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Abstract

Sex differences in chronic pain and alcohol abuse are not well understood. The development of 

rodent models is imperative for investigating the underlying changes behind these pathological 

states. In the present study, we investigated whether hind paw treatment with the inflammatory 

agent Complete Freund’s Adjuvant (CFA) could generate hyperalgesia and alter alcohol 

consumption in male and female C57BL/6J mice. CFA treatment led to greater nociceptive 

sensitivity for both sexes in the Hargreaves test, and increased alcohol drinking for males in a 

continuous access two-bottle choice (CA2BC) paradigm. Regardless of treatment, female mice 

exhibited greater alcohol drinking than males. Following a 2-hour terminal drinking session, CFA 

treatment failed to produce changes in alcohol drinking, blood ethanol concentration (BEC), and 

plasma corticosterone (CORT) for both sexes. 2-hr alcohol consumption and CORT was higher in 

females than males, irrespective of CFA treatment. Taken together, these findings have established 

that male mice are more susceptible to escalations in alcohol drinking when undergoing pain, 

despite higher levels of total alcohol drinking and CORT in females. Furthermore, the exposure of 

CFA-treated C57BL/6J mice to the CA2BC drinking paradigm has proven to be a useful model for 

studying the relationship between chronic pain and alcohol abuse. Future applications of the CFA/

CA2BC model should incorporate manipulations of stress signaling and other related biological 

systems to improve our mechanistic understanding of pain and alcohol interactions.
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Introduction

Alcohol provides an accessible means of self-medication for pain suffering populations, with 

approximately 25% of chronic pain patients consuming alcohol for symptom relief (Riley 

and King, 2009). Although alcohol can act as a transient pharmacological intervention for 

pain, excessive drinking can lead to increased risk for addiction and related heath 

complications (Koob and Volkow, 2010). Chronic exposure to alcohol is especially 

detrimental for pain, with marked increases in sensitivity after drug cessation (Boissoneault 

et al., 2018; Dhir et al., 2005; Dina et al., 2000, 2007; Dodds et al., 1945; Edwards et al., 

2012; Fu et al., 2015; Gatch and Lal, 1999; Jochum et al., 2010; Malec et al., 1987; Riley 

and King, 2009; Roltsch et al., 2017; Shumilla et al., 2005; Smith et al., 2015; Wolff et al., 

1942). Clinical observations have suggested important differences in how men and women 

consume alcohol and experience the detrimental consequences of alcohol abuse when 

suffering from pathological pain. Among chronic pain patients, alcohol use is more prevalent 

in males (Brennan et al., 2011; Egli et al., 2012; Riley and King, 2009; Wilsnack et al., 

2009). Females that habitually consume alcohol, however, are more susceptible to 

pathological pain (Boissoneault et al., 2018). To date, preclinical investigations have failed 

to model similar sex-specific patterns in drinking and pain, thus providing a major hurdle to 

studying the mechanisms of pain-related alcohol consumption (Smith et al., 2015; Yezierski 

and Hansson, 2018).

To address this deficit in preclinical models, the present study examines alcohol 

consumption in male and female C57BL/6J mice treated with Complete Freund’s Adjuvant 

(CFA), an antigen emulsion containing heat-dried Mycobacterium tuberculosis. CFA was 

selected to model chronic inflammatory pain, since it closely mimics the time course of 

persistent injury (Hargreaves et al., 1988; Larson et al., 1986; Ren and Dubner, 1999). 

Furthermore, postoperative pain, arthritis, and related inflammatory states have exhibited a 

close relationship with alcohol abuse (King et al., 2012). Therefore, we hypothesized that 

CFA-treated mice would show increased alcohol consumption compared to uninjured mice. 

To test this, we exposed saline- and CFA-treated mice of both sexes to a voluntary drinking 

paradigm (i.e. CA2BC with 20% ethanol [EtOH]) and measured alcohol consumption across 

a three-week timespan. Thermal nociceptive thresholds were assessed to ensure that CFA 

treatment altered pain sensitivity. Blood EtOH concentration (BEC) and plasma 

corticosterone (CORT) levels were analyzed to assess pharmacologically relevant drinking 

and alcohol-related stress signaling, two possible contributors to sex differences in alcohol 

and pain interactions (Edwards et al., 2012; Egli et al., 2012; Fu and Neugebauer, 2008; 

Heilig and Koob, 2007; Koob, 2013). Taken together, these experiments aim to successfully 

model sex differences in pain-related alcohol drinking for mice, with the hope that it can be 

applied towards mechanistic investigations of pain and alcohol interactions in the future.

Materials and Methods

Animals

A total of 32 male and female C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) 

arrived at 6-weeks of age and were group-housed for one week to habituate to vivarium 

conditions. Following habituation, mice were individually housed in ventilated Plexiglas 
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cages and given three days of acclimation in a 12-hr reverse light/dark cycle (12am-12pm) 

prior to the start of the experiment. Subjects were provided ad libitum access to water and 

Isopro RMH 3000 chow (Prolab, St. Louis, MO) for the duration of the experiment. All 

procedures were approved by the University of North Carolina at Chapel Hill Institutional 

Animal Care and Use Committee and were in accordance with the NIH Guide for Care and 

Use of Laboratory Animals.

Continuous access 2-bottle choice drinking

Male (N = 16) and female (N = 16) mice were given continuous access to 20% EtOH (w/v) 

and tap water for three weeks. EtOH solutions were prepared with tap water and 95% EtOH 

(Pharmaco-AAPER, Brookfield, CT), and delivered via sipper tubes made from 50 mL 

plastic tubes (Nalgene), rubber stoppers (Fisher Scientific, Agawam, MA), and sipper tubes 

(Ancare Corp., Bellmore, NY). Prior to EtOH exposure, subjects were given three days to 

adapt to drinking with sipper tubes. Individually housed mice were then given access to two 

sipper tubes per cage: one containing 20% EtOH and the other containing tap water. For the 

span of three weeks, EtOH and water bottles were weighed daily three hours into the dark 

cycle. Bottle placement (left vs. right) was alternated weekly to control for an inherent or 

developed side preference. To control for non-consumption-related fluid loss, a dummy cage 

containing identical sipper tubes was used to subtract weekly dripped fluid values from 

subject fluid consumption.

Chronic inflammatory pain

Prior to EtOH exposure, subjects were given a 50 μl subcutaneous injection of saline or 

Complete Freund’s Adjuvant (CFA; Sigma, St. Louis, MO) in the plantar surface of the right 

hind paw (n = 8). Drinking experiments started three days after paw injections, around the 

time that CFA exhibits maximum inflammatory hyperalgesia (Pitzer et al., 2016). To verify 

that changes in drinking behavior resulted from differences in pain sensitivity, thermal 

nociceptive thresholds of saline- and CFA-treated mice were assessed one day after the last 

24-hr EtOH exposure using the Hargreaves test. Mice were placed in a plexiglas chamber 

elevated on a glass plate (IITC Life Science Inc., Woodland Hills, CA) and habituated to the 

behavioral apparatus for a minimum of 30 minutes. The mid-plantar surface of saline/CFA-

treated and untreated hind paws was then exposed to three heat trials each and assessed for 

paw withdrawal latencies (PWL). The beam intensity was set to produce basal PWLs of 

approximately 4–6 seconds, with a maximal value of 20 seconds to prevent excessive tissue 

damage. All testing was conducted with investigators blinded to the experimental conditions.

Blood ethanol and corticosterone concentrations

Following pain sensitivity testing, mice were given four days to recover and re-establish 

CA2BC drinking behavior in preparation for blood EtOH and corticosterone measurements. 

On the final drinking day, mice were sacrificed 2 hours into the dark cycle, with trunk blood 

immediately collected in centrifuge tubes following decapitation. Blood samples were 

centrifuged at 4°C for 10 min at 3000 RPM, and the plasma was separated for storage at 

−80°C until analysis. To measure blood EtOH concentration (BEC; mg/dl), 5 μl plasma 

samples were administered through a Model AM1 Alcohol Analyser (Analox Instruments 

Ltd., Lunenburg, MA). To measure plasma corticosterone (CORT; ng/ml), 5 μl plasma 
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samples were processed with a commercially available colorimetric ELISA kit (Arbor 

Assays; Ann Arbor, MI), according to the manufacturer’s instructions, with all samples run 

in duplicate.

Statistical analysis

All statistical analyses were performed using Prism 6 (GraphPad Software Inc., La Jolla, 

CA). Analysis of drinking across sessions for saline- and CFA-treated mice (i.e. Treatment x 

Session for EtOH Intake, EtOH Preference Ratio, Water Intake, and Total Fluid Intake) was 

performed with a repeated measures analyses of variance (RM-ANOVA). Drinking values 

for each mouse were averaged across the three-week drinking period to compare Treatment 

x Sex with additional two-way ANOVAs. Differences in PWL were determined with a two-

way ANOVA comparing Treatment x Paw. Post-hoc analyses with Sidak or Tukey 

adjustment were performed following significant main group effects. Data are reported as 

mean plus or minus the standard error of the mean (M ± SEM). Correlational analyses were 

conducted using linear regressions to assess the predictive relationship of EtOH intake and 

thermal nociceptive sensitivity, BEC, and CORT levels, with slopes and intercepts assessed 

for deviation from zero to determine statistical significance. See Fig. 1 for Experimental 
Timeline.

Results

CFA-treated mice exhibit greater alcohol drinking in a sex-dependent manner

EtOH Intake—Male mice treated with CFA consumed a significantly greater amount of 

EtOH per day (g/kg/24hr) than saline-treated controls, while females did not exhibit any 

consumption differences across treatments (Fig. 2). A RM-ANOVA (Treatment x Session) 

revealed a main effect for Treatment [F(14, 266) = 4.768, p = 0.0465] and Session [F(19, 

266) = 1.656, p = 0.0437] in males (Fig. 2A), and a main effect for Session [F(19, 266) = 

9.470, p < 0.0001] in females (Fig. 2B), but no significant interaction for either sex. Sidak 

post-hoc analysis revealed no significant difference in EtOH intake between saline- and 

CFA-treated mice during individual drinking sessions of males or females. Mean drinking 

values for individual subjects were averaged across three weeks in their respective treatment 

and sex groupings. A two-way ANOVA (Treatment x Sex) revealed a main effect for 

Treatment [F(1, 76) = 26.04, p < 0.0001] and Sex [F(1, 76) = 179.6, p < 0.0001], and a 

significant interaction between Treatment and Sex [F(1, 76) = 16.45, p = 0.0001], where 

female mice exhibit greater EtOH intake than males, regardless of paw treatment (Fig. 2C). 

Tukey post-hoc analysis revealed a significant difference in EtOH intake between saline- and 

CFA-treated mice for males, but not females (Fig. 2C).

EtOH Preference Ratio—Preference for EtOH exhibited similar results, with CFA-

treated male mice showing a significantly greater EtOH preference ratio than their saline-

treated counterparts, while females did not exhibit a preference difference across treatments 

(Fig. 3). A RM-ANOVA (Treatment x Session) revealed a main effect for Treatment [F(1, 

14) = 6.777, p = 0.0208] in males (Fig. 3A) and Session [F(19, 266) = 5.297, p < 0.0001] in 

females (Fig. 3B), but no significant interaction for either sex. Sidak post-hoc analysis 

showed no significant difference in EtOH preference ratio between saline- and CFA-treated 
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mice during individual drinking sessions of males or females. A two-way ANOVA 

(Treatment x Sex) revealed a main effect for Treatment [F(1, 76) = 29.88, p < 0.0001] and 

Sex [F(1, 76) = 128.6, p < 0.0001], and a significant interaction between Treatment and Sex 

[F(1, 76) = 48.43, p < 0.0001], where EtOH preference ratio was greater in females than 

males for both treatments (Fig. 3C). Tukey post-hoc analysis showed a significant difference 

in EtOH preference ratio between saline- and CFA-treated mice for males, but not females 

(Fig. 3C).

Water Intake—CFA-treated mice showed sex-specific effects for water intake, with CFA-

treated males consuming less water than saline-treated controls, and CFA-treated females 

consuming more water than controls (Fig. 4). A RM-ANOVA (Treatment x Session) 

revealed a main effect for Session [F(19, 266) = 5.661, p = < 0.0001] in males (Fig. 4A), no 

main effect for Treatment or Session in females (Fig. 4B), and no significant interaction for 

either sex. Sidak post-hoc analysis showed no significant difference in water intake between 

saline- and CFA-treated mice during individual drinking sessions of males or females. A 

two-way ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 76) = 37.04, p < 

0.0001] but not Treatment [F(1, 76) = 0.8203, p = 0.3680], and a significant interaction 

between Treatment and Sex [F(1, 76) = 27.19, p < 0.0001] (Fig. 4C). Tukey post-hoc 

analysis showed a significant difference in water intake between saline- and CFA-treated 

mice for both males and females (Fig. 4C).

Total Fluid Intake—CFA-treated mice exhibit significantly greater total fluid intake than 

their saline-treated counterparts in both sexes (Fig. 5). A RM-ANOVA (Treatment x Session) 

revealed a main effect for Session in males [F(19, 266) = 13.35, p < 0.0001] (Fig. 5A) and 

females [F(19, 266) = 4.514, p < 0.0001] (Fig. 5B), but no significant interaction for either 

sex. Sidak post-hoc analysis demonstrated no significant difference in total fluid intake 

between saline- and CFA-treated mice during individual drinking sessions of males or 

females. A two-way ANOVA (Treatment x Sex) revealed a main effect for Treatment [F(1, 

76) = 16.38, p = 0.0001], but no main effect for Sex [F(1, 76) = 2.742, p = 0.1018] or 

significant interaction between Treatment and Sex [F(1, 76) = 0.2358, p = 0.6287] (Fig. 5C). 

Tukey post-hoc analysis showed a significant difference in total fluid intake between saline- 

and CFA-treated mice for both males and females (Fig. 5C).

CFA-treated mice exhibit higher sensitivity to thermal nociception in both sexes

Male and female mice treated with CFA exhibit higher sensitivity to thermal nociception, as 

indicated by lower PWLs, when compared to saline-treated mice (Fig. 6). A RM-ANOVA 

(Treatment x Paw) exhibited a main effect for Treatment [F(1, 14) = 7.010, p = 0.0191] and 

Paw [F(1, 14) = 8.155, p = 0.0127], and a significant Treatment x Paw interaction [F(1, 14) 

= 27.46, p = 0.0001] in males (Fig. 6A), whereas a RM-ANOVA (Treatment x Paw) 

exhibited a main effect for Paw [F(1, 14) = 11.00, p = 0.0051], but not Treatment [F(1, 14) = 

3.276, p = 0.0918], and a significant Treatment x Paw interaction [F(1, 14) = 10.15, p = 

0.0066] in females (Fig. 6B). Sidak post-hoc analysis revealed a significant difference in 

PWLs between saline- and CFA-treated mice for treated paws, but not untreated paws, of 

both males (Fig. 6A) and females (Fig. 6B). To assess the relationship between pain and 

drinking, a linear regression was conducted for thermal nociceptive sensitivity of the treated 
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paw as a predictor of EtOH intake. For males, saline-treated mice exhibited a non-significant 

regression equation of [F(1, 6) = 0.0855, p = 0.7798] with R2 of 0.0140 (Fig. 6C), whereas 

CFA-treated mice exhibited a non-significant regression equation of [F(1, 6) = 0.1691, p = 

0.6952] with R2 of 0.0274 (Fig. 6C). For females, saline-treated mice exhibited a non-

significant regression equation of [F(1, 6) = 0.0018, p = 0.9674] with R2 of 0.0003 (Fig. 

6D), whereas CFA-treated mice exhibited a significant regression equation of [F(1, 6) = 

8.254, p = 0.0283] with R2 of 0.5791 (Fig. 6D).

CFA does not alter blood ethanol concentration and plasma corticosterone

Female mice given 2-hr access to EtOH exhibit greater alcohol and total fluid consumption 

than males (Fig. 7). A two-way ANOVA (Treatment x Sex) for 2-hr EtOH intake revealed a 

main effect for Sex [F(1, 28) = 83.19, p < 0.0001], but not Treatment [F(1, 28) = 0.1574, p = 

0.6945], and no significant Treatment x Sex interaction [F(1, 28) = 0.6611, p = 0.4230] (Fig. 

7A). Tukey post-hoc analysis showed greater 2-hr EtOH intake in female mice, but no 

significant difference in drinking between saline- and CFA-treated mice (Fig. 7A). A two-

way ANOVA (Treatment x Sex) for 2-hr EtOH preference ratio revealed no main effect for 

Treatment [F(1, 28) = 0.2239, p = 0.6397] or Sex [F(1, 28) = 1.673, p = 0.2064], and a 

significant Treatment x Sex interaction [F(1, 28) = 5.599, p = 0.0251] (Fig. 7B). Tukey post-

hoc analysis showed no significant difference in EtOH preference ratio between treatments 

or sex (Fig. 7B). A two-way ANOVA (Treatment x Sex) for 2-hr water intake revealed no 

main effect for Treatment [F(1, 28) = 0.0328, p = 0.8574] or Sex [F(1, 28) = 0.2640, p = 

0.6114], and no significant Treatment x Sex interaction [F(1, 28) = 3.800, p = 0.0613] (Fig. 

7C). Tukey post-hoc analysis showed no significant difference in EtOH preference ratio 

between treatments or sex (Fig. 7C). A two-way ANOVA (Treatment x Sex) for 2-hr total 

fluid intake revealed a main effect for Sex [F(1, 28) = 8.726, p = 0.0063], but not Treatment 

[F(1, 28) = 0.4069, p = 0.5288], and no significant Treatment x Sex interaction [F(1, 28) = 

1.341, p = 0.2566] (Fig. 7D). Tukey post-hoc analysis showed higher 2-hr total fluid intake 

in female mice, but no significant difference in drinking between saline- and CFA-treated 

mice (Fig. 7D).

Following 2-hr access to EtOH, plasma samples were collected to measure BEC and CORT 

levels. For BEC, a two-way ANOVA (Treatment x Sex) revealed no main effect for 

Treatment [F(1, 28) = 0.1365, p = 0.7146] and Sex [F(1, 28) = 0.8967, p = 0.3518], and no 

Treatment x Sex interaction [F(1, 28) = 1.890, p = 0.1801] (Fig. 8A). Tukey post-hoc 

analysis revealed no significant difference in BEC between treatments or sex (Fig. 8A). To 

assess the relationship between drinking and BEC amongst paw treatment groups, a linear 

regression was conducted for 2-hr EtOH intake as a predictor of BEC. For males, saline-

treated mice exhibited a non-significant regression equation of [F(1, 6) = 0.0104, p = 

0.9220] with R2 of 0.0017 (Fig. 8B), whereas CFA-treated mice exhibited a non-significant 

regression equation of [F(1, 6) = 2.334, p = 0.1774] with R2 of 0.2801 (Fig. 8B). For 

females, saline-treated mice exhibited a non-significant regression equation of [F(1, 6) = 

0.5927, p = 0.4706] with R2 of 0.0899 (Fig. 8C), whereas CFA-treated mice exhibited a non-

significant regression equation of [F(1, 6) = 0.6417, p = 0.4536] with R2 of 0.0966 (Fig. 8C).
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For CORT, a two-way ANOVA (Treatment x Sex) revealed a main effect for Sex [F(1, 28) = 

7.298, p = 0.0116], but not Treatment [F(1, 28) = 0.1243, p = 0.7270], and no Treatment x 

Sex interaction [F(1, 28) = 0.3202, p = 0.5760] (Fig. 9A). Tukey post-hoc analysis revealed 

greater CORT levels in female mice, but no significant difference between saline- and CFA-

treated mice (Fig. 9A). To assess the relationship between drinking and CORT amongst paw 

treatment groups, a linear regression was conducted for 2-hr EtOH intake as a predictor of 

CORT. For males, saline-treated mice exhibited a non-significant regression equation of 

[F(1, 6) = 0.3674, p = 0.5666] with R2 of 0.0577 (Fig. 9B), whereas CFA-treated mice 

exhibited a non-significant regression equation of [F(1, 6) = 0.0396, p = 0.8487] with R2 of 

0.0065 (Fig. 9B). For females, saline-treated mice exhibited a non-significant regression 

equation of [F(1, 6) = 0.0016, p = 0.9691] with R2 of 0.0002 (Fig. 9C), whereas CFA-treated 

mice exhibited a non-significant regression equation of [F(1, 6) = 0.2297, p = 0.6487] with 

R2 of 0.0387 (Fig. 9C). Taken together, these findings suggest a weak relationship between 

2-hr EtOH intake and BEC/CORT.

Discussion

In this study, we describe sex differences in alcohol drinking following the induction of 

inflammatory pain. Male CFA-treated mice consumed more alcohol and exhibited higher 

preference for the drug than saline-treated controls, while female CFA-treated mice only 

showed greater water intake than controls. Characteristic of C57BL/6J mice with continuous 

access to high concentrations of alcohol (Jury et al., 2017; Middaugh et al., 1999; Smith et 

al., 2015), drinking levels differed between sexes, with female mice exhibiting greater EtOH 

consumption and preference than male mice, regardless of saline or CFA treatment. These 

findings suggest that chronic inflammatory pain increases alcohol drinking in males, despite 

higher overall drinking in females. Similar clinical observations have been made in chronic 

pain patients, with men more commonly self-medicating with alcohol than women (Riley 

and King, 2009). This pain-related alcohol consumption is greater in males throughout the 

lifetime, with its peak at early adulthood (Brennan et al., 2011; Riley and King, 2009; 

Wilsnack et al., 2009). By pairing CFA treatment and CA2BC drinking, our model was able 

to replicate these human patterns of voluntary drinking in injured young adult male mice, 

providing evidence that chronic inflammatory pain can potentiate alcohol drinking in a sex-

specific manner for rodents.

Although this finding is reflective of clinical reports, it is notably inconsistent with another 

study on CFA-treated mice that found no effect on pain-related alcohol consumption (Smith 

et al., 2015). The discrepancy between findings may be due to differences in experimental 

design. For example, escalating concentrations of alcohol were utilized in Smith et al. 

(2015), while fixed concentrations were used in the present study. Mice given escalating 

concentrations had CFA administered while being exposed to a lower percentage of alcohol 

(10%), so consumption may not have produced comparable analgesia to that of a fixed high 

concentration of alcohol (20%). Theoretically, this would result in a higher dynamic range of 

alcohol consumption for the fixed concentration paradigm, which could explain why there 

are more pronounced effects of pain-induced drinking in the present study. Alternatively, the 

use of differently aged mice (i.e. 30–33 weeks old in Smith et al. [2015] versus 7–10 weeks 

old in the present study) could have altered alcohol consumption as well, since younger 
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rodents drink more than fully developed adults (Holstein et al., 2011; Schramm-Sapyta et al., 

2014; Vetter-O’Hagen et al., 2009). Divergences in pain severity following CFA treatment 

could also explain the inconsistency in findings. Male mice treated with a high volume of 

CFA (i.e. 50 μl in the present study) exhibited increased alcohol consumption relative to 

saline-treated controls, while low volume (i.e. 10 μl in Smith et al. [2015]) exposure did not 

alter consumption relative to pre-CFA levels. This suggests that high and low volumes of 

CFA treatment result in different severities of pain, which can then determine the extent of 

changes observed with alcohol drinking. If pain severity were to contribute to these 

consumption differences, a comparison of nociceptive sensitivity should reveal higher pain 

sensitivity in CFA-treated mice from the present study compared to those in Smith et al. 

(2015). The use of different behavioral assays at non-parallel time points and a lack of 

parallel control groups (i.e. Pre-CFA mice in Smith et al. [2015] versus saline-treated mice 

in the present study), however, makes it difficult to make a direct comparison. Future studies 

should examine how the severity of chronic inflammatory pain contributes to sex-specific 

patterns of drinking with more uniform measures of thermal and mechanical nociception and 

control groups. Determining the extent that alcohol concentration and age can alter pain-

related drinking may further clarify any remaining drinking differences between the two 

studies.

We additionally showed that female C57BL/6J mice exhibit greater alcohol consumption 

than males, an observation that is common among female rodents exposed to voluntary 

drinking paradigms (Blanchard and Glick, 2002; Cailhol and Mormède, 2001; Chester et al., 

2006; Doremus et al., 2005; Jury et al., 2017; Lancaster et al., 1996; Lê et al., 2001; 

Middaugh et al., 1999; Smith et al., 2015; Truxell et al., 2007). Moreover, our female 

drinking data matches the maximal average consumption values previously reported in 

C57BL/6J mice undergoing continuous access to ≥ 10% alcohol (Jury et al., 2017; 

Middaugh et al., 1999; Smith et al., 2015). With such high baseline alcohol consumption, it 

is possible that saline-treated females have already reached maximal drinking in our study, 

so the addition of pain would not increase drinking in females. Although this ceiling effect is 

possible, it is unlikely, considering that daily EtOH intake in females was around 10–12 g/kg 

during the first four sessions and escalated to 20–25 g/kg by the last session. If pain were 

able to drive alcohol drinking in females, early session EtOH intake should have increased 

up to two times in CFA-treated mice, but that is not the case. Therefore, sex differences in 

basal alcohol consumption were not likely to prevent pain-related drinking increases for 

females.

Differences in inflammatory response and alcohol analgesia may provide a better 

explanation for sex-specific patterns in drinking. CFA and related inflammatory agents cause 

female rodents to develop hyperalgesia more rapidly than males, with females being less 

prone to attenuation of inflammation by alcohol and other analgesic drugs (Alfonso-Loeches 

et al., 2013; Coleman and Crews, 2018; Cook and Nickerson, 2005; Pascual et al., 2017). 

Thus, it is possible that CFA-treated females are less susceptible to escalated alcohol 

consumption relative to saline-treated controls because the drug provides inadequate 

analgesia to promote further drinking. Although not measured in the present study, ongoing 

investigations with this model should assess the potential impact of sex differences in 

alcohol analgesia and its effects on pain-related drinking.
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Sex-specific patterns in pain-driven consumption were observed for water as well. CFA-

treated males and females exhibited divergent water consumption patterns, with CFA-treated 

males reducing intake and CFA-treated females increasing intake relative to their saline-

treated counterparts. The consumption of more alcohol and less water by CFA-treated males 

likely reflects increases in alcohol preference following repeated drug exposure. Although 

reductions in water intake is not characteristic for escalations in voluntary alcohol 

consumption (Griffin, 2014; Hwa et al., 2011; Tordoff and Bachmanov, 2008), it has been 

reported that mice treated with pro-inflammatory agents exhibit increased alcohol intake and 

reduced water intake when given access to CA2BC (Biesmans et al., 2013; Blednov et al., 

2011; Stein et al., 1988). This is consistent with parallel studies showing that the impairment 

of pro-inflammatory cytokines reduces alcohol preference (Blednov et al., 2005). In 

agreement with the literature, our findings show that increases in alcohol intake and 

decreases in water intake are expected outcomes of heightened inflammatory states.

Inflammation-driven changes in alcohol and water consumption were previously reported for 

both male and female mice (Blednov et al., 2011), in contrast to the CFA-treated females in 

the present study that consumed comparable amounts of alcohol and more water than saline-

treated controls. This increase in water intake following CFA treatment may be due to 

alterations in body water composition, a major contributor to sex differences in alcohol 

consumption (Ely, 1999). Considering the high level of alcohol consumption in females, it is 

possible that inflammation enhances the diuretic properties of alcohol and the higher rate of 

fluid loss is compensated for by consuming greater quantities of water (Crow, 1968; Strauss 

et al., 1950). This effect may be restricted to CFA and other long-lasting inflammatory 

agents, since acute inflammation reduces water intake, but attenuates over time in female 

mice (Melgar et al., 2007). The time course of water intake from acute to chronic 

inflammation has yet to be investigated for both sexes, but this knowledge will likely be 

important for understanding how relative fluid intake determines alcohol drinking behavior.

Sex differences in gustation may also explain the observed drinking patterns, since intake 

profiles differ by fluid type. It has been theorized that C57BL/6J mice are more motivated to 

consume alcohol for its sweet tasting components (Alexander A. Bachmanov et al., 1996; 

Blednov et al., 2007), but sex does not appear to influence preference for saccharin or 

alcohol (A. A. Bachmanov et al., 1996). However, it is still possible that inflammation alters 

the gustatory components of alcohol relative to water in a sex-specific manner (Kumarhia et 

al., 2016; Steen et al., 2010). More research assessing the relationship of sex, inflammation, 

gustation, and fluid intake is required to understand CFA-mediated effects on alcohol and 

water intake in CA2BC.

Three weeks after paw treatment, pain testing revealed that CFA-treated mice had higher 

thermal nociceptive sensitivity than saline-treated controls for both males and females. 

Considering the timing of the test, it is unclear whether this difference in sensitivity reflects 

the contributions of pain to drinking or drinking to pain. This is an important distinction, as 

cessation of alcohol intake following repeated drug exposure can exacerbate pain sensitivity. 

This phenomenon, commonly referred to as EtOH withdrawal-induced hyperalgesia (EIH), 

has been reported in mice (Dhir et al., 2005; Smith et al., 2016), as well as rats (Dina et al., 

2000, 2007; Edwards et al., 2012; Fu et al., 2015; Gatch and Lal, 1999; Malec et al., 1987; 
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Roltsch et al., 2017; Shumilla et al., 2005) and humans (Boissoneault et al., 2018; Dodds et 

al., 1945; Jochum et al., 2010; Riley and King, 2009; Wolff et al., 1942), using a variety of 

alcohol exposure models. In our CA2BC paradigm, it is unclear whether there were 

pathological shifts in sensitivity following three weeks of alcohol exposure. The lack of 

sensitivity differences following increased drinking in CFA-treated males, along with the 

non-significant regression of Drinking x Pain suggests that the extent of alcohol 

consumption had little effect on predicting pain sensitivity (and vice versa) in all groups. 

This result is similar to that of other continuous access experiments in mice, which also 

failed to produce EIH (Smith et al., 2015). The exception to this finding is CFA-treated 

females: despite comparable drinking patterns to saline-treated controls, CFA-treated 

females exhibited a significant negative correlation for Drinking x Pain, where injured 

females that drink more alcohol experience higher pain sensitivity. This result is reminiscent 

of clinical data showing that there is higher EIH severity and prevalence in females, with 

women being more likely to report significant recurrent pain and concurrent chronic pain 

conditions (Boissoneault et al., 2018). Despite our findings closely following predicted 

results from the literature, not having nociceptive sensitivity measures prior to EtOH 

exposure makes it impossible to conclude whether or not these data indicate a causal null 

effect of alcohol consumption on pain. Although a limitation in the study, it does not change 

our interpretation that male-specific increases in alcohol consumption follow the induction 

of chronic inflammatory pain. However, future experiments should be mindful of 

establishing baseline nociceptive sensitivity prior to the start of alcohol exposure when 

studying pain-related alcohol use.

Following 2 hours of CA2BC, females consumed more alcohol than males. Contrary to the 

increased drinking phenotype seen in CFA-treated males during 24-hr alcohol access, no 

treatment effects were observed. These results suggest that the terminal drinking session did 

not last long enough to capture peak alcohol consumption (i.e. 4+ hours into the dark cycle) 

(Smith et al., 2015). Although increases for alcohol drinking in the 2-hr CA2BC were 

specific to females, no sex effects were found for BEC. By contrast, a previous evaluation of 

BEC showed no sex differences for alcohol consumption after 30-minute access to 12% 

EtOH, but higher BECs in females (Middaugh et al., 1999). Although a common result for 

humans when both sexes are allowed an equal dosing of orally administered EtOH (Ammon 

et al., 1996; Sutker et al., 1983), such results are less common in rodents (Ho et al., 1989). 

This difference may be due to feeding manipulations coinciding with BEC measurements 

after drinking, as suggested in Middaugh et al. (1999). Although caloric mediation of 

alcohol consumption is well established in the literature (Rodgers et al., 1963; Rodgers, 

1966; Thiele et al., 2012), sex differences in prandial metabolism and alcohol consumption 

are thought to be negligible, as thirst is more strongly motivating for alcohol drinking than 

caloric need in both sexes (Middaugh et al., 1999). Paradoxically, higher BECs in females 

are accompanied by enhancements in alcohol metabolism (Baraona et al., 2001; Collins et 

al., 1975; Mumenthaler et al., 1999), and may explain why female mice that consume a 

greater amount of alcohol do not produce higher BECs than males.

Similar to alcohol consumption patterns in the 2-hr CA2BC paradigm, CORT was not 

affected by CFA, but differed by sex. Specifically, female CORT levels were found to be 

higher than that of males. Higher CORT release following alcohol exposure has previously 
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been observed in female rodents, with deletion of circulating sex steroids attenuating the 

difference (Rivier, 1993). However, increased levels of CORT in female mice may not be the 

result of the drug, as alcohol drinking does not produce differences in CORT relative to 

consumption of water in males or females (Finn et al., 2004). Although CFA-treated males 

did not drink more in the 2-hr terminal drinking session, the literature would predict that an 

increase in drinking after 24-hr access would still not potentiate CORT release in the males, 

despite showing pain-related increases in alcohol consumption. This suggests that CORT is 

basally higher in females, and not susceptible to changes following CFA treatment in both 

sexes. Previous work has found that inflammatory pain increases CORT, but this phenotype 

has only been observed in male rats and has yet to be investigated in combination with 

drinking (Butkevich et al., 2013; Harper et al., 2001; Pitcher et al., 2018), suggesting that 

our findings for CORT are specific to CFA/CA2BC-exposed C57BL/6J mice.

Without pre-treatment CORT levels, it is difficult to determine whether these female-specific 

elevations in stress are entirely due to sex differences in basal CORT. It is important to 

consider the alternate possibility that these changes are driven by differences in stress 

reactivity. It is well-established that maladaptive responses to stress promote alcohol 

drinking and relapse behavior (Becker et al., 2011; Keyes et al., 2012; Koob, 2001; Koob 

and Kreek, 2007). Previous studies have linked these behaviors to the sex-dependent 

expression of stress markers, with females exhibiting higher glucocorticoid levels and 

alcohol consumption following exposure to various stressors (Cozzoli et al., 2014; Haleem 

et al., 1988; Heinsbroek et al., 1991; Kudielka and Kirschbaum, 2005; Yoshimura et al., 

2003). Considering that female mice exhibit a more sensitive and sustained stress response 

compared to males (Blanchard and Glick, 2002; Brown and Grunberg, 1995; Hermes et al., 

2006; Palanza et al., 2001), it is possible that early experimental stressors such as isolated 

housing and paw injections increased CORT levels and alcohol consumption for female 

mice in the present study (Hermes et al., 2006; Lopez et al., 2011; Moriya et al., 2015). This 

would be contingent on early experimental stressors upregulating CORT responses for over 

three weeks in female mice, an improbable but untested concept. Future studies using CFA/

CA2BC should more closely investigate this relationship between sex differences in stress 

reactivity and alcohol drinking.

In conclusion, male and female mice exhibit distinct alcohol drinking behavior when 

undergoing pain. Compared to saline-treated controls, CFA-treated males show greater 

alcohol consumption, while CFA-treated females show a closer relationship between alcohol 

consumption and pain sensitivity. Regardless of pain state, females exhibited higher levels of 

total alcohol drinking and corticosterone compared to males. These findings reflect sex-

specific trends in alcohol use reported by chronic pain populations and may speak to the 

validity of our CFA/CA2BC model in mice. Mechanistic contributions to sex differences in 

pain-related alcohol drinking will be required in future applications of the model, with 

special attention reserved for the role of stress signaling in pain and alcohol interactions.
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Highlights

• CFA treatment increases alcohol drinking for male, but not female mice in a 

continuous access two-bottle choice (CA2BC) paradigm.

• Female mice exhibit higher levels of alcohol drinking and CORT than males, 

regardless of CFA treatment.

• The combination of CFA treatment and the CA2BC drinking paradigm in 

C57BL/6J mice proves to be a useful model for studying the relationship 

between chronic inflammatory pain and alcohol use.
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Figure 1. 
Experimental timeline of CFA/CA2BC. Days are marked relative to arrival of subjects.
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Figure 2. 
Daily alcohol intake (g/kg/24 hr) of saline- or CFA-treated C57BL/6J mice over a 3-week 

continuous access regimen. Pain-related consumption of 20% EtOH (w/v) was assessed for 

(A) males (n = 8) and (B) females (n = 8) in 20 consecutive sessions. (C) Averages of daily 

intake were compared between saline- and CFA-treated males and females. Data are mean 

alcohol intake ± SEM. **** p < 0.0001 difference between groups.
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Figure 3. 
Daily alcohol preference ratio of saline- or CFA-treated C57BL/6J mice over a 3-week 

continuous access regimen. Pain-related alcohol preference was assessed for (A) males (n = 

8) and (B) females (n = 8) in 20 consecutive sessions. (C) Averages of daily intake were 

compared between saline- and CFA-treated males and females. Data are mean alcohol 

preference ± SEM. **** p < 0.0001 difference between groups.
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Figure 4. 
Daily water intake (mL) of saline- or CFA-treated C57BL/6J mice over a 3-week continuous 

access regimen. Pain-related consumption of water was assessed for (A) males (n = 8) and 

(B) females (n = 8) in 20 consecutive sessions. (C) Averages of daily intake were compared 

between saline- and CFA-treated males and females. Data are mean alcohol preference ± 

SEM. ** and **** correspond to p < 0.005 and p < 0.0001 difference between groups.
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Figure 5. 
Daily alcohol and water intake (mL) of saline- or CFA-treated C57BL/6J mice over a 3-

week continuous access regimen. Pain-related consumption of fluids was assessed for (A) 

males (n = 8) and (B) females (n = 8) in 20 consecutive sessions. (C) Averages of daily 

intake were compared between saline- and CFA-treated males and females. Data are mean 

fluid intake ± SEM. *, **, and *** correspond to p < 0.05, p < 0.005, and p < 0.0005 

difference between groups.
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Figure 6. 
Pain sensitivity of saline- and CFA-treated C57BL/6J mice was tested 24 hrs after last 

alcohol exposure. Using the Hargreaves test, paw withdrawal latency (s) was measured in 

response to a thermal nociceptive stimulus for substance-treated and untreated paws of (A) 

male and (B) female mice. Pain sensitivity was correlated with average daily alcohol intake 

in (C) males and (D) females. Data are mean paw withdrawal latency ± SEM. ** and **** 

correspond to p < 0.005 and p < 0.0001 difference between groups respectively.
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Figure 7. 
Averages of (A) alcohol intake (g/kg/2 hr), (B) preference ratio, (C) water intake (g/kg/2 hr), 

and (D) total fluid intake (mL) in saline- or CFA-treated C57BL/6J mice during a final 2-hr 

drinking session. Pain-related consumption of fluids was assessed for males (n = 8) and 

females (n = 8) on the 25th session of a continuous access regimen. Data are mean fluid 

intake/preference ratio ± SEM. Data are mean fluid intake/preference ratio ± SEM. ** and 

**** correspond to p < 0.005 and p < 0.0001 difference between groups respectively.
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Figure 8. 
(A) Blood ethanol content (mg/dl) of saline- and CFA-treated C57BL/6J mice was measured 

2-hrs into the final alcohol exposure day in male and female mice. BEC was correlated with 

average daily alcohol intake in (B) males and (C) females. Data are mean BEC ± SEM.
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Figure 9. 
(A) Plasma corticosterone (CORT [ng/mL]) of saline- and CFA-treated C57BL/6J mice was 

measured 2-hrs into the final alcohol exposure day in male and female mice. CORT levels 

were correlated with average daily alcohol intake in (B) males and (C) females. Data are 

mean CORT ± SEM. * p < 0.05 difference between groups.
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