influence.

Hence, for example, the tapering of e4 inhibits wave com-

pression and buckling more, albeit subtly in that this is only

clear in figure 7, and is not evident in figures 3 and 4.

Nonetheless, compared with homogeneous stiffness, fla-

gellar tapering is observed to prevent excessive flagellar

wave compression (figure 7), and consequently reduce curva-

ture and self-intersections, enabling a modestly increasing

progressive movement per beat for a flagellum reinforced

with tapering stiffness as the sperm-compliance number is

increased (figures 4 and 5). It is also worth noting that such

differences in progressive swimming will be cumulative,

and thus not insignificant in absolute terms, for time scales

longer than the 0.1 second scale of a single beat cycle period.

Modelling refinements to the presentation here are

certainly possible. For instance, the fact that observations

show that the wave compression is highly suppressed

towards the mid-piece [10], as opposed to the end piece

(figure 1c), indicate that a systematic parameter estimation

study may increase current estimates for the average bending

stiffness of the flagellum mid-piece, with subsequent refine-

ment of the presented results. In addition, while elastic

effects are relatively limited in methylcellulose solutions

[10], which were used in both the observational human and

sea urchin sperm studies considered here [10,11], elasticity

is often extensive in physiological media [71,72] and may

act to favour the concentration of large amplitude bending

waves at the end-piece region [60] and warrants further

study. Similarly, incorporating non-local hydrodynamic

interactions [23,35,36,73,74] is likely to refine predicted wave-

forms, possibly further reducing the tendency to symmetry

break [73], though this would require careful consideration

of sperm head elastohydrodynamic boundary conditions.

However, such refinements are not anticipated to

greatly alter the qualitative modelling observations: that

the reinforcement of the flagellum in regions where high

compression is expected [12] acts to prevent elastic

instabilities that could compromise a core biological

function, i.e. the transport of genetic material within high-

viscosity environments. The presented results more

generally demonstrate that the tapering of structural com-

ponents plays an important role in shaping the flagellar

waveform. They further suggest that the above aspects of

the flagellar viscous modulation observed empirically [10]

may be achieved without recourse to intricate molecular
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motor regulation [4] with only, for example, a constant slid-

ing force amplitude along the flagellum [20]. It can also be

hypothesized that the viscosity of the medium where the

spermatozoa naturally swim may have acted decisively

during the evolutionary process for internal fertilizers,

such as human sperm, thus inducing specialized mutations

favouring flagellar ultrastructural components to enable

cell penetration in high-viscosity media. Finally, we note

that the prospect that human sperm are adapted to swim

in viscous media further emphasizes the importance of

using high-viscosity fluid while assessing and screening

spermatozoa in the clinical setting [4,10,43,75].
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Appendix A. Numerical scheme
Numerical solutions of the elastohydrodynamic formulation

for a free swimming cell, described by equations (2.1)–(2.7),

were carried out by employing the numerical scheme devised

in [12], which uses a combination of the second-order finite

differences and second-order implicit time stepping. The

latter has been validated against analytical and nonlinear

numerical solutions, in addition to experiments for an

oscillating elastic filament in a viscous fluid [12,29,51]. In

particular, to avoid severe constraints on the time stepping,

the higher-order terms in equation (2.1) are treated implicitly,

by employing a second-order implicit–explicit method (IMEX)

[76]. The spatial discretization is uniform in arclength. Second-

order divided differences are used to approximate spatial

derivatives [34], in which skew operators are applied at the

boundaries. Finally, periodicity is expected from the imposed

sliding force in equation (2.4), and therefore the time iteration

continues until the maximum difference between consecutive

solutions, Dmax ¼maxsjX(s, t) 2 X(s, t þ T)j, one period apart,

is below 5 � 1024.
180668
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