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All animals use sensory systems to monitor external events and have to

decide whether to move. Response times are long and variable compared

to reflexes, and fast escape movements. The complexity of adult vertebrate

brains makes it difficult to trace the neuronal circuits underlying basic

decisions to move. To simplify the problem, we investigate the nervous

system and responses of hatchling frog tadpoles which swim when their

skin is stimulated. Studying the neuron-by-neuron pathway from sensory

to hindbrain neurons, where the decision to swim is made, has revealed

two simple pathways generating excitation which sums to threshold in

these neurons to initiate swimming. The direct pathway leads to short,

and reliable delays like an escape response. The other includes a population

of sensory processing neurons which extend firing to introduce noise and

delay into responses. These neurons provide a brief, sensory memory of

the stimulus, that allows tadpoles to integrate stimuli occurring within a

second or so of each other. We relate these findings to other studies and

conclude that sensory memory makes a fundamental contribution to

simple decisions and is present in the brainstem of a basic vertebrate at a

surprisingly early stage in development.
1. Introduction
In 100 m sprint races, men take 120–165 ms to start moving [1]. Such response

times (RTs) fascinated experimental psychologists since Helmholtz [2]

described methods to measure them. Coordinated movements, like eye move-

ments towards a new target, start after variable delays of 50–200 ms [3].

Why are these responses slow and variable when reflex movements and the

rapid escape responses of animals like squid, crayfish and fishes, have short

and constant RTs (less than 20 ms) [4–6]?

Studies of RTs have focused on eye movements of people and other

mammals, especially monkeys and on the complex neuronal circuits in the

pre-frontal motor cerebral cortex which control them [7–9]. In the simplest

experiments, subjects gaze at a light spot and are required to shift their gaze

to another light spot when it comes on. Recordings of neuronal activity in

mammals have shown that sensory information travels from the eyes to the

cerebral cortex where it influences the ongoing firing of neurons. When the

light flashes briefly, a ‘sensory memory’ of the stimulus is needed and this

too has been studied primarily in the cerebral cortex. The memory only lasts

for a second or so, and is proposed to be based on mutual re-excitation

within small populations of neurons [10–12]. During the lead-up to the

decision to move the eyes, recordings in the primate and rat pre-frontal

cortex have shown that the stimulus results in a slow and noisy build-up of
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Figure 1. A simple theory for cortical decision circuits and tadpole responses to a brief skin stimulus. (a) Diagram to illustrate general theory for variable delay
generation (based on [3]). (b) A resting hatchling Xenopus tadpole, 5 mm long, hangs from mucus secreted by its cement gland (arrow). (c) Video frames of tadpole
(dorsal view) flexing (arrowhead), then swimming following a current pulse to the right trunk (*). (d,e) RTs to the first flexion of swimming and first motor nerve
activity of fictive swimming in immobilized tadpoles. (Online version in colour.)
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firing frequency. In some neurons, peak firing rates correlate

with the decision to move.

Many theories underlying decisions to move the eyes pro-

pose that an excitatory ‘decision signal’ builds noisily to a

threshold in cortical neurons and, when this is reached, the

movement occurs (figure 1a) [3,13–15]. Variability in RTs

results from noise in the decision. The complexity of the

cortex makes the neuron-by-neuron circuits and synaptic

properties of decision-making impossible to define. Further-

more, the advantages of slowing down decisions to move

are unclear. Do they allow other stimuli and central states

to be taken into account before a response is made?

Analysis of simpler neuronal circuits should help to

understand the details of how neuronal circuits control

the initiation of coordinated motor responses to a sensory

stimulus. It is disheartening that the only cases where the

neuron-by-neuron pathway from a sensory stimulus to a

response have been traced are those for the rapid escape

movements controlled by giant neurons in crayfish [5,16]

and in fishes [17]. This is a consequence of the ease of

study of giant neurons and the difficulties imposed by the

small size of most neurons.
2. Why use tadpoles to study the initiation of
movements?

Larval fishes and amphibians provide useful models for

studying the foundations of vertebrate nervous development,

organization and function [18,19]. We have investigated the

neurons, and networks that allow hatchling Xenopus laevis
tadpoles (figure 1b) to behave and survive [20–22]. This

has led to some surprising new discoveries about the organ-

ization of sensory systems, sensory memory and the neurons

where the decisions to move are made [23–25].
As in adult animals, tadpole RTs for swimming following

skin stimulation are long and variable. If touched on one side

of the trunk with a fine hair, tadpoles flex unpredictably to left

or right and then swim off [26]. The RTs to swimming following

a brief current pulse (figure 1c) are long and variable (median

102 ms, interquartile range 81–136 ms; figure 1d; [25]).

Tadpoles also have to decide which side will flex first. We

have studied this by immobilizing tadpoles so that recordings

can be made from motor nerves and one or two individual

neurons in the spinal cord and brain. When a near threshold

current pulse is given to the skin on one side of the head, the

first motor nerve burst has an approximately 0.5 probability

of being on the stimulated or unstimulated side (figure 1e;

[24]). Reaction times are shorter than behavioural responses

but are still long and variable (stimulated side starts: median

25 ms, range 15–87; unstimulated side starts: median 35 ms,

range 20–71) compared to reflexes (less than 10 ms; [27]).

When the trunk skin is stimulated, the median delay to the

first motor nerve firing on the unstimulated side was 40 ms

(inter-quartile range 33–61; [25]). In this review, we discuss

where and how the delays and their variabilities arise in the

tadpole’s decision to swim.
3. Overview of the tadpole skin sensory
swimming initiation pathway

To find out about the different types of neuron, their anat-

omy, activity and synaptic connections, we have used

dye-filled electrodes to record from pairs of neurons in the

brain and spinal cord of immobilized tadpoles. This has

allowed us to build a broad picture of how the neuronal

networks they form are organized [20,21]. The tadpole skin

touch to motor pathway has five functional stages

(figure 2), as does the leech [28].
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Figure 2. Organization of neuronal pathways from head and trunk skin
stimulation to swimming in the hatchling frog tadpole. The boxes represent
populations of similar excitatory neurons in the five functional levels between
a skin stimulus and a motor response. Arrows show direct excitatory synaptic
connections established by recording from pre- and post-synaptic neurons.
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(1) Touch sensory neurons for the head skin lie in the trigem-

inal ganglia and for the trunk skin in the spinal cord

[29,30]. A single action potential (AP) in one or two sen-

sory neurons can initiate swimming. Their peripheral

axons carry APs into the central nervous system where

their central axons project to distribute excitation

longitudinally.

(2) Sensory pathway neurons are excited by sensory neurons

and distribute sensory signals to both sides of the brain

[23,30]. Single sensory neurons excite many sensory pathway

neurons and in this way the sensory signal is amplified [27].

Trigeminal sensory pathway neurons are only excited by

head skin stimuli and make direct connections to level 4

reticulospinal neurons [23].

(3) Sensory processing neurons are a new and important

proposal for the movement initiation pathway [25]. The

preliminary evidence and definition of these neurons

suggests that they extend firing (possibly by mutual

re-excitation) and introduce noise and variability. They

transform the short or nearly synchronous firing in sensory

pathway neurons (less than 30 ms) into longer lasting and

variable firing (approx. 1000 ms) which is different in each

neuron of their population. They are excited by sensory

pathway neurons and excite reticulospinal neurons.

Their firing acts as a sensory memory of any brief sensory

stimulus to the skin.

(4) Reticulospinal neurons lie in the hindbrain and project to

the spinal cord. They sum the input from different

sensory pathways and modalities, like skin touch and

light [31]. It is here that excitation from sensory proces-

sing neurons builds up noisily and can reach firing

threshold. It is these reticulospinal neurons that
effectively make the decision to swim because, when

they fire, motoneurons are activated and initiate the first

flexion of swimming. During swimming, they generate

the rhythm by firing once on each cycle.

(5) Motoneurons and reciprocal inhibitory neurons are

excited strongly by the reticulospinal neurons so they

fire once on each cycle of swimming [32]. Motoneuron

firing leads to muscle contraction and flexion of the

body. Alternation of firing is organized by reciprocal

inhibition [33], re-enforced by post-inhibitory rebound

firing organized by the same reciprocal inhibition

[21,34]. The result is alternating waves of contraction

and swimming.

4. Evidence on the operation of the tadpole
touch sensory system

Sensory neurons innervate the skin in all vertebrates with fine

unspecialized ‘free’ nerve endings which wrap around the

skin cells. Tadpole sensory neurons (tSt) for head skin lie in

the trigeminal ganglia and their central axons reach the

brain in the fifth cranial nerve [29]. The trunk skin has similar

endings coming from sensory Rohon-Beard (RB) neurons in

the spinal cord [30,35]. Recordings from sensory neurons

showed that they fire one to three spikes when stimulated

in their receptive field.

Spinal sensory pathway neurons are excited by synapses from

the longitudinal axons of skin sensory neurons. In the spinal cord,

recordings from pairs of neurons show that the RB neurons

directly and strongly excite two types of sensory pathway

neuron (figure 3a; [27,36,37]). These dorsolateral commissural

(dlc) and ascending (dla) neurons only fire very briefly.

Trigeminal sensory pathway neurons (tINs) form a small

trigeminal nucleus of around 25 neurons on each side of the

hindbrain and have a descending axon [23]. Head skin sen-

sory neurons directly excite tINs and more rostral spinal

sensory pathway neurons (rdlcs; [24]).

Sensory pathway neurons: distribute signals from skin sen-

sory neurons to targets on both sides of the brain; amplify

sensory signals so one or two spikes in a few sensory neurons

elicit a single spike in many pathway neurons (the number

firing may depend on the number of sensory neurons firing and

crudely code the stimulus strength); set a limit on the excitation

reaching the brain because there is a fixed number of them.
5. Evidence on the activation of the swimming
control system

Movements of the body and limbs in vertebrates are thought

to be controlled by reticulospinal neurons in the hindbrain

which project to the spinal cord [38–42]. Tadpole swimming

starts when a population of hindbrain reticulospinal neurons

(hdINs) becomes active [20,23,24,32]. These neurons are elec-

trically coupled [43], so when a few fire, the whole population

on one side is recruited and they all fire once in synchrony

[44]. They then play a critical role in driving swimming

[21,45]. As well as exciting motoneurons and other spinal

neurons, these electrically coupled neurons excite each

other chemically by releasing glutamate [32]. Mutual acti-

vation of their own N-methyl-D-aspartate receptors turns on
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pacemaker properties which sustains their own regular,

rhythmic firing and swimming [44,46–48].

It was therefore surprising when recordings from these

reticulospinal hdINs showed that the only sensory pathway

neurons to make strong and direct synaptic connection to

them were the hindbrain tINs excited by head skin stimu-

lation (figure 3b). This pathway could evoke hdIN firing

and swimming starting on the stimulated side at relatively

short latencies (hdINs: median delay of 12 ms; motor nerve:

median 25 ms; [24]). To our knowledge, this is the first

simple, non-giant neuron pathway for the initiation of

locomotion defined in the vertebrates.

How does a stimulus to one side lead to swimming start-

ing on the opposite side? Spinal sensory pathway dlc neurons

carry excitation to the opposite side when the head or trunk

skin is stimulated. Surprisingly, recordings from these neur-

ons and hdINs on the opposite side showed no direct, short

latency excitation (figure 3c; [24]) but revealed a very variable

pattern of longer latency excitation [25]. This could build up

over time to reach the hdIN threshold, so they fired at long

and variable latencies (figure 3c,d; median 57 ms). The RTs

of the first hdIN firing matched the delays to the start of

swimming in motor nerve recordings (figure 1e).

What are the characteristics of the variable pattern of exci-

tation recorded in reticulospinal dINs following a brief skin

stimulus? Even when the stimulus was too weak to evoke

swimming, hdINs on each side of the body received

long-lasting excitation with clear excitatory post-synaptic

potentials (EPSPs) occurring for many hundreds of
milliseconds after the stimulus (figure 3e,f ) [25]. It is difficult

to see how this pattern of EPSPs could be produced directly

by the brief burst of spikes fired early by sensory pathway

dlc neurons. The EPSPs must be generated by unidentified

neurons firing irregularly for some time after skin stimu-

lation. We obtained information about the timing of the

APs in these unidentified neurons by measuring the timing

of the EPSPs they evoked in hdINs following skin stimulation

(figure 3e). The novel conclusion was that the sensory path-

way neurons must excite undefined populations of sensory

processing neurons on each side of the brain whose function

was to extend sensory firing for about 1 s, act as a sensory

memory of brief stimuli and produce variable excitation

of the hdINs to initiate swimming. We call them extension

neurons (exNs) and have candidate recordings of hindbrain

neurons with suitable prolonged and variable firing to skin

stimulation (figure 3g).
6. A model of sensory memory to extend brief
sensory firing

How could sensory pathway neuron firing and excitation be

extended by sensory processing exN neurons in the hind-

brain? A simple proposal is that exN neurons excite each

other to form a small recurrent network and sustain their

own activity for a short time [10]. To test this idea, we built

a network of 30 model exN neurons excited by brief exci-

tation from sensory pathway dlc neurons. The exNs were
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connected to a model hdIN [48] to monitor the synaptic exci-

tation they produced. With variability in the synaptic

strength of all excitatory synapses in the network (maximum

conductance of each synapse scaled by a randomly chosen

value: 0.8, 0.6, 0.4, 0.2 or 0), the variable patterns of exN

firing it generated could be qualitatively matched to the

data on the timing of EPSPs in hdINs. These results show

that it is simple to prolong firing in a small model network

of unspecialized neurons if there is variable and weak recur-

rent excitation among them even without any inhibition [25].

If such a network was connected to hdINs in a model swim-

ming network, it should start swimming after variable and

unpredictable delays.
Proc.R.Soc.B
286:20190297
7. Discussion
All animals have to make decisions about whether to respond

to sensory stimuli. Studying simpler animals can uncover the

detailed neuronal pathways for decisions to initiate simple

movements, like swimming [28]. In crayfish and fish escape

responses, sensory neurons excite giant neurons, bringing

them rapidly to firing threshold. They fire a single spike, and

the first flexion of swimming is initiated at a short and constant

latency by the direct excitation of motoneurons [16,17].

In hatchling tadpoles, tracing the neuronal pathway from

a brief skin touch to the initiation of swimming has revealed

two ways in which populations of non-giant reticulospinal

neurons (hdINs) can control the first flexion of swimming

(figure 2). Stronger head skin stimulation excites tIN neurons

on the same side of the hindbrain [23] and they directly excite

the hdIN population and swimming follows at fairly short

and constant latencies [24]. This pathway provides a simple

and direct way to initiate locomotion. Weaker stimuli to the

head or trunk have revealed unexpected complexity. Instead

of a simple reflex-like pathway, we propose that small popu-

lations of sensory processing neurons (exNs) in the hindbrain

are excited by sensory pathway neurons and extend firing for

approximately 1 s (see figure 2 level 3; [25]). This process

could introduce noise into the sensory signal in the brain

and then provide prolonged excitation to the reticulospinal

hdINs to bring them to firing threshold, so swimming is

initiated after variable delays on either side of the body.

The exNs therefore combine two functions: they hold a

roughly 1 s sensory memory of recent stimuli and generate

a noisy ‘decision signal’ to brainstem hdINs. The hdIN

firing is the ‘decision’ which initiates the first flexion of

swimming after variable delays.
8. What is the significance of extending sensory
excitation and inserting delay and noise into
the movement initiation pathway?

(i) Integration of sensory inputs is made possible by the

long-lasting excitation exNs produce in reticulospinal

hdINs. If an initial stimulus does not lead to a motor

response, then this excitation remains present and could

sum with excitation from subsequent stimuli to the same

location (temporal summation) or to other parts of the

body (spatial summation). In addition, other sensory mod-

alities like water currents [49] and light dimming [31] can

initiate swimming. Extended excitation in hdINs acts as a
sensory memory and could sum with other sensory

inputs if they occur within the 1 s time window. Neurons

with extended excitation can therefore act as integrators,

so responses are ‘considered’ in the context of all stimuli

reaching the animal.

(ii) Motor coordination is essential for the production of

effective movements. When stimulated, the tadpole must

decide whether or not to make the first body flexion of

swimming, and which side flexes first. This is a very

organized process in response to head skin stimulation

[24]. The hdIN firing on each side falls into

discreet alternating time windows, so synchronous firing

of the two sides is avoided. It is very likely that reciprocal

inhibition is important here [33,50]. However, in Xenopus
immobilized preparations synchronous firing of both

sides can occur [51,52] as in simple model networks with

reciprocal inhibition [34,53]. Slowing down hdIN excitation

and making it noisy probably reduces the chance of hdINs

reaching firing threshold simultaneously on both sides,

thus reducing the probability of synchronous firing.

(iii) Introducing variability into responses may make

responses less predictable and help animals to avoid pre-

dation [54]. The slowly rising excitation in hdINs

following skin stimulation introduces variability into:

the delay before hdINs reach their firing threshold and

swimming starts; the side which fires first to gentle

stimulation; and the direction of swimming. There is

one exception to this general picture. Stronger stimuli

to the head skin lead to short latency and predicta-

ble flexion towards the stimulated side [24] and the

biological significance of this behaviour is not clear.

9. Overview of a simple decision to move
Can the complete neuron-to-neuron pathway from a sensory

stimulus to a coordinated motor response be defined? At pre-

sent, the only examples are those specialized for fast

responses [16,17,23]. The latencies to most skin stimuli in tad-

poles are long and variable, like eye movements and other

coordinated motor responses in adult animals [3]. Our new

evidence on tadpole swimming initiation is still incomplete

but has a surprising new sensory processing stage

(figure 2). We propose that neurons at this stage extend

and add noise to the signal reaching the brainstem reticulosp-

inal neurons which drive swimming. The evidence supports

the basic proposals from studies on eye movements where

variable excitation leads to long and variable RTs. The evi-

dence that some hindbrain neurons produce variable

excitation is strong but characterization of the neurons

involved is at present weak. Our expectation is that neurons

performing this extension or sensory memory function will

be a fundamental component of movement initiation path-

ways in most animals. The slowing down of responses

allows animals to integrate multiple sensory inputs and to

make ‘considered’ rather than ‘rash’ responses!
Data accessibility. This article is a review and contains no data.

Competing interests. We declare we have no competing interests.

Funding. We received no funding to write this review.

Acknowledgements. We would like to thank Dr Robert Meech for com-
ments on an earlier draft, Dr Iain Gilchrist for valuable discussion
and the BBSRC for their support of our research.



6
References
royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190297
1. Pilianidis T, Mantzouranis N, Kasabalis A. 2012 Start
reaction time and performance at the sprint events
in World Athletic Championships. Int. J. Perf. Anal.
Spor. 12, 112 – 118. (doi:10.1080/24748668.2012.
11868587)

2. Helmholtz H. 1850 Vorläufiger Bericht über die
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