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Disease Heritability Enrichment of Regulatory
Elements Is Concentrated in Elements with Ancient
Sequence Age and Conserved Function across Species

Margaux L.A. Hujoel,1,2,* Steven Gazal,3,4 Farhad Hormozdiari,3,4 Bryce van de Geijn,3,4

and Alkes L. Price1,3,4,*

Regulatory elements, e.g., enhancers and promoters, have been widely reported to be enriched for disease and complex trait heritability.

We investigated how this enrichment varies with the age of the underlying genome sequence, the conservation of regulatory function

across species, and the target gene of the regulatory element.We estimated heritability enrichment by applying stratified LD score regres-

sion to summary statistics from 41 independent diseases and complex traits (average N¼ 320K) and meta-analyzing results across traits.

Enrichment of human putative enhancers and promoters was larger in elements with older sequence age, assessed via alignment with

other species irrespective of conserved functionality: putative enhancer elements with ancient sequence age (older than the split

between marsupial and placental mammals) were 8.83 enriched (versus 2.53 for all putative enhancers; p ¼ 3e�14), and promoter

elements with ancient sequence age were 13.53 enriched (versus 5.13 for all promoters; p ¼ 5e�16). Enrichment of human putative

enhancers and promoters was also larger in elements whose regulatory function was conserved across species, e.g., human putative

enhancers that were enhancers in R5 of 9 other mammals were 4.63 enriched (p ¼ 5e�12 versus all putative enhancers). Enrichment

of human promoters was larger in promoters of loss-of-function intolerant genes: 12.03 enrichment (p ¼ 8e�15 versus all promoters).

The mean value of several measures of negative selection within these genomic annotations mirrored all of these findings. Notably, the

annotations with these excess heritability enrichments were jointly significant conditional on each other and on our baseline-LDmodel,

which includes a broad set of coding, conserved, regulatory, and LD-related annotations.
Introduction

Disease-associated variants and disease heritability have

been widely reported to be concentrated in regulatory

annotations, such as enhancers and promoters.1–7 These

findings have motivated recent studies of how enhancers

and promoters evolve across species.8–11 Vierstra et al.8

analyzed DNase I hypersensitivity sites (DHSs) in humans

and mice and reported that both human-specific DHSs

and human DHSs that were conserved in mice were

significantly enriched for disease- and trait-associated var-

iants, despite decreased constraint within human-specific

DHSs. This implies that both human-specific regulatory

elements and regulatory elements that are shared across

species are important for disease; however, these analyses

were restricted to only one species other than humans,

and do not elucidate the relative importance of these

two types of regulatory elements. Villar et al.9 analyzed

20 mammalian species and reported that enhancers evolve

more rapidly than promoters, and that enhancers were

often species specific whereas promoters were often func-

tionally conserved. Vermunt et al.10 and Trizzino et al.11

analyzed 3–6 primate species and reported that regulatory

elements were generally functionally conserved across

primates, with higher sequence and function conserva-

tion for promoters than for enhancers. However, which

enhancers and promoters are most important for disease
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remains largely unknown. Further investigating which

enhancers and promoters are most important for disease

would improve our biological understanding of disease

architectures.

Here, we characterize the contribution of enhancers and

promoters to disease heritability based on sequence age,

conserved function across species, and gene function of

the target gene. We achieve this by constructing new anno-

tationsusingenhancersandpromoterspreviously identified

in liver tissue using ten high-quality genomes (humans and

nine other mammalian species9) and applying stratified LD

score regression with the baseline-LDmodel6,7 to summary

association statistics from 41 independent diseases and

complex traits (average N ¼ 320K). An overview of the

data sources used in our analyses is provided in Figure 1.

Wefind that disease heritability enrichment is concentrated

inputative enhancers andpromoterswith ancient sequence

age and conserved function across species, as well as

promoters of loss-of-function intolerant genes from the

Exome Aggregation Consortium (ExAC).12 The mean value

of several measures of negative selection within these

genomic annotations mirrored all of these findings, with

larger heritability enrichments for annotations under

stronger negative selection. Our findings are consistent

with previous studies broadly demonstrating that regions

under strong negative selection are enriched for disease

heritability and disease-associated variants.6,7,13–20
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Figure 1. Data Sources Used in Analyses
New functional annotations are constructed using a variety of previous research.9,12,21 By applying stratified LD score regression
including both these annotations and the baseline-LD model6,7 to summary association statistics from 41 independent diseases and
complex traits (average N ¼ 320K), we can determine the disease heritability enrichment and standardized effect size for annotations
of interest.
Material and Methods

Putative Enhancer and Promoter Annotations
Our goal is to understand the role of human enhancers and pro-

moters in the genetic architecture of diseases and complex traits.

We first annotated regions as putative enhancers and promoters

using previously reported enhancer and promoter regions that

were enriched for histone marks (H3K27ac and H3K4me3) in at

least two of four human liver tissue samples.9 The study identi-

fying these regulatory elements reported that a ‘‘sizable majority’’

of identified enhancers are regulatorily active (based on results of

further experimental assays) and that most regions enriched for

H3K4me3 (annotated as promoters) lie near transcription start

sites.9 However, we conservatively refer to these enhancer regions

as ‘‘putative enhancers.’’ Wemerged any overlapping annotations,

resulting in putative enhancer and promoter regions with mean

segment lengths of 3.4 kb and 4.3 kb, respectively. In total, 3.3%

of common variants lie within putative enhancers and 1.5%

within promoters (Table 1). Correlations between the putative

enhancer and promoter annotations and various subsets of

these annotations (described below) are reported in Figure S1

and Table S1.

Sequence Age Annotations
We constructed genomic annotations based on a previous study

which classified sequence age through genome-wide alignments

of 100 vertebrates.21 That study annotated each region of the

human genome with an associated score between 1 and 19 based

on the number of key ancestral nodes in the tree of vertebrates

that it aligned to (1st root ¼ human; 19th root ¼ vertebrates);

younger regions were assigned smaller scores, whereas older

regions were assigned larger scores. Most regions were assigned

a precise age (one score), but some regions were assigned an age

interval (range of scores) or an inconsistent age. Regions with

inconsistent age were removed.

We annotated SNPs in putative enhancer and promoter regions

according to the age of the sequence in the corresponding region

of the genome (start location% SNP location < end location). We

removed regions in which the alignment at the 19th root was

uncertain and assigned the maximum sequence age for SNPs in

regions with an age interval. We categorized the ages as post-

eutheria split (1–11; young), eutheria (12; intermediate), and

pre-eutheria split (13–19; ancient), with approximately one third
612 The American Journal of Human Genetics 104, 611–624, April 4,
of SNPs in putative enhancers and promoters falling in each of

these age bins. Pre-eutheria split (or ancient sequence age) means

the sequence has an age older than the split between placental and

marsupial mammals (>160 million years old22,23).

We also analyzed 24 putative regulatory annotations from

the baseline model6 (Table S2). We intersected these annotations

with the ancient sequence age annotation, resulting in

24 putative regulatory annotations that have ancient sequence

age. Furthermore, we analyzed two chromatin marks (H3K4me3

and H3K27ac) directly measured in various tissues and cell types

and defined annotations based on these marks being present

in at least 1,10, or 20 tissues/cell types;5 we also intersected these

annotations with the ancient sequence age annotation.
Conserved Function Annotations
We annotated human putative enhancers and promoters accord-

ing to their conserved function, based on previous work specifying

for each human element whether the element was functionally

conserved (sequence aligned with histone mark signal conserved

across species), mapped (sequence aligned), or missing in analyses

of nine other mammalian species (with high-quality genomes).9

Human-specific and highly conserved putative enhancers and

promoters were defined as elements with conserved function

in 0 or 9 of the 9 mammals, respectively. We denote conserved

putative enhancers and promoters as elements with conserved

function in at least 5 of the 9 mammals.

We constructed 6 categorical annotations (3 for promoters and

3 for putative enhancers): each putative enhancer and promoter

was annotated with the conservation count (CC) in other species

(CC ¼ 0,1,.9; both align and have functional conservation), the

mapped count in other species (0,1,.9; align but no functional

conservation) and the missing count in other species (0,1,.9).

We introduced 20 binary annotations (10 for promoters and

10 for putative enhancers) reflecting the 10 possible values of

CC (0,1,.9).

We computed the conservation count, mapped count, and

missing count of all elements (prior to merging) and then merged

information across overlapping elements. For elements that over-

lapped, for each of conserved, mapped, and missing count, we

computed the union of each count across species; this implies

that these small proportions of the genome where two or more

elements overlap could get conservation, mapped, and missing

counts that add up to more than 9.
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Table 1. Annotations Analyzed in Main Analyses

Annotation

Prop.
Prop.
Putative

Mean
Segment

SNPs
enhancer/
promoter length (BP)

Putative enhancer 0.0332 3,362

Promoter 0.0152 4,308

Ancient putative enhancer 0.0052 0.1557 191

Ancient promoter 0.0042 0.2765 159

Conserved putative enhancer 0.0055 0.1649 4,962

Conserved promoter 0.0080 0.5251 4,502

Promoter of ExAC gene 0.0025 0.1640 4,549

We report the proportion of common SNPs (MAF R 0.05) and mean segment
length in base pairs (BP) for each annotation. For the count annotations
(putative enhancer conservation count and promoter conservation count),
we report here the corresponding binary annotations, conserved putative
enhancer and conserved promoter. Mean segment length is computed after
merging overlapping elements. Main annotations are publicly available (see
Web Resources).
Gene Function Annotations
To assess how the target genemay impact the role of a promoter in

disease architecture, we annotated promoters based on whether

they were a promoter of an ancient gene (P1–P10 genes24–26 which

emerged before the vertebrates split z 500 million years ago27),

a loss-of-function intolerant gene from ExAC (ExAC gene;12

3,230 such genes; Table 1), or a gene with a mouse ortholog

(identified in hg38; we assume that gene names remain consistent

across builds; see Web Resources).28

We obtained the coordinates of all TSSs (see Web Resources) and

associated genes.29 We calculated the mid-point of each merged

promoter and determined whether the closest transcription start

site (TSS) within 5 kb to the midpoint corresponded to a gene in

the specified gene set.
Heritability Enrichment and Standardized Effect Size

ðt�Þ Metrics
In order to estimate the heritability enrichment of an annotation,

we ran stratified LD score regression (S-LDSC)6,7 using 1000 Ge-

nomes as the LD reference panel.30 Consider C binary or contin-

uous-valued annotations ða1;.; aCÞ, denote acðjÞ the annotation

value of SNP j for annotation c, and assume that the variance

of per-normalized-genotype effect sizes linearly depends on

the C annotations: VarðbjÞ ¼ P
c
acðjÞtc, where tc is the per-SNP

contribution of one unit of the annotation c to heritability (jointly

modeled with all other annotations). S-LDSC estimates tc using

the summary statistic for a SNP j ðc2
j Þ via the following equation:

E
h
c2
j

i
¼ N

X
c

lðj; cÞtc þNbþ 1 (Equation 1)

where N is the sample size of the GWAS, b quantifies confounding

biases,31 and lðj; cÞ ¼ P
k

acðkÞr2jk is the LD score of SNP j to annota-

tion c where rjk is the correlation between SNPs j and k. S-LDSC

estimates two metrics quantifying the role of a functional region

in diseases and complex traits. First, it estimates the heritability

enrichment of binary annotations, defined as the proportion of

heritability explained by SNPs in the annotation divided by the
The Ame
proportion of SNPs in the annotation. The enrichment of annota-

tion c is estimated as

Enrichmentc ¼ %h2ðcÞ
%SNPðcÞ ¼

h2ðcÞ=h2

j c j =M ; (Equation 2)

where h2(c) is the heritability causally explained by common SNPs

in annotation c, h2 is the heritability causally explained by

common SNPs, jc j is the number of common SNPs that lie in

the annotation, and M is the number common SNPs (in our ana-

lysesM¼ 5,961,159 SNPs, see below). A value greater than 1 would

indicate a functional annotation is enriched for trait heritability or

the proportion of heritability explained is greater than one would

expect given the size of the annotation.

Standardized effect size ðt�c Þ was previously defined7 as the pro-

portionate change in per-SNP heritability associated with a one

standard deviation increase in the value of the annotation,

conditional on the other annotations in the model; t�c quantifies

effects that are unique to the focal annotation, unlike heritability

enrichment.6,7,32 In detail,

t�c ¼
Msdc
h2

tc; (Equation 3)

where sdc is the standard deviation of annotation c.

Regression SNPs (the SNPs used by S-LDSC to estimate tc from

marginal association statistics) were obtained from the HapMap

Project phase 3; these SNPs are considered to be well-imputed

SNPs. SNPs with marginal association statistics larger than 80 or

0.001N and SNPs that are in themajor histocompatibility complex

(MHC) region were excluded from all analyses. Reference SNPs

(the SNPs used by S-LDSC to compute LD scores) were defined as

the set of 9,997,231 biallelic SNPs with minor allele count greater

than or equal to five in the set of 489 unrelated and outbred

European samples33 from phase 3 of 1000 Genomes Project

(1000G).30 We note that regression SNPs tag potentially causal

reference SNPs via LD scores computed using reference SNPs.6,7

Heritability SNPs (the SNPs used by S-LDSC to compute h2, h2(c),

jc j and sdc) were defined as the 5,961,159 common variants

(MAF R 0.05) in the set of reference SNPs. Using the LD score

for each annotation and the marginal statistics obtained from

the trait phenotypes, we computed the heritability enrichment

and t�c for each annotation.

In all analyses we included the putative enhancer and promoter

annotations9 as well as a broad set of 75 functional annotations

from the baseline-LD (v1.1) model,7,32 which include func-

tional annotations from the baseline model (i.e., coding, intron,

DHS, .), plus 10 MAF bins and 6 LD-related annotations

(Table S2).Wenote that the inclusionofMAF- andLD-relatedanno-

tations implies that the expected causal heritability of a SNP is a

function of MAF and LD. The 75 functional annotations from the

baseline-LD model are included in each analysis to account for

LD-dependent architectures and to minimize the risk of model

misspecification,whichcouldbias estimates.6,7 The75annotations

do not all produce conditionally statistically significant signals, in

part due to correlations between annotations that can compromise

conditional statistical significance. However, including all of these

annotations minimizes the risk of model misspecification when

analyzing new annotations. We meta-analyzed results across a

previously described set32 of 41 independent diseases and complex

traits (average N ¼ 320K, computed using largest dataset for

each trait); for six traits we analyzed two datasets (genetic

correlation > 0.9), leading to a total of 47 datasets analyzed
rican Journal of Human Genetics 104, 611–624, April 4, 2019 613



(Table S3; seeWeb Resources).We performed random-effects meta-

analyses across traits using the R package rmeta and the function

meta.summaries() (consistent with Finucane et al.6). All models

tested, including the annotations considered in each model, are

listed in Table S4. Correlations between our annotations and anno-

tations from the baseline-LD model are reported in Figure S1 and

Table S1.

Reported enrichment estimates are based on a random-effects

meta-analysis of enrichment estimates for each trait. The p value

for enrichment is computed using a random-effect meta-analysis

of h2 Cð Þ=� jCjÞ � ðð h2 � h2 Cð ÞÞ=ðM � jCjÞÞ across the traits (we

used this quantity because enrichment is not normally distrib-

uted6) and testing the null hypothesis that this difference is 0 by

computing a z-score. For enhancer conservation count and pro-

moter conservation count, we calculate enrichment for bins of

this categorical annotation.7

For each new annotation, we ran S-LDSC conditional on the pu-

tative enhancer and promoter annotations as well as the baseline-

LDmodel. For eachannotation type (sequenceage, conserved func-

tion, and gene function) we derived a joint model by running

S-LDSC with the full set of annotations of that type conditional

on the enhancer and promoter annotations and the baseline-LD

model. (For the sequence age analysis, this set consisted of four

annotations: young putative enhancer/promoter and ancient

putative enhancer/promoter; we removed the intermediate puta-

tive enhancer/promoter to avoid linear dependence between the

annotations. For the conserved function model, this set consisted

of eight annotations: human-specific putative enhancer/promoter,

highly conserved putative enhancer/promoter, putative enhancer/

promoter CC, and putative enhancer/promoter missing count;

we removed putative enhancer/promoter mapped count to avoid

linear dependence between the annotations. For the gene function

model, this set consisted of three annotations: promoter of an

ancient gene, promoter of ExAC gene, and promoter of a gene

with a mouse ortholog.) We then iteratively removed the least

statistically significant annotation (excluding annotations in the

baseline-LD model as well as the enhancer and promoter annota-

tion) until each remaining annotationwas significant (after correc-

tion for multiple testing).7 To produce a combined joint model, we

combined the significant sequence age, conserved function, and

gene functionannotations into a singlemodel and again iteratively

removed the least statistically significant annotation until each

annotation remained significant (after correction for multiple

testing). We note that this model selection technique may result

in inflated p values, analogous to winner’s curse.34 However, our

assessment of conditional significance addresses this by correcting

for the total number of annotations tested. For eachmodel, we per-

formed a secondary analysis in whichwe additionally included an-

notations defined by 500 bp flanking regions around each of the

new annotations in the model; this helps to guard against bias

due to model misspecification.6

In order to determine whether a subset of putative enhancers

and promoters were particularly enriched as compared to all

putative enhancers or promoters, we computed the enrichment

difference between an annotation A and a subset a. For each

trait, we computed the difference in enrichment between the

annotations ðDÞ and the standard error for this difference (using

block-jackknife) and then meta-analyzed results across 41 traits

using random-effects meta-analysis. In order to compute a p value

for the difference in enrichment, we computed the normally

distributed quantity h2 að Þ=� jaj� �� ðð h2 Að Þ � h2 að ÞÞ=ðjAj � jajÞÞg,
as well as its standard error for each trait (using block-jackknife),
614 The American Journal of Human Genetics 104, 611–624, April 4,
and then meta-analyzed results across traits. We then tested

the null hypothesis that this difference is 0; this test assesses

whether the per-SNP heritability within annotation A is different

within a than outside a. This test is a natural extension of the

approach used to assess statistical significance of enrichment.6

We computed the proportion of enrichment for an annota-

tion A, attributable to a subset a. The proportion of enrichment

for A attributable to a is defined as

ðenrichmenta � 1Þ �%SNPðaÞ
ðenrichmentA � 1Þ �%SNPðAÞ: (Equation 4)

If enrichmenta ¼ enrichmentA, then the proportion of enrichment

for A attributable to a is just the proportion of A in subset a.

We computed this quantity for each trait, used block-jackknife

to compute standard errors, and meta-analyzed results across

41 traits.

Negative Selection Metrics
It has been widely reported that although regions under strong

negative selection are depleted of genetic variation, these regions

are enriched for disease heritability and disease-associated

variants.6,7,13–20 For example, the 2.6% of SNPs lying in regions

that are conserved across 29 mammals (spanning 4.2% of the

genome) were reported to explain 24%–35% of disease and com-

plex trait heritability.6,7,35

We quantified the strength of negative selection within these

annotations by computing the mean value of several measures

of negative selection and computing the standard error using

block-jackknife with 200 equally sized blocks of adjacent SNPs

within the annotations (all measures are annotations in the

baseline-LD model; Table S2). First, we computed the proportion

of common SNPs with GERPþþ rejected substitutions (RS)

score R4 (GERP RS R 4, binary annotation) within the base-

line-LD annotations.7,36 This score is equal to the difference be-

tween the neutral and observed substitution rates and reflects

the intensity of constraint at a given genomic location, such

that a larger score is indicative of stronger negative selection.

Second, we computed the mean background selection statistic

(BSS ¼ 1-McVicker B statistic37) (at common SNPs); a BSS value

close to 1 indicates that background selection resulted in near

complete removal of diversity whereas a value close to 0 indi-

cates little effect.7 Third, we computed the proportion of com-

mon SNPs conserved across mammals;6,35 regions that are

conserved across mammals are likely to be critical, as mutations

were not tolerated. Fourth, we computed the mean MAF-

adjusted predicted allele age (at common SNPs); on average,

recent variants are more deleterious.7,38 Fifth, we computed

mean nucleotide diversity39 (at common SNPs); variants that

lie in regions with low nucleotide diversity are more likely to

be deleterious.7,40
Results

Disease Enrichment Is Concentrated in Putative

Regulatory Elements with Ancient Sequence Age

We focused our analyses on putative enhancer and pro-

moter elements that were previously annotated based on

H3K27ac and H3K4me3 marks assayed in human liver9

(Table 1). To assess the disease enrichment of these ele-

ments, we applied S-LDSC with the baseline-LD model6,7
2019



Figure 2. Disease Enrichment of Ancient
Enhancers and Ancient Promoters in
Sequence Age Model
We report results for sequence age annota-
tions that are jointly significant condi-
tional on the baseline-LD model and puta-
tive enhancer and promoter annotations
(Bonferroni p ¼ 0.05/4 ¼ 0.0125).
(A and B) Heritability enrichment (A) and
t� estimates (51.96 standard error) (B);
results are meta-analyzed across 41 traits.
(C) Proportion of common SNPs within
annotations with GERP RS R 47,36

(51.96 standard error). We report the pro-
portion of common SNPs (MAF R 0.05)
for each annotation. Numerical results
are reported in Table S7, and results for
each trait are reported in Table S8.
to summary statistics from 41 independent diseases

and complex traits (average N ¼ 320K; Table S3) and

meta-analyzed results across traits. We observed signifi-

cant heritability enrichment for both putative enhancers

(2.63, p ¼ 3e�12) and promoters (4.63, p ¼ 3e�17)

(Table S5A), consistent with previous studies of disease

enrichment of regulatory elements.1–7 Based on signifi-

cance of regression coefficients, we determined that the

promoter annotation (but not the putative enhancer

annotation) provides unique information conditioned on

the baseline-LD model (p ¼ 0.007; Table S5A), which

includes a broad set of regulatory annotations (Table S2).

Analyses of highly reproducible putative enhancer and

promoter annotations (reproduced in all four tissue sam-

ples from Villar et al.9) produced similar results (Table S5B).

We annotated putative enhancer and promoter regions

according to their underlying sequence age, assessed via

genome-wide alignment of 100 vertebrates irrespective of

conserved functionality.21 Each region of the human

genome had an associated score between 1 and 19 based

on the number of key ancestral nodes in the tree of

vertebrates that it aligned to. We classified enhancer and

promoter regions as having a young (1–11), intermediate

(12), or ancient (13–19) sequence age (see Material and

Methods); different regions within the same enhancer or

promoter may be assigned different sequence ages, such

that ancient enhancers/promoters represent the ancient

parts of the enhancers/promoters rather than different

enhancers/promoters. Ancient sequence age means the
The American Journal of Human
sequence is older than the split be-

tween marsupial and placental mam-

mals (>160 million years old22,23);

16% of putative enhancer SNPs were

annotated as ancient putative

enhancer, and 28% of promoter

SNPs were annotated as ancient pro-

moter (Table 1). We computed corre-

lations between our annotations and

38 annotations from the baseline-LD

model (Table S2): 32 functional anno-
tations and 6 LD-related annotations. The ancient putative

enhancer and ancient promoter annotations were only

weakly correlated with annotations from the baseline-LD

model (Figure S1 and Table S1).

To assess how the disease enrichment of putative

enhancers and promoters varies with sequence age, we

repeated our S-LDSC analysis with each of the six age-spe-

cific annotations (young, intermediate, or ancient; puta-

tive enhancer or promoter) included in turn, in addition

to baseline-LD þ putative enhancer þ promoter annota-

tions. We observed the strongest enrichments for ancient

putative enhancers and ancient promoters (Table S6). We

constructed a joint sequence age model by retaining only

the age-specific annotations that remained significant

(after correction for multiple testing) when conditioned

on the baseline-LD þ putative enhancer þ promoter anno-

tations;7 only the ancient putative enhancer and ancient

promoter annotations were jointly significant. Ancient

putative enhancers were 9.33 enriched, compared to

2.73 for all putative enhancers (p ¼ 4e�15 for difference),

and ancient promoters were 14.33 enriched, compared

to 4.93 for all promoters (p ¼ 2e�18 for difference)

(Figure 2A, Tables S7A and S8). We note that enrichment

estimates - which differ from model to model - can change

slightly depending on the set of annotations included in

the model;6,7 the enrichment estimates reported in the Ab-

stract are estimates obtained using the combined joint

model. Although ancient putative enhancers comprise

only 16% of putative enhancers (at the level of common
Genetics 104, 611–624, April 4, 2019 615



SNPs), they contribute 59% (SE 5%) of all putative

enhancer enrichment. Analogously, although ancient pro-

moters comprise only 28% of promoters, they contribute

82% (SE 4%) of all promoter enrichment.

Both ancient putative enhancers and ancient promoters

were uniquely informative for disease heritability condi-

tional on the baseline-LD þ putative enhancer þ promoter

annotations, as quantified by t� (the proportionate change
in per-SNP heritability associated with an increase in the

value of the annotation by one standard deviation, condi-

tional on other annotations included in the model7)

(Figure 2B and Table S7B). Specifically, we estimated large

and highly significant values of t� for both ancient puta-

tive enhancers (t� ¼ 0:43, p ¼ 1e�13) and ancient pro-

moters (t� ¼ 0:70, p¼ 9e�25). In particular, these t� values
were larger than the analogous t� values that we recently

estimated for both LD-related annotations7 and molecular

QTL annotations,32 implying a substantial improvement

in our understanding of which regulatory elements

contribute to disease heritability. The slightly but signifi-

cantly negative value of t� for (all) putative enhancers

and (all) promoters indicates conditional depletion for pu-

tative enhancers and promoters that do not have ancient

sequence age (Figure 2B and Table S7B).

We quantified the mean strength of negative selection

within each of the annotations from Figure 2A. We first

calculated the proportion of common SNPs with GERPþþ
rejected substitutions (RS) score R 4 (GERP RS R 4).7,36

The GERP RS score reflects the difference between the

neutral and observed substitution rates and thus reflects

the intensity of constraint at a given genomic location,

such that a larger score is indicative of stronger negative

selection. We determined that the stronger disease enrich-

ment for ancient putative enhancers and ancient pro-

moters is mirrored by the larger proportion of variants in

these annotations with GERP RS R 4, reflecting stronger

negative selection (Figure 2C and Table S7C). We note

that 1.2% and 1.4% of common SNPs in putative enhancer

and promoter annotations (and 5.8% and 4.1% of com-

mon SNPs in ancient putative enhancer and promoter an-

notations) have GERP RS R 4, as compared to 0.81% of all

common SNPs, thus regulatory regions enter the regime of

strong selection fairly frequently. We note that as sequence

age is assessed via sequence conservation across species,

we expected the GERP scores in ancient regions to be

higher. However, we did not know in advance whether

the quantitative pattern of enrichment would closely

mirror the quantitative pattern of GERPþþ scores. We

observed similar patterns for four other measures of

negative selection:7 a background selection statistic (BSS)

equal to 1� McVicker B statistic;37 sequence conservation

across 29 mammals35; predicted allele age;7 and nucleotide

diversity39 (Table S7C). However, as noted above, ancient

putative enhancers and ancient promoters were uniquely

informative for disease heritability conditional on the

baseline-LD model, which includes all of these measures

of negative selection.
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We performed five secondary analyses to assess the

robustness of our results. First, we repeated the analysis

of Figures 2A and 2B restricting to three liver-related traits

(high cholesterol, HDL, and LDL). Although this analysis

is less well-powered, the conditional signal for ancient

promoters remained statistically significant (p ¼ 0.0003,

Table S9). Second, we repeated the analysis of Figures 2A

and 2B by adding a binary annotation defined by ancient

sequence age (irrespective to enhancer or promoter status)

to the model; this annotation was not conditionally infor-

mative for disease heritability as quantified by t�, and its

addition to the model did not significantly change our

results (Table S10). Third, we intersected the ancient

sequence age annotation with 24 binary annotations

from baseline-LD reflecting putative regulatory elements

and ran S-LDSC conditional on the baseline-LD model

with each of these intersected annotations included in

turn. We obtained similar results, with much stronger en-

richments for ancient regulatory elements (Table S11).

(We used the putative enhancer and promoter annotations

from Villar et al.9 in our main analyses so that we could

integrate annotations based on ancient sequence age and

conserved function into a combined joint model; see

below.) Fourth, we repeated this analysis using H3K27ac

and H3K4me3 annotations from Roadmap,5 defining an-

notations based on marks present in 1/10/20 tissues/cell

types, respectively. As expected, we found that marks pre-

sent in more tissues/cell types had higher disease enrich-

ment (Table S12). However, we found that each of these

annotations had �33 greater disease enrichment when

restricted to regions of ancient sequence age. This shows

that our finding of stronger disease enrichments for liver

regulatory elements in regions of ancient sequence age is

orthogonal to the number of tissues/cell types with regula-

tory signal. Fifth, we repeated the analysis of Figures 2A

and 2B by including 500 bp flanking regions around

each of the annotations from Figures 2A and 2B, to guard

against bias due to model misspecification6 (see Material

andMethods). We confirmed that this did not significantly

change our results (Table S13).

Disease Enrichment Is Concentrated in Putative

Regulatory Elements with Conserved Function

We annotated human putative enhancers and promoters

according to their conserved function, assessed via how

many of nine other mammalian species assayed by Villar

et al.9 had shared regulatory functionality. Each putative

enhancer and promoter was annotated with the conserva-

tion count (CC) in other species (CC ¼ 0,1,.9). We con-

structed both integer-valued ‘‘conservation count’’ (value

of CC) and binary ‘‘conserved’’ (CC R 5) annotations

(see Material and Methods and Table 1). A large proportion

of annotated putative enhancers were functionally human

specific (40% human-specific [CC ¼ 0] versus 2% highly

conserved [CC ¼ 9]), whereas promoters were more

functionally conserved (19% human-specific versus 15%

highly conserved) (Table S17). Accordingly, 53% of
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Figure 3. Disease Enrichment of
Conserved Enhancers and Conserved Pro-
moters in Conserved Function Model
We report results for conserved function
annotations that are jointly significant
conditional on the baseline-LD model
and putative enhancer and promoter
annotations (Bonferroni p ¼ 0.05/8 ¼
0.00625).
(A and B) Heritability enrichment (A) and
t� estimates (51.96 standard error) (B);
results are meta-analyzed across 41 traits.
CC denotes conservation count.
(C) Proportion of common SNPs within
annotations with GERP RS R 47,36

(51.96 standard error). We report the pro-
portion of common SNPs (MAF R 0.05)
for each annotation. Numerical results
are reported in Table S15, and results for
each trait are reported in Table S16.
promoters were conserved promoters, whereas only 16%

of putative enhancers were conserved putative enhancers

(Table 1). The putative enhancer conservation count

and promoter conservation count annotations were only

weakly correlated with annotations from the baseline-

LD model, but moderately correlated with the ancient

putative enhancer and ancient promoter annotations

(Figure S1 and Table S1).

To assess how the disease enrichment of putative

enhancers and promoters varies with conserved func-

tion, we performed S-LDSC analyses with each of ten

conserved-function-specific annotations (conservation

count, highly conserved, human-specific, mapped count,

missing count [see Material and Methods]; putative

enhancer or promoter) included in turn, in addition

to baseline-LD þ putative enhancer þ promoter annota-

tions. We observed the strongest enrichments for highly

conserved putative enhancers and highly conserved pro-

moters, and also observed that while human-specific pro-

moters were enriched, human-specific putative enhancers

were not (Table S14). We constructed a joint conserved

function model by retaining only the conserved-func-

tion-specific annotations that remained significant (after

correction for multiple testing) when conditioned on the

baseline-LD þ putative enhancer þ promoter annota-

tions;7 only the putative enhancer conservation count

and promoter conservation count annotations were

jointly significant. Because enrichment is not defined for

annotations with value 0–9, we estimated the enrichment
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of the corresponding binary annota-

tions (conserved putative enhancer

and conserved promoter) in the joint

model. Conserved putative enhancers

were 4.63 enriched, compared to

2.43 for all putative enhancers (p ¼
3e�12 for difference), and conserved

promoters were 5.13 enriched,

compared to 4.53 for all promoters
(p ¼ 0.022 for difference) (Figure 3A, Tables S15A and

S16). We note that enrichment estimates - which differ

from model to model - can change slightly depending on

the set of annotations included in themodel;6,7 the enrich-

ment estimates reported in the Abstract are estimates ob-

tained using the combined joint model. Although

conserved putative enhancers comprise only 16% of puta-

tive enhancers, they contribute 35% (SE 2%) of all putative

enhancer enrichment. Analogously, although conserved

promoters comprise only 53% of promoters, they

contribute 59% (SE 2%) of all promoter enrichment.

Both putative enhancer conservation count and pro-

moter conservation count were uniquely informative for

disease heritability conditional on the baseline-LD þ puta-

tive enhancer þ promoter annotations, as quantified by t�

(Figure 3B and Table S15B). Specifically, we estimated

significant values of t� for both putative enhancer conser-

vation count (t� ¼ 0:20, p ¼ 7e�11) and promoter conser-

vation count (t� ¼ 0:10, p ¼ 0.005). The significantly

negative value of t� for (all) putative enhancers indicates

conditional depletion for putative enhancers that are not

conserved (Figure 3B, Table S15B).

We quantified the mean strength of negative selection

within each of the annotations from Figure 3A. We

first calculated the proportion of common SNPs with

GERP RS R 4.7,36 We determined that the stronger disease

enrichments for conserved putative enhancers and

conserved promoters is mirrored by the larger proportion

of variants in these annotations with GERP RS R 4,
Genetics 104, 611–624, April 4, 2019 617



Figure 4. Disease Enrichment of Putative Enhancers and Promoters as a Function of Conservation Count (CC)
(A) Heritability enrichment (51.96 standard error); results are meta-analyzed across 41 traits.
(B) Proportion of common SNPs within annotations with GERP RSR 47,36 (51.96 standard error). We report the proportion of common
SNPs (MAF R 0.05) for each annotation. Numerical results are reported in Table S17, and results for each trait are reported in Table S18.
reflecting stronger negative selection (Figure 3C and

Table S15C). We observed similar patterns for four other

measures of negative selection (Table S15C). However, as

noted above, putative enhancer conservation count and

promoter conservation count were uniquely informative

for disease heritability conditional on the baseline-LD

model, which includes all of these measures of negative

selection.

To further assess how the disease enrichment of putative

enhancers and promoters varies with conserved function,

we repeated our S-LDSC analysis with each of 20 binary

conservation count annotations (CC ¼ 0,1,.9; enhancer

or promoter) jointly included, in addition to baseline-LD

model (the putative enhancer and promoter annotations

were excluded to avoid approximate colinearity of the an-

notations). For putative enhancers, we observed a roughly

linear trend whereby putative enhancers conserved in

more mammals are progressively more enriched for herita-

bility (Figure 4A, Tables S17A and S18). For promoters,

we observed a parabolic trend, similar to the linear trend

but with excess heritability for human-specific promoters

(Figure 4A and Table S17A).

We quantified the mean strength of negative selection

within each of the annotations from Figure 4A. We first

calculated the proportion of common SNPs with GERP

RS R 4.7,36 We determined that the linear disease enrich-

ment trend for putative enhancers and parabolic disease

enrichment trend for promoters (as conservation count
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increases) is mirrored by the proportion of variants in

these annotations with GERP RS R 4 (Figure 4B and

Table S17B). We observed similar patterns for four other

measures of negative selection (Table S17B).

We performed four secondary analyses. First, we

repeated the analysis of Figure 3A restricting to the three

liver-related traits. Although this analysis is less well pow-

ered, the conditional signal for putative enhancer conser-

vation count remained statistically significant (p ¼ 0.001,

Table S19). Second, we repeated the analysis of Figure 3A

by replacing the putative enhancer conservation count

and promoter conservation count annotations in the joint

model with binary conserved putative enhancer and

conserved promoter annotations, and we confirmed that

this did not significantly change our results (Table S20).

Third, we repeated the analysis of Table S20 by including

500 bp flanking regions around each of the annotations

from Figure 3A (see Material and Methods). This did

not significantly change our results; the heritability enrich-

ment for conserved putative enhancer was slightly reduced

but remained highly significant (Table S21). Fourth, we

repeated the analysis of Figure 3B by including human-

specific promoters as an additional annotation. While

this new annotation was not conditionally significant,

the value of t� for the promoter conservation count

annotation became larger and more statistically significant

(Table S22), consistent with the parabolic trend for pro-

moters in Figure 4A.
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Figure 5. Disease Enrichment of Pro-
moters of ExAC Genes in Gene Function
Model
We report results for the gene function
annotation that is significant conditional
on the baseline-LD model and putative
enhancer and promoter annotations
(Bonferroni p ¼ 0.05/3 ¼ 0.0167). ‘‘ExAC
genes’’ refer to genes annotated as having
high pLI in ExAC data.
(A and B) Heritability enrichment (A) and
t� estimates (51.96 standard error) (B);
results are meta-analyzed across 41 traits.
(C) Proportion of common SNPs within
annotations with GERP RS R 47,36

(51.96 standard error). We report the pro-
portion of common SNPs (MAF R 0.05)
for each annotation. Numerical results
are reported in Table S24, and results for
each trait are reported in Table S25.
Disease Enrichment Is Concentrated in Promoters of

Loss-of-Function Intolerant Genes

We annotated promoters according to the genes that they

regulate (see Material and Methods). In particular, we

annotated 16% of promoters as being promoters of the

3,230 ExAC LoF intolerant genes, defined as genes anno-

tated as having a high probability of being LoF intolerant

(pLI) in ExAC data12 (Table 1). The promoter of ExAC

gene annotation was only weakly correlated with anno-

tations from the baseline-LD model (Figure S1), but

moderately correlated with the ancient promoter and

promoter conservation count annotations (Figure S1

and Table S1).

To assess how the disease enrichment of promoters

varies with the gene that it regulates, we repeated

our S-LDSC analysis with the promoter of ExAC gene

annotation included, in addition to baseline-LD þ puta-

tive enhancer þ promoter annotations. We also

analyzed promoter of ancient gene and promoter of

gene with mouse ortholog annotations in turn (see

Material and Methods). The promoter of ExAC gene

annotation produced the strongest enrichment

(Table S23) and was the only gene function annotation

that remained significant (after correction for multiple

testing) in a joint analysis conditioned on the base-

line-LD þ enhancer þ promoter annotations.7 Pro-

moters of ExAC genes were 12.43 enriched, compared

to 5.13 for all promoters (p ¼ 9e�16 for the

difference) (Figure 5A, Tables S24A and S25). We
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note that enrichment estimates -

which differ from model to model -

can change slightly depending on

the set of annotations included in

the model;6,7 the enrichment esti-

mates reported in the Abstract are

estimates obtained using the com-

bined joint model. Although pro-

moters of ExAC genes comprise
only 16% of promoters, they contribute 39% (SE 2%)

of all promoter enrichment.

Promoters of ExAC LoF intolerant genes were uniquely

informative for disease heritability conditional on the

baseline-LD þ putative enhancer þ promoter annotations,

as quantified by t�. Specifically, we estimated a large and

highly significant value of t� (t� ¼ 0:37, p ¼ 2e�32)

(Figure 5B and Table S24B).

We quantified the mean strength of negative selection

within each of the annotations from Figures 5A and 5B.

We first calculated the proportion of common SNPs with

GERP RS R 4.7,36 We determined that the stronger disease

enrichment for promoters of ExAC genes is mirrored

by the larger proportion of variants in these annotations

with GERP RS R 4, reflecting stronger negative selec-

tion (Figure 5C and Table S24C). We observed similar

patterns for four other measures of negative selection

(Table S24C). However, as noted above, promoters of

ExAC genes were uniquely informative for disease

heritability conditional on the baseline-LD model, which

includes all of these measures of negative selection.

We performed three secondary analyses to assess the

robustness of our results. First, we repeated the analysis

of Figures 5A and 5B restricting to the three liver-related

traits. We observed a non-significant trend toward a

conditional signal for promoters of ExAC genes (nominal

p¼ 0.048; not significant after correcting for 3 annotations

tested), consistent with the fact that this analysis is less

well powered (Table S26). Second, we repeated the analysis
Genetics 104, 611–624, April 4, 2019 619



Figure 6. Disease Enrichment of Annota-
tions in Combined Joint Model
We report results for sequence age,
conserved function, and gene function
annotations that are jointly significant
conditional on the baseline-LD model
and putative enhancer and promoter
annotations (Bonferroni p ¼ 0.05/15 ¼
0.0033). (A) Heritability enrichment and
(B) t� estimates (51.96 standard error); re-
sults are meta-analyzed across 41 traits. CC
denotes conservation count. (C) Propor-
tion of common SNPs within annotations
with GERP RS R 47,36 (51.96 standard
error). We report the proportion of
common SNPs (MAF R 0.05) for each
annotation. Numerical results are reported
in Table S29, and results for each trait are
reported in Table S30.
of Figures 5A and 5B by including 500 bp flanking

regions around each of the annotations from Figures 5A

and 5B (see Material and Methods). We confirmed that

this did not significantly change our results (Table S27).

Third, we repeated the analysis of Figures 5A and 5B

by including two annotations based on fine-mapped

expression quantitative trait loci (eQTL): the MaxCPP

annotation for all genes and the MaxCPP annotation

for ExAC LoF genes only.32 Results were little changed,

and promoters of ExAC genes (as well as the MaxCPP

(allGenes) and MaxCPP (ExAC) annotations) were still

uniquely informative for disease heritability as quantified

by t� (Table S28).

Combined Joint Model

We constructed a combined joint model by including all

jointly significant annotations involving sequence age

(Figures 2A and 2B), conserved function (Figure 3B), and

gene function (Figures 5A and 5B) and retaining only the

annotations that remained significant (after correction

for multiple testing) when conditioned both on each other

and on the baseline-LD þ promoter þ putative enhancer

annotations.7 The final joint model included ancient puta-

tive enhancer, ancient promoter, putative enhancer con-

servation count, and promoter of ExAC gene annotations.

Because enrichment is not defined for annotations with

value 0–9, we estimated the enrichment of conserved puta-

tive enhancer in lieu of putative enhancer conservation

count, analogous to above.
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Ancient putative enhancers were

8.83 enriched, compared to 2.53

for all putative enhancers (p ¼
3e�14 for difference), and ancient

promoters were 13.53 enriched,

compared to 5.13 for human pro-

moters (p ¼ 5e�16 for difference)

(Figure 6A, Tables S29A and S30);

these enrichments differed only

slightly from the joint sequence age
model (Figure 2A). Conserved putative enhancers were

4.63 enriched (p ¼ 5e�12 for difference versus all human

putative enhancers); this enrichment differed only

very slightly from the joint conserved function model

(Figure 3A). Promoters of ExAC genes were 12.03 enriched

(p ¼ 8e�15 for difference versus all promoters); this

enrichment differed only very slightly from the joint

gene function model (Figure 5A).

In the combined joint model, we estimated highly

significant values of t� for ancient putative enhancers

(t� ¼ 0:39, p ¼ 2e�12), ancient promoters (t� ¼ 0:57,

p ¼ 1e�17), putative enhancer conservation count (t� ¼
0:16, p ¼ 1e�8), and promoters of ExAC genes (t� ¼
0:28, p ¼ 2e�21) (Figure 6B and Table S29B). These t� esti-
mates were slightly lower than the corresponding t� esti-

mates from the joint sequence age model (Figure 2B), joint

conserved function model (Figure 3B), and joint gene

function model (Figure 5B), consistent with correlations

between these annotations (Figure S1 and Table S1).

Notably, the t� estimates for ancient enhancers and

ancient promoters remained larger than the analogous t�

values that we recently estimated for LD-related annota-

tions7 and molecular QTL annotations.32

The stronger disease enrichment for ancient putative

enhancers, ancient promoters, conserved putative en-

hancers, and promoters of ExAC genes is mirrored by the

larger proportion of variants in these annotations with

GERP RS R 4 and four other measures of negative selec-

tion, reflecting stronger negative selection (Figure 6C and



Table S29C), as we previously determined (Figure 2C and

Table S7C; Figure 3C and Table S15C; Figure 5C and Table

S24C). However, as noted above, all of these annotations

were uniquely informative for disease heritability condi-

tional on the baseline-LD model, which includes all of

these measures of negative selection.

We performed six secondary analyses to assess the

robustness of our results. First, we repeated the analysis

of Figure 6A restricting to the three liver-related traits.

Although this analysis is less well powered, the conditional

signals for ancient promoters and enhancer conservation

count remained statistically significant (Table S31). Sec-

ond, we repeated the analysis of Figure 6A by replacing

the putative enhancer conservation count annotation in

the joint model with the binary conserved putative

enhancer annotation, and confirmed that this did not

significantly change our results (Table S32). Third, we

repeated the analysis of Table S32 by including 500 bp

flanking regions around each of the annotations from

Figure 6A (see Material and Methods). We confirmed that

this did not significantly change our results; the enrich-

ment for conserved putative enhancer was slightly reduced

but remained highly significant (Table S33). Fourth, we

repeated the analysis of Figure 6B by including human-

specific promoters and promoter conservation count as

additional annotations, in order to investigate whether

this might lead to a significant t� for the promoter conser-

vation count annotation (as in Table S22) due to the para-

bolic trend for promoters in Figure 4A. However, the t� for
both annotations was non-significant (Table S34). Fifth, we

repeated the analysis of Figure 6A by including the two

fine-mapped eQTL annotations: the MaxCPP annotation

for all genes and the MaxCPP annotation for ExAC LoF

genes only.32 Results were little changed, and our new

annotations (ancient enhancer, enhancer conservation

count, ancient promoter, promoter of ExAC gene) (as

well as the MaxCPP [allGenes] and MaxCPP [ExAC] anno-

tations) were still uniquely informative for disease herita-

bility as quantified by t� (Table S35A). Sixth, we repeated

the analysis from Table S35A, including a new annotation

resulting from restricting the MaxCPP of all genes annota-

tion to regions with ancient sequence age. We determined

that the conditional eQTL signal is concentrated in the

MaxCPP of all genes intersected with ancient sequence

age annotation (Table S35B).
Discussion

Our results help elucidate which regulatory elements make

the largest contributions to the genetic architecture of

diseases and complex traits. We reached three main con-

clusions. First, disease heritability is concentrated in puta-

tive enhancers and promoters with ancient sequence age.

Second, disease heritability is concentrated in putative en-

hancers and promoters with conserved function across

species. Third, disease heritability is concentrated in
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promoters of ExAC LoF intolerant genes. These findings

represent unique information about disease heritability

conditional on all other available annotations, as quanti-

fied by large and highly significant t� values (up to 0.57

in combined joint model; Figure 6B), substantially larger

than the t� values that we reported for other annotations

in our recent work.7,32 In addition to improving our bio-

logical understanding of disease architectures, our findings

have immediate downstream applications to improve

association power,3,41,42 fine-mapping,2,43,44 and genetic

risk prediction,45–47 which will provide a means to validate

our findings using different methods.

Promoters are known to be functionally conserved more

often than enhancers;9 we determined that conserved pu-

tative enhancers, although less common than conserved

promoters, are particularly strongly enriched for disease

heritability (Figure 6). In addition, previous work reported

that human-specific DHSs were significantly enriched for

disease- and trait-associated variants, despite decreased

constraint; we observed modest enrichment for human-

specific promoters but no enrichment for human-specific

putative enhancers (Figure 4A). The excess enrichments

for putative enhancers and promoters with ancient

sequence age raises the question of whether genomic re-

gions with ancient sequence age are broadly important;

however, ancient sequence age was not conditionally sig-

nificant in our analyses (Table S10). Our finding of

increased disease enrichment in promoters of ExAC LoF

intolerant genes12 (Figure 6A) is consistent with evidence

from eQTL studies;32 however, our promoter of ExAC

gene annotation remains uniquely informative condi-

tional on the fine-mapped eQTL annotations from Hor-

mozdiari et al.32 (Table S28). We further determined that

the conditional eQTL signal is concentrated in MaxCPP

(allGenes) intersected with ancient sequence age, suggest-

ing that eQTL integration studies should pay particular

attention to whether an eQTL thatmay be linked to disease

lies in a region of ancient sequence age (Table S35B). Our

finding of increased disease enrichment in promoters of

ancient genes (Table S23) is consistent with previous

work showing that genes linked to human disease are

more often ancient than recently evolved;24 however, we

determined that the promoter of ancient genes annotation

was not uniquely informative once the promoter of ExAC

genes annotation was included in our model. Our findings

are consistent with previous studies broadly demon-

strating that regions under strong negative selection are

enriched for disease heritability and disease-associated var-

iants, despite being depleted for genetic variation.6,7,13–20

(However, analogous to those studies, we are unable to

make any statements about lethal mutations that preclude

any genetic variation whatsoever.)

We note several limitations of our work. First, we

analyzed putative enhancers that were identified using

two histone marks in liver tissue,9 an approach that

does not guarantee enhancer functionality. However,

that study reported that the majority of the putative
rican Journal of Human Genetics 104, 611–624, April 4, 2019 621



enhancers were regulatorily active (based on results of

further experimental assays),9 implying that our finding

of 3.53 stronger disease enrichment for ancient en-

hancers (and 1.83 stronger disease enrichment for

conserved enhancers) cannot arise simply because ancient

(or conserved) putative enhancers are more likely to be

real enhancers. Nonetheless, the larger disease enrich-

ment for ancient (or conserved) putative enhancers could

be due to a combination of ancient (or conserved) en-

hancers being more strongly enriched and ancient (or

conserved) putative enhancers having a higher probabil-

ity of being truly functional. Second, our main analyses

were restricted to putative enhancers and promoters iden-

tified in liver tissue.9 Results involving sequence age were

similar for other putative regulatory annotations (Table

S11). However, efforts to generalize our results for

conserved function are limited by the availability of

enhancer and promoter annotations across species in

other tissues; one possible solution would be to predict

regulatory function across species in other tissues.48–55

Third, we focused our analyses on common variants by

using a 1000 Genomes LD reference panel, but future

work could draw inferences about low-frequency variants

using larger reference panels.20 Fourth, inferences about

components of heritability can potentially be biased by

failure to account for LD-dependent architectures.7,56–58

All of our analyses used the baseline-LD model, which

includes six LD-related annotations.7 The baseline-LD

model is supported by formal model comparisons using

likelihood and polygenic prediction methods, as well

as analyses using a combined model incorporating alter-

native approaches;59 however, there can be no guarantee

that the baseline-LD model perfectly captures LD-depen-

dent architectures. Despite these limitations, our results

are highly informative for the genetic architecture of dis-

eases and complex traits.
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