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Understanding mechanisms of bacterial eradication is critically important for

overcoming failures of antibiotic treatments. Current studies suggest that the

clearance of large bacterial populations proceeds deterministically, while for

smaller populations, the stochastic effects become more relevant. Here, we

develop a theoretical approach to investigate the bacterial population

dynamics under the effect of antibiotic drugs using a method of first-passage

processes. It allows us to explicitly evaluate the most important characteristics

of bacterial clearance dynamics such as extinction probabilities and extinction

times. The new meaning of minimal inhibitory concentrations for stochastic

clearance of bacterial populations is also discussed. In addition, we investigate

the effect of fluctuations in population growth rates on the dynamics of bac-

terial eradication. It is found that extinction probabilities and extinction

times generally do not correlate with each other when random fluctuations

in the growth rates are taking place. Unexpectedly, for a significant range of

parameters, the extinction times increase due to these fluctuations, indicating

a slowing in the bacterial clearance dynamics. It is argued that this might be

one of the initial steps in the pathway for the development of antibiotic resist-

ance. Furthermore, it is suggested that extinction times is a convenient measure

of bacterial tolerance.
1. Introduction
The rise of pathogenic bacteria that are resistant to antibiotics is one of the

major global health threats of the twenty-first century. High mortality rates and

increasing healthcare costs associated with fighting bacterial infections call for

designing new effective therapeutic strategies [1,2]. A major challenge in overcom-

ing treatment failures comes from ineffective eradication of antibiotic-susceptible

bacteria [3–5]. Despite the introduction and wide application of a very large range

of antibiotics since the 1940s, important aspects of how antibiotics clear bacterial

population at all levels (molecular, cellular and population) remain unclear.

A deeper understanding of the underlying dynamics of bacterial clearance

requires not only extensive laboratory studies but also the development of new

theoretical approaches to investigate the bacterial response to antibiotics [6].

Majority of current experimental and theoretical studies focus on the eradica-

tion of initially large quantities of bacteria [7–9], and it was shown that a

deterministic picture describes well the decrease in these bacterial populations

[9,10]. In this deterministic framework, the dynamics of bacterial populations

exposed to an antibiotic is characterized by a minimum inhibitory concentration

(MIC), the minimal drug concentration required to inhibit bacterial growth

[9–11]. The MIC can be regarded as a threshold on the antibiotic concentration

such that only above the MIC a bacterial population can undergo full extinction,

while for concentrations below the MIC the infection will never disappear.

However, it can be argued that it is also critically important to investigate

the clearance dynamics for small bacterial populations. Failure to completely

eradicate a population of bacteria can have two main consequences. First,

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0765&domain=pdf&date_stamp=2019-03-20
mailto:tolya@rice.edu
http://orcid.org/
http://orcid.org/0000-0001-5677-6690


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180765

2
even a small number of surviving bacteria can restore infec-

tions [12–14]. There are indications that as few as 10–100

bacterial cells, such as Salmonella or Shigella, are enough to

restart the infection. Second, certain strains of surviving

cells may develop antibiotic resistance, which, in turn, can

complicate subsequent therapies [15–17]. Therefore, the

effective treatment of infections requires not only the

reduction of a large population number to a small number

but also the complete eradication of the bacterial population

[18–20].

Despite earlier technical problems [7,8], recent experiments

were able to quantitatively investigate the antibiotic-induced

clearance of small bacterial populations [21]. It was demon-

strated that stochastic factors play much more important

roles under these conditions. For example, Coates et al. [21]

showed that even in sub-MIC antibiotic concentrations, bac-

terial populations decline with non-zero probability. This

means that under the same conditions some populations

experience growth with cells continuously dividing, while

other populations quickly become extinct. A Markovian prob-

abilistic birth-and-death model was introduced to uncover the

relationship between the extinction probability and the anti-

biotic concentration [21]. This stochastic approach predicted

that antibiotics induce fluctuations in bacterial population

numbers. These fluctuations, in turn, lead to the stochastic

nature of the clearance of small bacterial populations.

Although the Markovian model developed by Coates et al.
successfully described the experimental observations, it could

not predict an extinction time, i.e. the mean time at which the

given number of bacterial cells will go to zero. This is a very

important property of bacterial population clearance

dynamics because it gives a better measure of the efficiency

of the antibiotic treatments than the extinction probability.

One could use an analogy with thermodynamic and kinetic

descriptions of chemical processes. Thermodynamics gives

the probability for the process to happen, but if the process

is actually taking place in real time, it is determined by kinetic

rates. In our language, this means that the large extinction

probability might not always correlate with fast removal of

bacterial infection. While the extinction probability can give

a qualitative measure of the bacterial population dynamics,

the extinction time is much more useful in the quantitative

characterization of bacterial resistance and tolerance. It

seems that the development of new drugs and new therapies

in fighting against bacteria should use this quantity as a

measure of their success.

In this study, we developed a discrete-state stochastic

model of the antibiotic-induced clearance of bacteria that

employs a method of first-passage probabilities. This

method has been successfully used to analyse multiple pro-

cesses in chemistry, physics and biology [22–24]. It allows

us to quantitatively describe the stochastic dynamics of

bacterial eradication by explicitly calculating extinction prob-

abilities and extinction times and clarifying the physical

meaning of the MIC. Our method is also applied to investi-

gate the effect of fluctuations in the growth rates on the

stochastic clearance of bacterial populations. These fluctu-

ations can be attributed to various environmental factors

such as the availability of nutrients, changes in osmolarity

and other factors [25]. Our results suggest that these fluctu-

ations influence the extinction probabilities and extinction

times differently. There is a large range of antibiotic concen-

trations when the extinction times increase due to
fluctuations, and this corresponds to the slowdown of the

dynamics of bacterial eradication. We speculate that this

might be a first step in developing antibiotic resistance. It is

also argued that extinction times is a convenient new measure

of bacterial tolerance.
2. Model
2.1. Stochastic clearance with a constant growth rate
We start our analysis by considering a simple stochastic

model for the clearance of bacteria as shown in figure 1a.

Our goal is to obtain a minimal theoretical description of bac-

terial clearance dynamics. For this reason, the model is

characterized by only two parameters: the rate of cell

growth l and the rate of cell death f (figure 1a). The bacterial

growth rate is generally controlled by environmental factors

such as the availability of nutrients, temperature, osmotic

pressure and other factors [25]. When exposed to antibiotics,

the cell growth rate can also depend on the antibiotic concen-

tration [26]. Also, as a possible mechanism of antibiotic

resistance, bacteria can sequester, degrade or modify anti-

biotics [27,28]. This, in turn, might significantly complicate

the relationships between the cell death and growth rates.

For the sake of simplicity, we assume that the cell growth

rate is independent of antibiotic concentration and remains

constant over different generations, while the cell death

rate, f, is controlled by the antibiotic concentration. It is

also assumed here that if the bacterial population reaches

size N, the organism hosting the bacteria will change its be-

haviour and it goes into another metabolic state. This

different metabolic state might correspond, for example, to

the situation when bacteria produce so many toxins that

they damage normal cell membranes and/or inhibit normal

protein synthesis in the host organisms. It might also describe

a state in which the host organism mounts an active immune

response, strongly modifying all metabolic processes in the

system [29]. Also, the bacteria might achieve antibiotic resist-

ance or the organism might even die from the infection. This

is known as a fixation.

To describe dynamical transitions in the system, we define

Fn(t) as a probability density function to clear the system from

infection at time t if the initial population number (so-called

inoculum size) is equal to n (1� n� N 2 1). The temporal evol-

ution of this probability function is governed by the following

backward master equation [23,24]:

dFn(t)
dt

¼ nfFn�1(t)þ nlFnþ1(t)� n(lþ f)Fn(t): (2:1)

Introducing the Laplace transform of this function,gFn(s) ¼
Ð1

0 Fn(t) e�st, we transform the backward master

equation into

s
n
þ lþ f

� �gFn(s) ¼ feFn�1(s)þ leFnþ1(s): (2:2)

Because we are mostly interested in the stationary dynamic

behaviour at long times (s! 0), the following expansion can

be written:

eFn(s) ≃ fn � sbn: (2:3)

Then eFn(s ¼ 0) ¼ fn yields the first-passage probability of bac-

terial clearance or simply the extinction probability for

the bacterial population with inoculum size n. It can be



1 2 3 … N – 1
2j

l

3j

2l

j (N – 1)l
0

extinction state

extinction probability, fn

extinction probability, fN/2

N

fixation state 

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0500

400

300

200

100

0

0.5 1.0 1.5 2.0
x

x

N

50

40

30

20

10

n

2.5 3.0 3.5 4.00

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

(b)

(a)

(c)

Figure 1. (a) Schematic of the single growth-rate model for the clearance of bacteria. Each state n (n ¼ 0, 1, . . ., N) represents a bacterial population with n cells.
The states 0 and N correspond to the bacterial eradication (no cells in the system), and the fixation, respectively. From each state n, the bacterial population can
change to the state n þ 1 (growth) with a total rate nl, or it can jump to the state n 2 1 (shrinking) with a total rate nf. We define the normalized death rate,
x as the ratio of death rate and growth rate, x ¼ f/l. Analytical calculations of extinction probabilities (b) over n 2 x parameter space for N ¼ 50; (c) for a
specific mid-size inoculum (n ¼ N/2) over N 2 x parameter space. (Online version in colour.)
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shown that the extinction probability is given by (see appendix

A.1 for details)

fn ¼
xN � xn

xN � 1
, (2:4)

where a parameter x ¼ f/l can be viewed as an effective death

rate for the bacterial population normalized over the growth

rate. Since in our model it is assumed that the growth rate

does not depend on the death rate, the extinction probability

is determined only by the ratio of f and l.

Our analytical results for the extinction probability are

presented in figure 1. The dependence of the bacterial clear-

ance probability (from equation (2.4)) on the initial size of

the bacterial population and on the values of x is given in

figure 1b. For x ¼ 1, which corresponds to f ¼ l, the cell

growth and death rates are equal to each other. In this

state, which in the deterministic picture of bacterial clearance

is described as the MIC, the extinction probability linearly

decreases with the inoculum size, fn ¼ (N 2 n)/N. In this

case, the growth and the death rates are the same, and the

probability of bacterial clearance is proportional to the rela-

tive distance from the initial state n to the fixation state N.

The smaller the inoculum size, the larger the probability to

eradicate the infection. But even for n ¼ 1, the extinction

probability is not equal to one [f1(x ¼ 1) ¼ (N 2 1)/N , 1].
For x , 1 (sub-MIC conditions), the extinction probability is

a decaying function of the inoculum size n. In this case, the

growth rate is faster than the death rate, and the larger the

inoculum size, the harder for the system to reach the total era-

dication of the infection (n ¼ 0 state). One could also see this

more clearly in the limit of x! 0 and N!1 when we have

fn ≃ xn. This implies that even for sub-MIC conditions (low

antibiotic concentrations) the extinction probability is never

equal to zero, which is a clear signature of the stochastic

effects in the bacterial clearance dynamics. The situation

is different for x . 1 (large antibiotic concentrations),

when the extinction probability is always close to one

except in the region near the fixation state N. This can be

also seen from the case of x� 1 and N!1 when we

obtain fn ≃ 1 2 xn2N. This result suggests that even for con-

centrations above MIC the extinction probability is never

equal to one, which is again due to the stochastic fluctu-

ations in the system. Our analytical calculations are

verified with Monte Carlo computer simulations, in

which we used typical doubling times associated with

bacteria E. coli, in range from 20 to 300 min [25].

The stochastic effects of the bacterial clearance can be

understood better if we consider the extinction probability

of a specific inoculum size (n ¼ N/2), equally distant from

the state n ¼ 0 (eradication) and n ¼ N (fixation), which is
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Figure 2. Analytical calculations for the extinction times (in minutes): (a) as a function of the inoculum size for three different values of x; and (b) as a function of
the parameter x for different inoculum sizes (n ¼ 10, 25 and 40). In all calculations N ¼ 50 and l ¼ 1/60 min21 were used. (Online version in colour.)
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plotted in figure 1c. One can see that the dependence of the

extinction probability on x follows a logistic sigmoid curve.

The steepness of the curve at the midpoint (x ¼ 1) is con-

trolled by the values of n and N. In other words, for x , 1

the extinction probability is still non-zero, while for x . 1, it

is still less than one. Therefore, x ¼ 1 does not satisfy the

classical definition of the MIC as the MIC required for clear-

ance. Thus, we need to calculate the effective saturation value

for which the extinction probability becomes very high and

realistically not much different from one. This might be

viewed as an effective MIC for stochastic bacterial clearance.

This saturation point is given by (see appendix A.2)

xsat ¼ 1þ N
n(N � n)

: (2:5)

For the special case n ¼ N/2, this equation yields xsat ¼ 1 þ
4/N. Therefore, as N increases the steepness of the curve

becomes sharper, such that the extinction probability

becomes insensitive to population number while it is ultra-

sensitive with respect to x. In this case, the large population

alleviates the stochastic effects in the bacterial clearance,

and x ¼ 1 yields the MIC, as expected.

Theoretical calculations also predict that the extinction

probability strongly depends on inoculum size and on its

relative distance to the fixation state N, as illustrated in

figure 1b. For n ¼ 1, the dependence on x is linear for small

antibiotic concentrations (x , 1), while n ¼ N 2 1 is almost

zero for x , 1 and it is slowly approaching one for larger anti-

biotic concentrations. These different behaviours are again a

consequence of the stochastic nature of bacterial population

clearance. A critically important property of bacterial eradica-

tion is how long does it take to clear the infection from the

host, which is known as the extinction time. This timescale

is crucial for the development of new therapies and it can

be also useful in quantifying bacterial tolerance, which is

the ability of a bacterial population to survive at longer

periods of time exposed to antibiotics [30]. Our first-passage

probabilities method is a powerful tool to evaluate this quan-

tity. We define Tn as a mean first-passage time to reach the

extinction state (n ¼ 0) from the inoculum of size n, and

this is exactly the extinction time. Using the probability
density function Fn(t), it can be written as

Tn ¼
Ð1

t¼0 tFn(t) dtÐ1

t¼0 Fn(t) dt
: (2:6)

Using the Laplace transform and equation (2.3), we obtain

Tn ¼
�@ eFn=@sjs¼0eFn(s ¼ 0)

¼ bn

fn
: (2:7)

As explained in appendix A.1, the extinction time is explicitly

given by

Tn ¼
1

l(xN � xn)(x� 1)

1� xn

1� xN

XN�1

k¼1

(xN � xk)(xN�k � 1)

k

"

�
Xn�1

k¼1

(xN � xk)(xn�k � 1)

k

#
: (2:8)

It can be shown that for x ¼ 1 that the expression for the

extinction time takes the form

Tn ¼
1

l(N � n)

n
N

XN�1

k¼1

(N � k)2

k
�
Xn�1

k¼1

(N � k)(n� k)

k

" #
: (2:9)

For x . 1 and N! 1, the extinction times are given by

(see appendix A.1)

Tn ¼
1

l

xn � 1

x� 1
ln

x
x� 1

� �
�
Xn�1

k¼1

1

k

Xn�k�1

j¼0

x j

0@ 1A24 35, (2:10)

while for x! 0 we have

Tn ≃ 1

l

1

n
þ x

nþ 1
þ � � �

� �
: (2:11)

The results of our calculations for the extinction times are

presented in figure 2. As expected, it takes longer to clear the

infection for larger inoculum sizes (figure 2). For large anti-

biotic concentrations (x . 1), the extinction time is shorter

and it depends weaker on the inoculum size n. For small anti-

biotic concentrations (x , 1), the time to eradicate the

infection is larger and it is more sensitive to the inoculum

size. More interesting behaviour is observed when we ana-

lyse the extinction time for different antibiotic



l1 2l1

1

0

1

2 3

2 3 N – 1

N – 1

N

(N – 1)l2

(N – 1)l1

(N – 1)g(N – 1)d

2j

2j

2d 3gg 3d2g

2l2l2

3j

3j

j

d

j

Figure 3. Schematic of the model for the clearance of bacteria with fluctuating growth rates. The model comprises two coupled lattices. At each state n on lattice 1
(lattice 2), population can jump to state n þ 1 with growth rate nl1 (nl2). Death rates are equal along the lattices. Also, d and g are rates to transition between
lattices.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180765

5

concentrations (figure 2b). A non-monotonic behaviour as a

function of x is predicted, and the largest extinction time is

observed for MIC conditions (x ¼ 1). Increasing the antibiotic

concentrations (x . 1) shortens the time for bacterial clear-

ance because the drive to infection eradication becomes

stronger. However, the surprising observation is that lower-

ing the antibiotic concentrations below MIC (x , 1) can also

accelerate the bacterial clearance despite the fact that the

probability of clearance decreases. This can be explained by

the following arguments. At these conditions, only those bac-

terial populations lead to the full eradication that rapidly

shrink. If it is not fast, the shrinking of the bacterial popu-

lation will be reversed and the infection will spread again.

This is another non-trivial signature of the stochastic effects

in the bacterial clearance dynamics. However, we should

also emphasize here that increasing parameter N lowers the

stochastic effects.

Our analysis of extinction times allows us to reinterpret the

meaning of MIC. For N! 1 from (2.10) we conclude that

the extinction time diverges logarithmically for x! 1, and it

becomes infinite for x , 1. This suggests a new more practical

definition of the MIC (x ¼ 1). It is the antibiotic concentration at

which the extinction time is maximal (for finite bacterial popu-

lations), or it is the antibiotic concentration below which the

extinction times diverge (for N! 1). This analysis also

suggests that, from the practical point of view, to eliminate

the infection it is important to apply the antibiotic concen-

trations that significantly differ from the MIC to avoid the

slowdown in the dynamics.

It is interesting to compare our theoretical predictions

with experimental measurements of stochastic bacterial clear-

ance [21]. In these experiments, the stochastic population

dynamics of bacteria exposed to bactericidal drugs have

been monitored starting from single E. coli bacteria for sub-

MIC conditions (x ¼ 0.8) and for concentrations above the

MIC (x¼ 1.2). It was also estimated that the growth rate is l≃
1/100 min21. Then using (2.10) and (2.11), we predict that for

both cases, x¼ 0.8 and x¼ 1.2, the extinction times are close to

200 min, which agrees well with these experimental observations.
2.2. Stochastic clearance with fluctuations in the
growth rate

Although the mechanisms of the development of antibio-

tic resistance remain not fully understood, recent studies

suggest that random fluctuations of various parameters can

stimulate the bacterial tolerance to antibiotic drugs [6,31].
Bacterial population dynamics are subject to intrinsic stochas-

ticity because of variations in gene expression and subject to

extrinsic stochasticity due to environmental variations. For

example, single-cell experiments have shown that the dur-

ation of the cell cycle is subject to random fluctuations

[25,32]. In this case, cell cycle duration follows a distribution

with certain variance. We can investigate the effect of growth-

rate fluctuations on the bacterial clearance dynamics using

our theoretical first-passage probabilities method. To do so,

we introduce a simple model as shown in figure 3. It is

assumed that the infection can spread with two growth

rates, l1 and l2, while the death rate f is assumed to be

the same in both populations. The system can stochastically

transition between two different growth regimes with rates

d and g (figure 3). For the sake of simplicity, in calculations,

we assume that d ¼ g. Similar deterministic models for popu-

lation dynamics in fluctuating environments have been

already discussed [33–35].

In this model, we define F(1)
n (t) and F(2)

n (t) as the prob-

ability density functions to clear the system from infection

if the bacterial population starts with n cells while growing

with the rate l1 or l2, respectively. The temporal evolution

of these probability functions is governed by the following

backward master equations:

dF(1)
n (t)
dt

¼ nfF(1)
n�1(t)þ nl1F(1)

nþ1(t)þ ngF(2)
n (t)

� (ndþ nfþ nl1)F(1)
n (t) (2:12)

and

dF(2)
n (t)
dt

¼ nfF(2)
n�1(t)þ nl2F(2)

nþ1(t)þ ndF(1)
n (t)

� (ngþ nfþ nl2)F(2)
n (t): (2:13)

In general, it is difficult to obtain a full analytical solution for

this problem for arbitrary N. However, exact solutions for

simple cases with N ¼ 2 and N ¼ 3 can be derived (see

appendix A.3 for details).

To better understand the effects of fluctuation on the

dynamics of clearance, it is convenient to compare the fluctu-

ating growth model (rates l1 and l2) presented in figure 3

with a single growth-rate model with l ¼ (l1 þ l2)/2 pre-

sented in figure 1a. Since the average growth rates in both

cases are the same, the possible differences in the dynamics

properties for bacterial clearance are coming from the fluctu-

ations. To quantify this effect, we define a function r(f)
n as the

ratio of the extinction probabilities predicted by the
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fluctuating-growth model and by the single growth-rate

model:

r(f )
n ¼

f (avg)
n

fn
¼ f (1)

n þ f (2)
n

2fn
: (2:14)

Similarly, one can define a function r(T)
n for the ratio of

extinction times

r(T)
n ¼

T(avg)
n

Tn
¼ T(1)

n þ T(2)
n

2Tn
: (2:15)

If r(f)
n . 1, then it means that fluctuations increase the extinc-

tion probability, while r(T)
n . 1 indicates that fluctuations

increase the extinction times.

As shown in appendix A.3, the fluctuating growth-rate

model has been solved exactly to evaluate extinction probabil-

ities and extinction times for N ¼ 3, and the results are

presented in figure 4. It is found that r(f )
n is always larger

than one (figure 4a), which indicates that in the bacterial popu-

lation with fluctuations in the growth rate the probability of

eradication of infection is always larger than in the single

growth population. The effect is stronger for not very large
antibiotic concentrations and for slow transitions between

two growth regimes. It can be argued that switching tran-

sitions opens new pathways for the eradication of the

bacteria, and this should increase the extinction probability.

At the same time, increasing the amplitude of the switching

transition rates leads to an effective equilibrium single

growth-rate regime with the growth rate given by the average

between two dynamic regimes, and this clearly does not

increase the extinction probability. Figure 4b presents the

ratio of extinction times, and our theory predicts that

r(T)
n . 1, i.e. fluctuations in the growth rates unexpectedly

slow down the bacterial clearance dynamics, in contrast to

expectations from the extinction probabilities. The effect is

stronger for not very large antibiotic concentrations and

it disappears for x! 1. It is also strong for weak fluctuation

rates between two growth regimes. This surprising result

can be explained by noting that due to weak transition rates

the system can be effectively trapped in the regime with smal-

ler death rates, and this should slow down the bacterial

clearance dynamics.

More realistic situations of bacterial population dynamics

require consideration of systems with large N. Because
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analytical calculations cannot be done for these cases, we

explored Monte Carlo computer simulations to evaluate the

dynamic properties of stochastic bacterial clearance. The

results are presented in figure 5. One can see that for rela-

tively small antibiotic concentrations (x , 1), the

fluctuations in the growth rate increase the extinction prob-

ability (figure 5a). In this case, which is generally

unfavourable for the eradication of infection, opening new

pathways should help to clear the infection. This is because

the system can spend half of the time in the dynamic regimes

with smaller death rates, which helps to fight the infection

better. However, the situation changes for large antibiotic

concentrations (x . 1), when the fluctuations decrease the

extinction probability. In this case, due to switching tran-

sitions, the system spends half of the time in the dynamic

regime where it is more difficult to eradicate the infection.

A more complex picture is observed when we analyse

the ratio of extinction time (figure 5b). It is found that for

small antibiotic concentrations and for very large antibiotic

concentrations the fluctuations in the growth rates lead to

slower bacterial clearance dynamics. Only for intermediate

antibiotic concentrations around MIC (x � 1), fluctuations

might accelerate the removal of infection. Apparently, open-

ing new pathways for x , 1 and x� 1 regions lowers the

drive to eradicate the infection because the system spends

more time switching between different dynamic regimes

and not shrinking the bacterial populations.

Analysing the dynamic properties of the fluctuating

growth-rate model, two important observations can be

made. First, the extinction probability and extinction time

generally do not correlate with each other when the system

experiences fluctuations between different growth regimes.

Second, turning on the fluctuations in the growth rates of bac-

teria can significantly increase the tolerance to antibiotic

drugs for a large range of parameters. It seems reasonable

to speculate that bacteria might explore this option in fighting

against antibiotics.

We theoretically investigated the clearance of bacterial

populations under the effect of antibiotic drugs by concentrat-

ing on stochastic aspects of this process. To understand better

the mechanisms of eradication of infection, a method of first-

passage probabilities is introduced. This allows us to obtain a

comprehensive description of bacterial clearance dynamics.

Two important dynamic features, extinction probabilities and

extinction times, are explicitly calculated. We also clarified

the physical meaning of MIC in the systems where the stochas-

ticity is more relevant. Furthermore, using our method, we

investigated the effect of fluctuations in the growth rates on

the bacterial population dynamics, and we find that these

random fluctuations affect differently extinction probabilities

and extinction times. For the single growth-rate model, our

analysis shows that extinction probabilities depend strongly

on the antibiotic concentration, the inoculum size and the dis-

tance to the fixation state N. But the stochastic effects show up

in observations that, even for concentrations above the MIC,

the extinction probabilities are not equal to one, while for con-

centrations below the MIC the extinction probabilities are not

equal to zero. More complex behaviour is observed for extinc-

tion times. For finite-size bacterial populations, the extinction

times show non-monotonic dependence on the antibiotic con-

centrations with the maximum at the MIC. The unexpected

acceleration in the eradication of infection for concentrations

below the MIC is explained by the fact that the successful
events, which are rare at these conditions, must proceed very

fast. For infinitely large bacterial populations, our calculations

show that the extinction times increase with lowering of anti-

biotic concentration and diverge for concentrations at the

MIC and sub-MIC. These properties of extinction times pro-

vide an additional way of defining the conditions

corresponding to MIC.

By introducing a stochastic model in which bacteria can

randomly switch between two growth rates, we investigated

the effect of environment fluctuations in the bacterial clear-

ance dynamics. Our analytical and computer simulations

results predict that these switchings increase the extinction

probabilities for low antibiotic concentrations and decrease

them for high antibiotic concentrations. However, the effect

of fluctuations in the growth rates on extinction times is

more complex. With the exception of the intermediate con-

centrations around MIC, random switchings slow down the

bacterial clearance dynamics.

Our calculations lead to several important conclusions.

Extinction probabilities and extinction times generally do

not correlate with each other, so it is dangerous to make pre-

dictions on bacterial population dynamics by considering

only the extinction probabilities as typically done in the

field. There is a significant range of parameters when the fluc-

tuations in the growth rates lead to the overall slowing down

in the eradication of the infection. Bacterial response to anti-

biotics is a complex process, which depends on genetic and

environmental factors [36]. Some bacterial strains are difficult

to eradicate because their clearance needs a higher level of

antibiotics that are toxic to hosts. Such bacteria are commonly

known as antibiotic-resistant. It is a very challenging task to

uncover the mechanisms of the development of bacterial

resistance. Our results suggest that one of the first steps

in the resistance pathway might be due to fluctuations in

growth rates, which would give bacteria additional time to

find another means to avoid the effect of antibiotic drugs.

Although at this moment, this is just pure speculation, it

will be interesting to investigate this possibility with exper-

imental methods and more advanced theoretical approaches.

Even at concentrations above the MIC, some bacteria sur-

vive short-term exposure to antibiotics before being affected

by it. This ability of a bacterial population is known as toler-

ance [37]. In contrast to resistance, which is quantified by the

MIC, tolerance is poorly characterized. The most commonly

used approach for quantifying tolerance is the measurement

of time–kill curves [38]. Recently, a new metric for bacterial

tolerance has been introduced [30]. This new metric, known

as the minimum duration for killing 99% of the population,

MDK99, can be evaluated by statistical analysis of measure-

ments. Our theoretical method provides the extinction time

as a new measure of bacterial tolerance. The advantage of

this approach is that it takes into account the stochastic fea-

tures of the population dynamics and it gives the average

dynamic property of the bacterial clearance, which might

be much more useful for practical applications.
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Appendix A
A.1. Exact solution for the single growth-rate model
In this appendix, we present the details for calculations of the

extinction probability and the extinction time. As given in the

main text, the temporal evolution of the first-passage prob-

ability function is governed by the following backward

master equation [23]:

dFn(t)
dt

¼ nfFn�1(t)þ nlFnþ1(t)� n(lþ f)Fn(t): (A 1)

Introducing the Laplace transform of this probability density

function, gFn(s) ¼
Ð1

0 Fn(t) e�st, we obtain

s
n
þ lþ f

� �gFn(s) ¼ feFn�1(s)þ leFnþ1(s): (A 2)

To solve this recurrence relation, it is convenient to write the

following expansion:

eFn(s) ≃ fn � sbn: (A 3)

Then eFn(s ¼ 0) ¼ fn yields the extinction probability. To pro-

ceed further, we substitute (A 3) into (A 2):

s
n
þ lþ f

� �
(fn � sbn) ¼ f(fn�1 � sbn�1)þ l(fnþ1 � sbnþ1):

(A 4)

Rearranging terms yields

� s2bn

n
þ s

fn
n
� bn(lþ f)

� �
þ (lþ f)fn ¼ ffn�1

þ lfnþ1 � s(fbn�1 þ lbnþ1):

(A 5)

Equating coefficients of s on both sides yields two recurrence

relations

(lþ f)fn ¼ ffn�1 þ lfnþ1 (A 6)

and

fn
n
� (lþ f)bn ¼ �fbn�1 � lbnþ1: (A 7)

Equation (A 6) can be simplified as

fgn�1 ¼ lgn, (A 8)

where

gn ¼ fn � fn�1: (A 9)

Solution of (A 9) is given by

gn ¼
f

l

� �n

g0 ¼ xng0, (A 10)

where x ¼ f/l. To find constant g0, we perform summation

over equation (A 9):

XN�1

k¼0

gk ¼
XN�1

k¼0

fk �
XN�1

k¼0

fkþ1

¼ f0 � f1 þ f1 � f2 þ � � � þ fN�1 � fN ¼ f0 � fN

¼ 1: (A 11)

Combining (A 10) and (A 11) yields

XN�1

k¼1

gk ¼ g0

XN�1

k¼1

xk ¼ 1: (A 12)
Then, g0 is given by

g0 ¼
1PN�1

k¼1 xk
� � ¼ x� 1

xN � 1
: (A 13)

Therefore,

gn ¼ xng0 ¼
xn(x� 1)

xN � 1
: (A 14)

Now using (A 9), we obtain the extinction probability

fn ¼ 1�
Xn�1

k¼1

gk ¼ 1� x� 1

xN � 1

� �Xn�1

k¼1

xk ¼ xN � xn

xN � 1
: (A 15)

To calculate bn, we use equation (A 7)

fn
n
� (lþ f)bn ¼ �fbn�1 � lbnþ1: (A 16)

This recurrence relations can be simplified as

1

l

fn
n
¼ xKn�1 � Kn, (A 17)

where

Kn ¼ bnþ1 � bn: (A 18)

It can be shown that the solution of equation (A 17) is

given by

Kn ¼ xnK0 �
1

l

Xn�1

l¼0

xl fn�l

(n� l)
: (A 19)

It is convenient to rewrite the summation in the following

form

Xn�1

l¼0

xl fn�l

(n� l)
¼
Xn

l¼1

xn�l fl
l
: (A 20)

Solution of the recurrence relation Kn ¼ bnþ1 2 bn takes the

form

bn ¼
Xn�1

j¼0

K j: (A 21)

Using boundary condition, we obtain bN ¼
PN�1

j¼0 K j ¼ 0. To

calculate constant K0, we perform summation over (A 19)

XN�1

j¼0

K j ¼ K0

XN�1

j¼0

x j � 1

l

XN�1

j¼0

Xj

l¼1

x j�l fl
l
: (A 22)

Thus, K0 is given by

K0 ¼
PN�1

j¼0

P j
l¼1 x j�l( fl=l)

l[(1� xN)=(1� x)]
: (A 23)

Finally, combining (A 19) and (A 21) yields bn

bn ¼ K0
1� xn

1� x

� �
� 1

l

Xn�1

j¼0

Xj

l¼1

x j�l fl
l
: (A 24)

Having determined fn and bn, we can now obtain the

expression for the extinction time,

Tn ¼
�@ eFn=@sjs¼0eFn(s ¼ 0)

¼ bn

fn
: (A 25)
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Figure 6. Schematic of the fluctuating growth-rate model for N ¼ 3.
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Using (A 15) and (A 24), we have

Tn ¼
(1� xn)

l(xN � xn)(1� xN)

� �XN�1

j¼0

Xj

l¼1

xNþj�l � x j

l

� 1

l(xN � xn)

� �Xn�1

j¼0

Xj

l¼1

xNþj�l � x j

l
, (A 26)

which can be further simplified into

Tn ¼
1

l(xN � xn)(x� 1)

1� xn

1� xN

XN�1

k¼1

(xN � xk)(xN�k � 1)

k

"

�
Xn�1

k¼1

(xN � xk)(xn�k � 1)

k

#
: (A 27)

When x ¼ 1, this expressions yields

Tn ¼
1

l(N � n)

n
N

XN�1

k¼1

(N � k)2

k
�
Xn�1

k¼1

(N � k)(n� k)

k

" #
: (A 28)

In the case of x . 1 and N!1, it can be shown that

Tn ¼
1

l

xn � 1

x� 1
ln

x
x� 1

� �
�
Xn�1

k¼1

1

k

Xn�k�1

j¼0

x j

0@ 1A24 35, (A 29)

while for x! 0 we have

Tn ≃ 1

l

1

n
þ x

nþ 1
þ � � �

� �
: (A 30)
A.2. Calculation of the saturation point for extinction
probability
Since the extinction probability versus x follows a logistic sig-

moid curve, we can define a saturation value of x for which

the extinction probability saturates to higher values. There

is not a unique way to define this saturation point. Here,

we use a simple definition presented in [39,40]. In the sim-

plest approximation, the saturation point is the value of x at

which the straight line passing through the midpoint (x ¼
1), and with a slope equal to the first derivative of the extinc-

tion probability at this point, intersects with fn ¼ 1. We start

by taking the derivative of the extinction probability fn ¼
(xN 2 xn)/(xN 2 1) with respect to x.

d fn
d x

����
x¼1

¼ (NxN�1 � nxn�1)(xN � 1)�NxN�1(xN � xn)

(xN � 1)2

¼ n(N � n)

2N
: (A 31)

Using this derivate value and coordinate of the midpoint

(x ¼ 1 and fn ¼ 1/2), we can obtain the equation of the

straight line passing from the midpoint. The equation of

line is y ¼ ax þ b, where a ¼ n(N 2 n)/2N. After some alge-

bra, we obtain

y ¼ n(N � n)

2N

� �
xþ 1

2
� n(N � n)

2N
: (A 32)

Solution of this equation at y ¼ 1 yields the saturation point

xsat ¼ 1þ N
n(N � n)

: (A 33)

This method only provides a first-order approximation for
the saturation point. This approximation can be improved

by evaluating higher order (second, third, or fourth) deriva-

tives of fn. In this case, the straight line passes through the

point at which higher derivatives are zero.
A.3. Exact solution for the coupled-parallel lattice
model
It is difficult to obtain a general analytical solution for

equations (2.12) and (2.13). However, for the small popu-

lation numbers, the exact solution can be derived. In the

following, we present the details of our calculations for N ¼
3 model.

Schematic of the coupled-parallel mode is shown in

figure 6. Dynamics of this model is governed by following

backward master equations:

dF(1)
1

dt
¼ fF0 þ l1F(1)

2 þ gF(2)
1 � (dþ fþ l1)F(1)

1 , (A 34)
dF(2)
1

dt
¼ fF0 þ l2F(2)

2 þ dF(1)
1 � (gþ fþ l2)F(2)

1 , (A 35)
dF(2)
2

dt
¼ 2fF(2)

1 þ 2dF(1)
2 � (2gþ 2fþ 2l2)F(2)

2 (A 36)
and
dF(1)

2

dt
¼ 2fF(1)

1 þ 2gF(2)
2 � (2dþ 2fþ 2l1)F(1)

1 : (A 37)

Performing the Laplace transform, we obtain

(sþ l1 þ fþ d)
fF(1)
1 ¼ fþ g

fF(2)
1 þ l1

fF(1)
2 , (A 38)
(sþ l2 þ fþ g)
fF(2)
1 ¼ fþ d

fF(1)
1 þ l2

fF(2)
2 , (A 39)
(sþ 2l1 þ 2fþ 2d)
fF(1)
2 ¼ 2f

fF(1)
1 þ 2d

fF(2)
2 (A 40)
and (sþ 2l2 þ 2fþ 2g)
fF(2)
2 ¼ 2f

fF(2)
1 þ 2g

fF(1)
2 : (A 41)

Solving this system of four equations and four unknowns

yields
fF(1)
1 ,

fF(2)
1 ,

fF(1)
2 and

fF(2)
2 . Expanding these functions in
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terms of s yields the extinction probabilities,

f (1)
1 ¼

f(4l2(gdþ 2gfþ d2 þ 2dfþ f2)þ 4f(gþ dþ f)2 þ 4dl2
2 þ 4l2

2fþ 4l1L)

4l2f(g(dþ 2f)þ (dþ f)2)þ 4f2(gþ dþ f)2 þ 4l2
2(dþ f)2 þ Dl1 þ 4l2

1C
, (A 42)

f (2)
1 ¼

f(4l2(gdþ 2gfþ d2 þ 2dfþ f2)þ 4f(gþ dþ f)2 þ 4l2
1(gþ l2 þ f)þ 4l1V)

4l2f(g(dþ 2f)þ (dþ f)2)þ 4f2(gþ dþ f)2 þ 4l2
2(dþ f)2 þ Dl1 þ 4l2

1C
, (A 43)

f (1)
2 ¼

4f2(g2 þ 2gdþ 2gl2 þ 2gfþ d2 þ dl1 þ dl2 þ 2dfþ l2fþ l2
2 þ f2)

4l2f(g(dþ 2f)þ (dþ f)2)þ 4f2(gþ dþ f)2 þ 4l2
2(dþ f)2 þ Dl1 þ 4l2

1C
(A 44)

and f (2)
2 ¼

4f2(g2 þ 2gdþ gl1 þ gl2 þ 2gfþ d2 þ 2dl1 þ 2dfþ l1fþ l2
1 þ f2)

4l2f(g(dþ 2f)þ (dþ f)2)þ 4f2(gþ dþ f)2 þ 4l2
2(dþ f)2 þ Dl1 þ 4l2

1C
(A 45)

and, the extinction times

T(1)
1 ¼

�4l2(gþ 2dþ 2f)� 2l1(3gþ dþ 3l2 þ 3f)� 2(gþ dþ f)2 � 6f(gþ dþ f)� 2l2
2

J

þ 6l2(dþ 2f)(gþ dþ f)þ 6f2(gþ dþ f)þ 6f(gþ dþ f)2 þ 6l2
1(gþ l2 þ f)þ 6l2

2(dþ f)þ l1Y

Q
, (A 46)

T(2)
1 ¼

�2l2(gþ 3dþ 3f)� l1(8gþ 4dþ 6l2 þ 8f)� 2(gþ dþ f)2 � 6f(gþ dþ f)� 2l2
1

A

þ 6l2(dþ 2f)(gþ dþ f)þ 6f2(gþ dþ f)þ 6f(gþ dþ f)2 þ 6l2
1(gþ l2 þ f)þ 6l2

2(dþ f)þ l1Y

Q
, (A 47)

T(1)
2 ¼ �

3(gþ dþ l2 þ f)

D

þ 2B(6l2(dþ 2f)(gþ dþ f)þ 6f2(gþ dþ f)þ 6f(gþ dþ f)2 þ 6l2
1(gþ l2 þ f)þ 6l2

2(dþ f)þ l1Y)

Q
(A 48)

and T(2)
2 ¼�

3(gþ dþ l1 þ f)

2C

þ 6l2(dþ 2f)(gþ dþ f)þ 6f2(gþ dþ f)þ 6f(gþ dþ f)2 þ 6l2
1(gþ l2 þ f)þ 6l2

2(dþ f)þ l1Y

Q
, (A 49)

where parameters C, D, L, Q, Y, J, V, A, B and C are given by:

L ¼ g2 þ gdþ 2gl2 þ 2gfþ dl2 þ 2dfþ l2fþ l2
2 þ f2,

D ¼ 4f(g2 þ gdþ 2gfþ 2dfþ f2)þ 4l2(2gdþ 2gfþ 2dfþ f2)þ 8dl2
2 þ 4l2

2f,

C ¼ g2 þ 2gl2 þ 2gfþ l2fþ l2
2 þ f2,

V ¼ g2 þ gdþ gl2 þ 2gfþ 2dl2 þ 2dfþ l2fþ f2,

Q ¼ 4l2f(g(dþ 2f)þ (dþ f)2)þ 4f2(gþ dþ f)2 þ 4l2
2(dþ f)2 þ Dl1 þ 4l2

1C,

J ¼ 4l2(gdþ 2gfþ d2 þ 2dfþ f2)þ 4f(gþ dþ f)2 þ 4Gl1 þ 4dl2
2 þ 4l2

2f,

Y ¼ 12l2(gþ dþ f)þ 6(gþ 2f)(gþ dþ f)þ 6l2
2,

A ¼ 4l2(gdþ 2gfþ d2 þ 2dfþ f2)þ 4f(gþ dþ f)2 þ 4l2
1(gþ l2 þ f)þ 4l1V,

B ¼ g2 þ 2gdþ 2gl2 þ 2gfþ d2 þ dl1 þ dl2 þ 2dfþ l2fþ l2
2 þ f2

and C ¼ g2 þ 2gdþ gl1 þ gl2 þ 2gfþ d2 þ 2dl1 þ 2dfþ l1fþ l2
1 þ f2: (A 50)
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