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The interactive effects of ocean warming and invasive species are complex

and remain a source of uncertainty for projecting future ecological change.

Climate-mediated change to trophic interactions can have pervasive ecologi-

cal consequences, but the role of invasion in mediating trophic effects is

largely unstudied. Using manipulative experiments in replicated outdoor

mesocosms, we reveal how near-future ocean warming and macrophyte

invasion scenarios interactively impact gastropod grazing intensity and pre-

ference for consumption of foundation macroalgae (Ecklonia radiata and

Sargassum vestitum). Elevated water temperature increased the consumption

of both macroalgae through greater grazing intensity. Given the documented

decline of kelp (E. radiata) growth at higher water temperatures, enhanced

grazing could contribute to the shift from kelp-dominated to Sargassum-

dominated reefs that is occurring at the low-latitude margins of kelp

distribution. However, the presence of a native invader (Caulerpa filiformis)

was related to low consumption by the herbivores on dominant kelp at

warmer temperatures. Thus, antagonistic effects between climate change

and a range expanding species can favour kelp persistence in a warmer

future. Introduction of species should, therefore, not automatically be con-

sidered unfavourable under climate change scenarios. Climatic changes are

increasing the need for effective management actions to address the interac-

tive effects of multiple stressors and their ecological consequences, rather

than single threats in isolation.
1. Introduction
Climate change is a global environmental threat with consequences for ecologi-

cal community structure and ecosystem function [1–3]. Community-level

effects associated with climate change stem from combinations of direct effects

(i.e. phenology, biology, physiology, distribution) [4–6] and indirect effects

such as changes in biological interactions (e.g. trophic structures, competition)

[7–9]. The predictability of such community-level responses to climate change

is challenged by shifts in species’ range and expansions of introduced species or

‘invasions’, which can facilitate alternations in species interactions and ecosys-

tem properties [10–13]. Both introduced (i.e. non-native) and native species can

shift distribution in response to climate change, but the interactive effects

of such changes for community structure and function are still not well

understood [14–18].

Marine invasions are predicted to increase with climate change [19,20], but

only a limited body of literature has empirically evaluated how invasive species

will alter ecosystem dynamics under such scenarios [21–23]. While the effects

of invasion and different aspects of climate change have often been evaluated
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separately, these stressors can interact in complex ways

[24–27]. Theoretical models forecast that the interactive

effects between global warming and invasive species will

most often be additive or synergistic [24,25]. In aquatic

systems, for example, warming temperatures may reduce sur-

vival of native cold-adapted species and facilitate the

establishment and reproductive success of non-native

warm-adapted species [21]. This could lead to invasive

species dominating over native species (i.e. owing to effi-

ciency to compete or avoid predation), altering the structure

and function of communities and intensifying impacts of

climate change on ecosystem properties.

The influence of ocean warming on ecosystem dynamics

often depends on the extent that such environmental

change alters species interactions [8]. For example, plant–

herbivore interactions may be altered at elevated ocean

temperatures, as a result of a mismatch between production

and herbivore consumption [28–30]. Increasing ocean temp-

eratures enhance respiration, metabolism and grazing activity

of herbivores up to their thermal maxima. However, photo-

synthetic production in many primary producers does not

vary as temperature increases [31–34].

Climate-mediated change to trophic interactions can have

substantial consequences for marine systems [35–36]. In

particular, ocean warming is predicted to increase the

metabolism of herbivores [8,34,37], intensifying the pressure

on key native macrophytes in temperate rocky reef systems,

as tropical herbivores expand into temperate latitudes [2,36].

Concurrently, native tropical algae are expanding their

distribution into temperate habitats prompting novel shifts in

competitive and trophic interactions [38–40]. While we have

an emerging understanding of climate-mediated impacts of

range expanding consumers on native algae [2,36], the impacts

and consequences of range expanding algae on competitive

and trophic interactions are poorly known.

The Caulerpa genus is one of the most successful groups of

invasive algae around the world. Caulerpa filiformis is a green

alga found in South Africa, Mozambique, Peru and Australia

[38–41]. On the east coast of Australia, C. filiformis has

become locally abundant on temperate shallow rocky reefs

well outside its historic distribution [40–42]. These range

expansions have negative effects on co-occurring macrophytes

[43] representing a similar invasive behaviour as Caulerpa
taxifolia and Caulerpa racemosa in southeastern Australia, the

Mediterranean and United States [44,45]. Although C. filiformis
has been considered ‘native’ in southeastern Australia by some

authors [40,46], and ‘invasive’ by others [47,48], some impacts

have been described [43] and their origin is still unsolved

[47,48]. Hence, this species has been carefully termed here as

a ‘native invader’ [43,49,50], based on biological invasion defi-

nitions by [51]. Caulerpa filiformis is structurally simpler than

common co-occurring macroalgal species (e.g. Sargassum
spp. and Ecklonia radiata) and, once established, can form

large and persistent mono-specific stands that can spread via

vegetative reproduction. The cover of C. filiformis is greater at

subtidal than intertidal sites and mean percentage cover

varies between 1 and 62% [40]. Caulerpa filiformis is heavily

chemically defended with active secondary metabolites (e.g.

caulerpenyne) which putatively leach into the surrounding

water, impacting nearby macrophytes and potentially altering

diversity of epibiotic assemblages [46]. Caulerpa filiformis is

unpalatable to several key herbivores [48], which contributes

to the dominance of this taxon once established.
Turbinid gastropods are common and abundant general-

ist herbivores in shallow subtidal reefs of eastern Australia

[52,53]. Density of turbinid gastropods, such as Turbo militaris
varies from 1 to 30 individuals per 4 m2 depending on pro-

tected or non-protected areas [54]. This species co-occurs

and preferentially consumes brown algae E. radiata and

Sargassum spp. rather than the chemically defended

C. filiformis [47,55]. What is unknown, however, is how

future ocean conditions, particularly warming, might directly

alter the condition and palatability of these macrophytes, as

well as the preferences and grazing rates of herbivores.

Understanding interactions among these key ecological

processes is necessary to predict likely future ecological

consequences of climate-mediated invasions.

Here, we investigated the interactive effects of ocean

warming and invasion (using the ‘native invader’ C.
filiformis) on herbivory of native macroalgae. Using a series

of manipulative experiments, we evaluate how gastropod

grazing intensity and preference impacted consumption of

native algae under combinations of near-future ocean warming

and invasion scenarios. We hypothesized that temperature will

increase gastropod grazing activity and intensify consumption

of preferred native macrophytes, but this impact will be

ameliorated in the presence of the chemically defended

invasive macrophyte, C. filiformis.
2. Material and methods
(a) Experimental system
To test hypotheses about the influence of ocean warming and

biological invasions on trophic interactions, three experiments

were conducted in an outdoor mesocosm system at the National

Marine Science Centre (NMSC) in Coffs Harbour, Australia

(30.30228 S, 153.11898 E). The system was composed of 20,

230 l round, fibreglass, outdoor mesocosms (80 cm diameter �
45 cm high), 20 aquariums (30 cm length � 19.5 cm width �
20.5 cm high) and 20 trays (81 cm length � 61 cm width � 9 cm

high). Each tray contained one aquarium (30 cm length �
19.5 cm width � 20.5 cm high) that received water from the

respective mesocosm connected by a pipe at a rate of

2 l min21. Mesocosms were set up in orthogonal combinations

of ocean warming (temperature level: current (238C), and future

(268C)) and invasion (C. filiformis present and absent, hereafter:

invaded and non-invaded, respectively). An increase in ocean

temperature of 38C approximates near-future changes predicted

by the Representative Concentration Pathway (RCP) 8.5 climate

model for 2081–2100 [56,57]. Each mesocosm and aquarium

was supplied with 50 mm filtered seawater (at a flow rate of 2

l min21) continuously sourced from an adjacent beach (30.26708
S, 153.14078 E). Water temperature was controlled using heater

chiller units (Aquahort Ltd, Omana Beach, New Zealand), and

oxygen levels and water movement were maintained by bubbling

ambient air into each mesocosm. The outdoor mesocosms were

situated under shade cloth and exhibited diurnal cycles where

water temperatures varied by less than 18C. Water temperature

and salinity were measured daily with a Hach HQ40d multiprobe

calibrated with high precision buffers. The average (s.e.) measured

and calculated seawater conditions for each treatment are

presented in the electronic supplementary material, table S1.

The first experiment tested the interactive effects of ocean

warming and invasion (presence of C. filiformis, hereafter Cau-
lerpa) on the consumption rate of native macrophytes (E. radiata
and Sargassum vestitum, hereafter Ecklonia and Sargassum,
respectively) by a large turbinid gastropod (T. militaris). Ecklonia
and Sargassum are two of the most common and ubiquitous taxa
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characterizing Australia’s temperate reefs and play a key role in

underpinning temperate biodiversity and ecosystem services

[58,59]. This experiment ran in the tanks for 15 days for Ecklonia
and 35 days for Sargassum from December 2017 to January 2018.

The duration of the experiments was determined by the time

required for the gastropod to eat close to 100% of any macro-

phyte individual in at least one mesocosm. Each tank

contained four cages (enclosed plastic mesh baskets 26.5 cm

length � 18.5 cm width � 10.5 cm high) with a mesh on top.

Inside each of two cages, we placed native macrophytes (n ¼ 3)

without gastropods (autogenic control, one cage for each algal

species); whereas the other two cages contained macrophyte

plants (n ¼ 3; one cage for each algal species) exposed to gastro-

pod grazing (one T. militaris for each cage). These individual

numbers were used to simulate natural densities considering

the dimensions of the cages. Ten Caulerpa plants were placed out-

side of the cages in each mesocosm, to simulate (i) dominance

condition in the tanks that correspond approximately 30%

(mean percentage cover) of the substrate considering similar

abundances found in nature (between 1 and 62%, see [43]), and

(ii) to simulate chemical effect in the mesocosm water, but avoid-

ing physical influence of gastropod grazing on the invasive alga.

Individual Caulerpa plants were replaced if their fronds began to

bleach or necrose throughout the experiment.

Ecklonia (17.8+ 0.3 cm length and 4.3+ 0.1 g weight,

mean+ s.e.), Sargassum (20.9+ 0.3 cm length and 17.7+0.2 g

weight) and gastropods (T. militaris 7.9+0.1 cm length and

141.8+3.9 g weight) were collected from nearby rocky reefs

and Caulerpa plants (28.3+ 0.6 cm length and 33.4+0.8 g

weight) were collected from the closest accessible location at

Anna Bay (32.78988 S, 152.11578 E). Collected Ecklonia plants

were in their second stage of growth, which is in between juven-

iles and adults [60], Sargassum were small adults and Caulerpa
adult plants. Algae were attached to a plastic grid weighted

with two rocks and enclosed in permeable cloth to facilitate

their natural erect position in the tanks. The gastropods were

acclimatized in aquarium conditions with the same mesocosm

temperature for three weeks prior being included in any exper-

iment. The wet weight of Ecklonia, Sargassum and Caulerpa was

determined prior being placed into the mesocosms, and again

when removed at the end of the experiment, by patting dry

with paper towel and weighing without the mesh or weights.

The weight and length of the gastropods were also measured

at the start and end of the experiment.

The photosynthetic health of macrophytes was measured as

effective quantum yield (DF/F
0
m) on day 1, 7 and 15 for Ecklonia,

or on day 1 and 35 of the experiment for Sargassum, respectively.

Effective quantum yield was determined using a pulse ampli-

tude modulation (PAM) fluorometer (Diving-PAM, Walz,

Effeltrich, Germany); where DF ¼ F
0
m 2 Ft, with F

0
m being the

maximal fluorescence, and Ft the steady-state fluorescence

under illumination at time t [61,62]. Plants were dark acclimated

for at least 15 min prior to measurements using leaf clips. Fluor-

escence was measured by holding the fibreoptic of the PAM

fluorometer 1 mm from the algae frond using a clip in situ in

the mesocosm. The algae surface was then exposed to a pulsed

measuring beam of weak red light (0.15 mmol m22 s21,

650 nm) to measure Ft. Once the signal was stabilized (5 s), a

pulse of saturating light (6000 mmol m22 s21) was applied and

F
0
m was recorded. Measurements commenced in the morning,

at the same time each day around 08.00, after plants had been

exposed to approximately 2 h of natural daylight and were com-

pleted in less than 2 h. One reading per individual plant was

recorded on haphazardly selected areas of the algal frond.

To ensure independence in analyses, individual readings were

averaged to provide a mean value of DF/F
0

m for each mesocosm.

We carried out a second experiment in the 20 aquariums to

compare gastropod grazing activity (independent of macrophytes)
among treatments by investigating grazing scars on wax surfaces

[63,64], over a 4 day period. One dental wax square (4.5� 4.5 cm)

glued onto a ceramic tile (15 � 15 cm) was placed in a separate

aquarium with an individual gastropod (T. militaris 8.1+0.1 cm

length and 145.3+4.7 g weight) acclimated as above. The dur-

ation of this experiment was determined by the time required

for a gastropod to make notable radula scrapings on wax surfaces

from grazing on fast-growing epilithic algae in at least one

mesocosm.

A third experiment ran for 4 days in the tanks that were

cleaned immediately following the first experiment. It was a mul-

tiple choice assay to evaluate whether ocean warming influences

the grazing preferences of gastropods with respect to Ecklonia,

Sargassum and Caulerpa. Elucidating preference hierarchies of

gastropods is important to understand the magnitude of herbiv-

ory on preferred algal species relative to less preferred species

[65,66]. The duration of this experiment was determined by the

time required for a gastropod to eat close to 100% of any macro-

phyte individual in at least one mesocosm. For this experiment,

40 cages were cleaned of epiphytes and biofilms by placing

them in freshwater for 2 days and then carefully scrubing them

with a brush and rinsing them with a jet of freshwater. Two of

these cages were placed in each of the 20 mesocosms (n ¼ 10

per temperature level: 238C and 268C). In each mesocosm, one

cage had one plant of Ecklonia, Sargassum and Caulerpa as auto-

genic controls without gastropods. The other cage also had one

plant of each species with one individual gastropod. The Ecklo-
nia, Sargassum and Caulerpa plants ranged in size from 25.4+
0.7 cm length (6.4+0.3 g weight), 13.7+ 0.5 cm length (13.9+
0.3 g weight) and 25+0.7 cm length (12.9+0.3 g weight),

respectively.
(b) Data analysis
Experiments 1 and 2 had two orthogonal fixed factors: warming

(two levels, current 238C and future 268C) and invasion (two

levels, invaded and non-invaded). Consumed biomass of

native algae, yield and per cent cover of gastropod bites were

analysed with general linear models (GLM) using a Gaussian

distribution. The effects of treatments on the health of algae of

autogenic control (weight and photosynthetic yield) were

tested separately (see the electronic supplementary material,

table S2). Experiment 3 had two orthogonal fixed factors: warm-

ing (two levels, current 238C and future 268C) and species (three

levels, Caulerpa, Ecklonia and Sargassum). The amount of biomass

consumed was calculated with the equation: Consumption (Si �
Cf/Ci) 2 Sf, where Si and Sf were the mass of the plants exposed

to gastropods before (initial or i) and after (final or f ) the assay,

respectively; and Ci and Cf were the biomass of the paired auto-

genic control plants before and after the assay, respectively [67].

The consumption data were normally distributed and thus ana-

lysed using the Hotelling’s T2 test [68]. The Caulerpa weight

loss differences between autogenic control and herbivory treat-

ment were tested using Kruskal–Wallis. A post hoc Tukey test

was used when significant differences were found. The GLMs

and Kruskal–Wallis tests were performed using the R software

[69] using the packages lme4 and MASS. The Hotelling’s T2

test was performed using SPSS software.
3. Results
There were no direct effects of warming or invasion on the

weight of Ecklonia and photosynthetic yield of Sargassum
(autogenic controls) (electronic supplementary material,

table S2a,d ). All native algae in the autogenic controls

remained in visibly good health during the experiment.
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There was an effect of warming on the weight of Sargassum
with higher values in 268C (electronic supplementary

material, table S2c). Additionally, there was a significant

effect of warming on the photosynthetic yield of Ecklonia
with higher values in 238C and the interaction with

invasion was also significant with higher values without

Caulerpa presence at 238C (electronic supplementary

material, table S2b).
23°C
–3

a

–2

26°C

Figure 3. Preference of Turbo militaris for Caulerpa filiformis, Ecklonia radiata
and Sargassum vestitum at 238C and 268C. Box plot represents the median,
Q1, Q3, minimum and maximum values, and outliers, black diamonds
represent mean values; each circle represents a mesocosm.
(a) Macrophyte biomass consumed and photosynthetic
yield

A significant effect of ocean warming on grazing of the kelp

Ecklonia was observed, with greater biomass being consumed

at 268C than at 238C (figure 1a; electronic supplementary

material, table S3a). The interaction between ocean warming

and invasion was also significant with less consumption of

kelp under an invasion scenario (Caulerpa present) at 268C
(electronic supplementary material, table S3a). Temperature

also had significant effects on grazing on Sargassum, with

greater biomass consumed under warmer conditions

(figure 1b; electronic supplementary material, table S3b).

However, the interaction between warming and invasion

had no significant effect on grazing on Sargassum (electronic

supplementary material, table S3b). There were no direct

effects of warming or invasion on the photosynthetic yield

of native macrophytes (electronic supplementary material,

table S4).
(b) Patterns of gastropod grazing intensity
The intensity of grazing on dental wax was significantly

higher at 268C in the absence of invasion (no Caulerpa
presence) (figure 2; electronic supplementary material, table
S5). Both main effects of warming and invasion increased

grazing rates, but the interaction between these factors was

not significant (electronic supplementary material, table S5).

Grazing rates were higher at 268C but lower under invasion

conditions (figure 2; electronic supplementary material,

table S5).
(c) Feeding preferences
Turbo militaris consumed significantly more Ecklonia and Sar-
gassum than Caulerpa (post hoc tests following Hotelling’s T2,

p , 0.05; electronic supplementary material, table S6;

figure 3). These clear preferences of T. militaris did not

change with water temperature (Hotelling’s T2, p . 0.05;

electronic supplementary material, table S6; figure 3). The

consumption of Caulerpa was very low and weight loss in
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this species did not differ significantly from that in autogenic

controls (electronic supplementary material, table S7).
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4. Discussion
Climate change is modifying trophic interactions among range

expanding native species [36,70], but the interactions with inva-

sion in a changing climate are not yet fully understood. Here,

we determined the interactive effects of ocean warming and

invasion on consumption (grazing) of native algae and found

that ocean warming increased consumption of two common

native algal taxa through greater grazing intensity. However,

for herbivory on the dominant habitat forming kelp (Ecklonia)

at warmer temperatures, low consumption was related to the

presence of Caulerpa. The interactive effects of ocean warming

and invasion thus had a positive feedback for kelp, reducing

biomass loss from gastropod grazing. In certain instances,

therefore, invasion may contribute to the future persistence of

kelp in warming oceans.

Changes to trophic interactions under ocean warming can

influence community structure and marine ecosystem function

[36,37], threatening key habitat forming species, such as kelp.

Our experiments showed that gastropods intensified grazing

rates at elevated temperatures, increasing consumption of pre-

ferred native macrophytes in response to ocean warming. The

metabolic theory of ecology [71] predicts that the metabolic

rates of organisms increase with temperature owing to bio-

chemical reactions constrained by thermodynamics [32,34].

Enhanced metabolic performance in near-future climate

change scenarios probably stimulated algal consumption by

Turbo militaris and, therefore, might have consequences for

Ecklonia and Sargassum populations in future oceans.

Additionally, elevated temperatures could also intensify the

strength of herbivory through changes to the susceptibility of

plant tissues [8], such as changing nitrogen content [72], or

plants could allocate reduced energy to grazing defence mech-

anisms. Therefore, when the effects of ocean warming are

considered independently, our results reinforce the contention

that herbivory will increase with temperature [34]. In turn, this

could lead to overgrazing of native macrophytes and even

complete regime shifts to more simple systems states [70,73].

Combined effects of warming and invasive species

interacting in additive or synergetic ways have been demon-

strated [74,75]. Mostly previous studies suggest that

warming temperatures could favour invasive mechanisms

leading to dominance over native species (i.e. owing to effi-

ciency to compete or avoid predation) intensifying impacts

of climate change on ecosystem proprieties. By contrast, we

show that these combined effects can be antagonistic [26].

Indeed, our results demonstrated that consumption of Eck-
lonia was lower at elevated temperature under an invasion

scenario (the presence of Caulerpa). Probably, the biologi-

cally active secondary metabolites (caulerpenynes) present

in Caulerpa species act as a feeding deterrent that mediates

grazing activity [47,48]. Presence of caulerpenyne in the

water when Caulerpa is present probably inhibits the bio-

logical activity of gastropods, reducing feeding intensity

on Ecklonia. Evidence that Caulerpa presence reduces gastro-

pod grazing activity also comes through the fact that

grazing was reduced even in the absence of native algae.

Thus, our results show that invasion indirectly benefits Eck-
lonia by reducing herbivory and suggests that under certain
scenarios, antagonistic effects between climate change and

invasive species can favour Ecklonia persistence as oceans

warm in the future.

Although our findings show that effects between climate

change and invasive species mediate positive feedbacks for

Ecklonia, other studies have demonstrated both direct and

indirect negative effects of Caulerpa on native macrophytes

[46]. Caulerpa, once established, accumulates sediment favour-

ing algal turfs which may then inhibit colonization by kelp

[44]. Additionally, Caulerpa can affect the abundance of

fauna associated with neighbouring macroalgal habitats [76].

Although theoretical evidence predicts that a warming climate

will generally increase rates of invasion and negatively impact

biodiversity [22,74,75], our results demonstrate that biotic

interactions are more difficult to predict.

When considering direct and indirect effects of ocean

warming, the future of kelp forests in many systems

appears bleak independently of invasions [36,37,77–79].

Modelling projections suggest major climate-mediated

changes to the suitable habitats for kelp forests, producing

significant retreat of kelp forest around the Australian

coast [78] and in many other parts of the world [80–82].

Elevated temperatures can directly reduce complex cano-

pies [77] or decrease consumption at higher trophic

levels, releasing pressure on consumers and indirectly

increasing herbivory on kelp [37]. However, we demon-

strate that the simple presence of an invasive macrophyte

has the potential to alter existing relationships involving

native herbivores and algae, possibly changing the pre-

dicted trajectories of kelp forests compared to scenarios

where only ocean temperature is considered.

Overall, our results suggest that the current range

expansions of Caulerpa may contribute to the persistence

of kelp as oceans warm by reducing herbivory. However,

such effects may not extend to other native macrophytes,

as we demonstrate no effect of invasion on grazing on

Sargassum. In a changing climate, it will be increasingly

difficult to predict the impacts of invasive species on ecosys-

tems. Nonetheless, understanding such complex ecological

relationships will be key to predicting and managing

marine environments under future ecological scenarios.

It is clear that future management actions based on single-

threat drivers will often be too simplistic and must be

reconsidered in connection with interactive effects from

climate change and other stressors.
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