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Sexual selection can accelerate speciation by driving the evolution of repro-

ductive isolation, but forces driving speciation could also reciprocally

feedback on sexual selection. This might be particularly important in the

context of ‘reinforcement’, where selection acts directly to increase prezygo-

tic barriers to reduce the cost of heterospecific matings. Using assays of

sperm competition within and between two sister species, we show a signa-

ture of reinforcement where these species interact: populations of Drosophila
pseudoobscura that co-occur with sister species D. persimilis have an elevated

ability to outcompete heterospecific sperm, consistent with selection for

increased postcopulatory isolation. We also find these D. pseudoobscura
populations have decreased sperm competitive ability against conspecifics,

reducing the opportunity for sexual selection within these populations.

Our findings demonstrate that direct selection to increase reproductive

isolation against other species can compromise the efficacy of sexual selec-

tion within species, a collateral effect of reproductive traits responding to

heterospecific interactions.
1. Introduction
The presence of heterospecifics can radically alter the selective environment of

closely related species, including altering sexual interactions and changing pat-

terns of selection on reproductive traits. In cases where these species have the

potential to interbreed, selection can favour divergence in sexual traits to avoid

costs of heterospecific mating, a type of reproductive character displacement

commonly called reinforcement [1–3]. The frequency at which reinforcement

contributes to speciation is still under debate [3,4], although several recent

examples provide strong evidence for reinforcement acting on mating traits [5–

8]. Regardless, trait evolution in response to reinforcement can have collateral

effects on intraspecific sexual dynamics [5]. This can in turn alter the magnitude

and efficacy of sexual selection specifically within populations exposed to hetero-

specifics. These potential reciprocal interactions between sexual selection and

reproductive isolation remain relatively untested [5], but can have important con-

sequences for how we interpret evolution of sexual traits. For example, in rapid

radiations where sexual selection is thought to be the primary driver, patterns of

reproductive trait evolution may be misinterpreted if they do not take into

account species interactions.

For reinforcement and sexual selection to reciprocally affect the evolution of

sexual traits, these traits must be involved in both processes and share a genetic

basis. Currently, the best example of a shared genetic basis for sexual selection

and reproductive isolation comes from Drosophila sperm competition genes,

some of which have been shown to mediate both sexual selection through

intraspecies sperm competition (ISC) and reproductive isolation via conspecific

sperm precedence (CSP) [9,10]. CSP occurs when a female mates with both
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heterospecific and conspecific males, yet most of the progeny

are sired by the conspecific male. CSP has proven to be a

strong reproductive isolation barrier among species in Droso-
phila [11,12] and in many other plant and animal species ([4],

and references therein). Moreover, although reinforcement

studies have overwhelmingly focused on premating traits,

postcopulatory prezygotic traits including CSP can also be

the target of reinforcement [13,14]. Nonetheless, because

CSP involves inconspicuous phenotypes that are not readily

observed in the field [4,15], and because no single study

has simultaneously compared levels of CSP in allopatric

and sympatric populations, empirical evidence for increased

CSP specifically in sympatry remains equivocal (references

within [4,16–18]).

While reinforcing selection (acting on CSP) and sexual

selection (acting on ISC) could interact to influence evolution-

ary change in postcopulatory traits, the outcomes of this

interaction clearly will depend upon whether these forces

act in concert or in opposition. When they act in concert,

trait evolution can proceed faster than otherwise expected,

but the direction of evolution remains unchanged. By con-

trast, when sexual selection and reproductive isolation act

at cross-purposes, the potential feedback between these

forces can generate complex evolutionary outcomes. For

example, sperm competition is expected to maintain high

variance in the affected traits because it is shaped by sexual

conflict between males and females [19–22]; indeed, sperm

competition genes are often highly variable both in terms

of molecular and phenotypic variation [20,23]. By contrast,

traits that act as barriers to reproduction are generally

expected to have reduced genetic variance, and an overall

shift in trait means between lineages, especially in cases

where isolation is generated by strong disruptive selection

between populations [24,25]. Accordingly, the net effect of

selection imposed by intrapopulation sexual interactions

and by reinforcement could together produce phenotypic

and genetic variation in sperm competition traits that is

different from the optimal variation when sexual selection

acts alone.

One way these potentially antagonistic optima could play

out is when reinforcement-mediated changes alter the oppor-

tunity for sexual selection among conspecifics [5]. Sexual

selection is the strongest when the variance in among-male

reproductive success is large. Because sperm competition

amplifies among-male variance in reproductive success, elev-

ated sperm competition leads to greater opportunity for

sexual selection compared to scenarios where males have

equal probability of siring offspring [26,27]. Predictions of

the possible effects of reinforcement on sexual selection

depend on the specific genetic correlation between CSP and

ISC. First, if CSP and ISC are positively genetically correlated,

strong directional selection from reinforcement could lead to

enhanced sperm competition when specific male genotypes

excel at both CSP and ISC. An initial increase in the frequency

of a strong CSP/ISC allele increases variance in reproductive

success because when one male ‘wins’ at sperm competition,

its competitor ‘loses’. This increased variance in reproductive

success could persist depending on the relative strength of

frequency-dependent selection and reinforcement (similar to

[28]). Any increase in the variance of reproductive success

increases the opportunity for sexual selection. Alternatively,

a trade-off or negative genetic correlation between CSP and

ISC could result in reduced intraspecific sperm competition
as a collateral effect of strong directional selection for

increased CSP. Lower mean ISC would equalize fitness

among males, thus reducing the opportunity for sexual

selection.

In this study, we evaluated the interaction between selec-

tion for increased reproductive isolation (i.e. reinforcement)

and sexual selection on postcopulatory sperm competition

genes by estimating CSP and ISC phenotypes in parallel

across a common set of genotypes. Both CSP and ISC are esti-

mated by allowing females to mate sequentially with two

different male genotypes and scoring the paternity of the

resulting progeny. Comparing the relative competitive

success of replicate male lines against a common set of

heterospecific and conspecific male tester genotypes, in paral-

lel, allowed us to estimate which genotype effects (male

genotype, female genotype, or the interaction) might shape

both CSP and ISC. Previous studies indicate that both male

and female genetic effects, and their interaction, significantly

influence ISC [21,29]; however, equivalent phenotypic and

genetic variance for CSP has not been empirically investi-

gated. Nonetheless, because females experience the greater

cost of heterospecific matings [30,31] and could control CSP

via cryptic female choice [32], we might expect strong

female genotype effects on CSP.

To evaluate these expectations, here, we examine evidence

for reinforcement of CSP among populations of Drosophila
pseudoobscura that are allopatric or sympatric with their clo-

sely related sister species D. persimilis, and assess the

potential consequences of these heterospecific interactions

for ISC and sexual selection within D. pseudoobscura popu-

lations. This species pair is estimated to have diverged

approximately 589 000 years ago [33] and provided one of

the first clear empirical demonstrations of reinforcement on

premating isolation [34], a finding that suggests heterospecific

interactions and matings are frequent and sustained over

evolutionary time in this system, and can act as a substantial

selective agent on reproductive traits. Here, we determine

whether there is evidence that heterospecific interactions

have selected for increased CSP, by evaluating whether CSP

is stronger specifically in sympatry—consistent with

reinforcement. Our design also allows us to estimate premat-

ing reproductive isolation in the same experiment, and

compare its strength in sympatry and allopatry. Second, we

evaluate whether selection for strong CSP in sympatry has

affected ISC, and thereby postcopulatory sexual selection, as

might occur when CSP and ISC have shared genetic architec-

ture. Throughout, we test for differences in trait variation

across a set of distinct genotypes which allows us to specifi-

cally evaluate which sex is playing a more critical role in

determining variation in heterospecific and conspecific

postcopulatory interactions.
2. Material and methods
(a) Wild-type fly stocks
All stocks were reared on standard media prepared by the Bloo-

mington Drosophila Stock Center, and were kept at room

temperature (approx. 228C). At this temperature, D. pseudoobs-
cura and D. persimilis have a 21-day generation time. We used

a set of isofemale lines collected from four natural populations

in the summers of 2013 and 2014. Sperm competition and

mating experiments (below) were completed once stable lines
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were established, starting in August 2015 and ending January

2016. Allopatric D. pseudoobscura were collected at Zion National

Park, Utah (latitude¼ 37.217, longitude¼ 2112.976 provided by

N. Phadnis) and Lamoille Canyon, Nevada (latitude¼ 40.649,

longitude¼ 2115.405). Sympatric D. pseudoobscura and D. persimi-
lis were collected at two sites: Mt St Helena, California (Latitude¼

38.652, longitude¼ 2122.608, D. pseudoobscura collected by

A. Hish/M. Noor and D. Castillo) and, near Meadow Vista and

Forest Hill, California (latitude ¼ 39.012, longitude ¼ 2121.004;

called here ‘Sierra’). For both sympatric populations, both species

were present in field collections and can be considered truly co-

occurring. Our replication of sympatric populations is consistent

with previous studies in this system [34] and other Drosophila
pairs [5], and generally exceeds these and other reinforcement

studies in terms of the number of genotypes assessed per popu-

lation [5–8]. Nonetheless, it is important to consider the

potential effects of sampling error and whether our sample of gen-

otypes represents the full range of genetic variation within and

between natural populations of these species. Several lines of evi-

dence—including consistent sympatric–allopatric differences

across multiple reproductive phenotypes—indicate that the influ-

ence of sampling error on observed population phenotypic

differences is small compared to the biological differences pre-

dicted between allopatry and sympatry. To address these, we

provide a detailed discussion of how population sampling, geno-

type replication per population, and post-collection laboratory

conditions could affect our observations and inferences, in the

electronic supplementary material.

(b) Conspecific sperm competition assay
Sperm competition assays involve mating an individual female

sequentially with two distinct male genotypes. In all experimen-

tal crosses between species, females were paired first with a D.
persimilis male and second with a D. pseudoobscura male in

order to evaluate the ‘offensive’ sperm competitive ability of con-

specific males to displace heterospecific sperm (equivalent to

‘P2’, or second male siring ability; [35,36]). We focused on ‘offen-

sive’ sperm competition because D. pseudoobscura females do not

remate with D. persimilis males if they have first mated with a

conspecific male. In this experiment, we partitioned the variance

in CSP due to male genotype, female genotype, and the male �
female genotype interaction using a ‘diallel-like’ crossing design

where all parental genotypes were crossed in all combinations, as

in other similar studies [22] (electronic supplementary material,

figure S1). We completed separate CSP experiments for each of

our four D. pseudoobscura collection locations (Sympatric ¼

Sierra and Mt St Helena, Allopatric ¼ Zion and Lamoille). For

each population, we used a 4 � 4�4 design: four D. pseudoobs-
cura female genotypes from that population, four D. persimilis
genotypes as first males (tester males), and four D. pseudoobscura
male genotypes as second males from the same population as

females. Each 4 � 4�4 combination was replicated once (n ¼ 64

unique cross-combinations for each population). If CSP is impor-

tant for reproductive isolation in sympatry, it should be

consistently strong across multiple heterospecific genotypes.

Accordingly, we used multiple wild-collected D. persimilis
tester male lines for our experiments, two lines at the Sierra

location and two lines at Mt St Helena. Specific details of the

sperm competition design are reported in the electronic

supplementary material, Methods.

(c) Intrapopulation sperm competition assay
The design for ISC assay mirrored the experimental design for

CSP except that, rather than a D. persimilis tester male, the first

male was a D. pseudoobscura tester male derived from the same

population as the D. pseudoobscura female and second male gen-

otypes in the trial. For each population, we used a 4 � 2�4
design: four D. pseudoobscura female genotypes, two D. pseu-
doobscura green fluorescent protein (GFP) genotypes as first

males, and four D. pseudoobscura male genotypes as second

males. The same female�second male genotypes were used in

ISC and CSP experiments. Each combination was replicated

twice (n ¼ 64 for each population, with 32 unique cross-combi-

nations). This resulted in a total sample size per population that

matched the CSP experiment (64 replicates per population, 256

replicates across all populations).

The details of the mating scheme are identical to the CSP

experiment. We did not observe matings directly, but an average

refractory period of 4 days for D. pseudoobscura [37] means that

on average only a single mating occurred in the 24 h co-housing

timeframe. Each individual female was randomly assigned one

of the two D. pseudoobscura first male (tester) genotypes, against

which we determined the strength of P2 (second male siring

ability) of our four focal second male genotypes.

(d) Generating visibly marked tester males for
quantifying conspecific sperm precedence and
intraspecies sperm competition

Paternity was scored with the aid of visible markers in both CSP

and ISC experiments. This required us to generate marked male

tester lines with wild-caught D. persimilis (for CSP tester males)

and D. pseudoobscura (for ISC tester males) lines from each

study population. For CSP, we introgressed an X-linked marker

(‘short’ or sh) from a D. persimilis line (UCSD stock centre

14011-0111.57) into four of our collected D. persimilis genotypes

(electronic supplementary material, Methods and figure S2).

For ISC experiments, the marked tester males were created by

introgressing a GFP marker into two new wild-type D. pseudoobs-
cura strains per location (electronic supplementary material,

Methods). The original GFP strain was obtained from the

UCSD stock centre (14011-0121.166), the creation of which is

described in Holtzman et al. [38].

(e) Scoring conspecific sperm precedence
CSP was scored by differentiating the progeny of first (heterospeci-

fic) from second (conspecific) mated males, for each replicate female.

Hybrid male progeny from D. pseudoobscura�D. persimilis crosses

are sterile (there are no motile sperm, observable by dissecting the

testes), so we used this sterility phenotype to determine the sire of

each F1 male, in 10 dissected male progeny produced after the

second mating (electronic supplementary material, Methods). F1

males with no motile sperm were scored as hybrid. Because

female hybrids are fertile in these crosses, the sh allele was used to

differentiate the female progeny. Any F1 female that produced sh
progeny was considered hybrid. We required each F1 female to pro-

duce at least 10 progeny to be used in scoring CSP (electronic

supplementary material, Methods). Further details are reported in

the electronic supplementary material, Methods.

( f ) Scoring intrapopulation sperm competition
We scored all progeny that eclosed in the 5 days after the second

mating for the presence/absence of the GFP phenotype. Our

measure of sperm competition (P2) for ISC was then the

number of wild-type (non-GFP) progeny out of the total number

of progeny scored for a particular cross. Any replicate in which

all progeny were GFP was excluded in our analyses because we

could not ensure that a second mating had taken place. (As

with CSP, the estimated proportion of females that did not

remate was not significantly different between populations [39].)

Individuals were scored as they eclosed, using a Leica M205FA

Stereo Microscope that has an Hg fluorescent lamp attached and

GFP filter, as described in Castillo & Moyle [9].
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(g) Statistical analyses
All analyses were completed in R v. 3.01.

(h) Differences in the probability of first mating with
heterospecifics

We evaluated evidence for reinforcement acting on first mating

(premating isolation) in two ways. First, we used a x2 test of

independence to test the null hypothesis that the mating rate

with heterospecifics was the same for allopatry versus sympatry,

after combining both allopatric and both sympatric populations

for this single comparison (pairwise tests among individual

populations gave the same result; electronic supplementary

material, table S1). Second, coding mating events as a binary

variable (0, no mating; 1, successful mating), we used a logistic

regression model with all four populations represented by a cat-

egorical variable, using the glmer function. We then tested for

differences in heterospecific mating between populations by con-

ducting a Wald’s test (using the wald.test function from the aod

package; [40]).

To evaluate whether there was significant variation within

each population (i.e. among isofemale line genotypes) in the

probability of mating with a heterospecific, we used logistic

regression, and tested significance of isofemale line and

D. persimilis tester line effects using a Wald’s test.

(i) Differences in mean and variance of conspecific
sperm precedence and intraspecies sperm
competition between populations

To evaluate evidence for reinforcement acting on CSP, we

assessed whether the allopatric and sympatric populations had

a mean difference in CSP or whether they differed in variance.

To evaluate differences in the mean CSP, we used a Welch’s

t-test that accounts for unequal variances between samples,

and confirmed our results with a Wilcoxon ranked-sum test,

because our data are not normally distributed. To evaluate differ-

ences in variance, we compared the total phenotypic variation

between geographical classes of population with a Levene-type

test implemented in the lawstat package in R ([41]; details pro-

vided in electronic supplementary material, Methods). Using

the same statistical approach, we tested for differences in the

mean and variance of ISC between sympatric and allopatric

populations. Results were not different whether populations

were analysed pairwise or pooled (electronic supplementary

material, Methods).

( j) Genetic variation and genotype effects on
conspecific sperm precedence and intraspecies
sperm competition

Within each population, we assessed whether female, male, or

female�male genotype predicted variation in the strength of

CSP and ISC. Because binomial data typically violate the

assumptions of ANOVA [42,43], we used binomial regression

to fit a model of the form

logitðpijkÞ ¼ mþ ai þ bj þ (ab)ij þ 1ijk ,

where a and b are each categorical variables with four levels that

represent male and female genotype, respectively, and the

variable (ab) represents the male � female genotype interactions.

Since we were interested in partitioning the variance and estimat-

ing the variance components (s2
a, s2

b, s2
ab), we assumed that each

variable was a random variable. To test the significance of each

variance component, we used a binomial regression in a mixed
modelling framework with parametric bootstrap ([44]; electronic

supplementary material, Methods).
(k) Genetic association between conspecific sperm
precedence and intraspecies sperm competition

We conducted an exploratory analysis of the potential molecular

genetic association between CSP and ISC by estimating the

correlations between each phenotype and single-nucleotide poly-

morphisms (SNPs) within a set of 14 candidate genes and 13

control genes. The candidate loci are orthologues to known

sperm competition genes in D. melanogaster (electronic sup-

plementary material, table S2; [45]). The control genes have

been used previously as controls for studies of molecular evol-

ution (electronic supplementary material, table S3; [46–48]).

After removing SNPs that were strongly associated with popu-

lation structure, we estimated the association between

individual SNPs and either the CSP or ISC phenotype while

accounting for population of origin and mating partner (see

Results; electronic supplementary material, Methods).
(l) Quantifying the opportunity for sexual selection and
variance in male reproductive success

To evaluate whether the intensity/opportunity for sexual

selection differs among populations, we determined whether

their variance in male reproductive success differed [49]. We esti-

mated male fitness as the proportion of progeny sired, taking

into consideration that we had two distinct classes of males—

tester first (defensive) males and second (offensive) males—that

may differ in their frequency and variance in fitness in the exper-

iment. Following Shuster et al. [50], we define total variance

in male reproductive success as the sum of within (first

two terms) and between (last term in the equation) male class

variance

Vtotal ¼ ( fP1)(VP1)þ ( fP2)(VP2)þ (�XP2 � �XP1)2( fP2)( fP1):

We were interested in reproductive variance at the level of male

genotype, so we averaged biological replicates to generate mean

fitness values for each individual genotype. We used empirical

bootstrap confidence intervals to estimate error that may have

been a product of averaging over replicates [51,52] (as described

in the electronic supplementary material, Methods); significantly

different variances have non-overlapping bootstrap confidence

intervals.
3. Results
(a) No difference between allopatric and sympatric

populations in premating isolation
We found that the average probability of heterospecific mat-

ings ranged from 46 to 52% between populations, and did not

differ between allopatric and sympatric populations (x2 test

of independence: x2 ¼ 1.185, d.f. ¼ 1, p ¼ 0.2763; Wald’s

test: x2 ¼ 1.9, d.f. ¼ 4, p ¼ 0.75; electronic supplementary

material, table S4). Pairwise tests between each allopatric

and sympatric population also failed to reject the null

hypothesis. Although we did not detect a signal of reinforce-

ment, there was ample genetic variance in heterospecific

mating rate between female genotypes available for selection

within each population (figure 1; electronic supplementary

material, table S5). Only in one of the populations (Lamoille,

which is allopatric) did the identity of the D. persimilis tester
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line affect variation in premating isolation (electronic

supplementary material, table S5).

(b) Reinforcement acts on conspecific sperm precedence
Unlike premating isolation, we observed a pattern consistent

with reinforcement for CSP. Specifically, in sympatry, we find

both greater average CSP (t ¼ 26.59, d.f. ¼ 210.92, p , 0.001;

Wilcox W ¼ 4427.5, p , 0.001) and less phenotypic variation

in this trait (Levene-type test x2 ¼ 22.82, p , 0.0001) when

data were pooled by geographical region (allopatry versus

sympatry) (electronic supplementary material, table S4;

figure 2a). These differences in the mean and variance of

CSP were also observed in pairwise tests between individual

allopatric and sympatric populations (electronic supplementary

material, tables S6 and S7).

(c) Reinforcement has collateral effects on
intrapopulation sperm competition

ISC also differed between allopatric and sympatric

populations, in both mean and variance (electronic sup-

plementary material, table S4; figure 2b). First, the mean

offensive ability for ISC was significantly lower in sympatric

populations (t ¼ 3.73, d.f. ¼ 246.55, p ¼ 0.0002; Wilcox’s W ¼
10280, p ¼ 0.0004). This contrasts with the observed increase

in offensive CSP in sympatric populations. Second, there was

more variation in ISC in the sympatric populations compared

to the allopatric populations (Leven-type test x2 ¼ 5.74, p ¼
0.0172). Given the differences in ISC and CSP across popu-

lations, we used the mean CSP and ISC phenotype for each

male�female genotype combination within a population

(i.e. each cell within the diallel crossing design) to examine

the relationship between the two phenotypes across the

four populations. We observed a significant negative
relationship between CSP and ISC (Pearson’s r ¼ 20.31,

p ¼ 0.01; electronic supplementary material, figure S3).

Because each male or female genotype is represented in mul-

tiple combinations, we further controlled for non-

independence using a linear mixed effect model and con-

firmed that the negative slope of the relationship was

significantly different from zero (profiled CI ¼ 20.451,

20.028).
(d) Female genotype effects contribute to conspecific
sperm precedence and male�female genotype
effects explain both conspecific sperm precedence
and intraspecies sperm competition

Of male, female, and male�female genotype effects that

could contribute to explaining the variance in CSP, we
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found that three of the four populations had a significant

female genotype effect (electronic supplementary material,

table S8 and figure S4), and all populations had a significant

male�female genotype interaction effect. The D. persimilis
tester male line was also significant in three of four popu-

lations. There was no consistent pattern among populations

in which effect explained the largest proportion of variance;

in some populations, this was largest for the female genotype

effect, while in others, the male�female genotype interaction

effect was larger (electronic supplementary material, table

S8). By contrast, for ISC in all four populations, we only

observed significant male�female genotype interaction

effects and a significant effect of the first-tester male genotype

(electronic supplementary material, table S9 and figure S5). In

every case, the male�female genotype effect explained more

variance than the identity of the tester male genotype.

(e) Conspecific sperm precedence and intraspecies
sperm competition are genetically associated at a
specific locus

After accounting for population structure, no SNPs in the

control genes had a significant correlation for CSP or ISC.

For our candidate genes, only a single SNP—in the gene

Esp—retained a significant correlation. Interestingly, this

SNP had pleiotropic effects, with a positive effect on CSP

and a negative effect on ISC.

( f ) The opportunity for sexual selection is decreased
in sympatry

We found that the sympatric populations had significantly

lower variance for reproductive success compared to the allo-

patric populations (figure 3; electronic supplementary

material, table S10). The variance in reproductive success

across all male genotypes in the allopatric Lamoille popu-

lation was significantly greater than both sympatric

populations (Mt St Helena F ¼ 1.96, bootstrap p ¼ 0.003;

Sierra F ¼ 2.08, bootstrap p ¼ 0.008), as was the variance in

reproductive success in the allopatric Zion population com-

pared to the sympatric populations (Mt St Helena F ¼ 2.65,

bootstrap p ¼ 0.003; Sierra F ¼ 2.83, bootstrap p ¼ 0.004).

The reduced variance in reproductive success in sympatry

is completely a product of lower offensive sperm compe-

tition values in sympatry (figure 2b), that result in

equalized differences in the siring success between offensive

and defensive males.
4. Discussion
Interactions with heterospecifics have the potential to drive

divergent sexual selection and the evolution of reproductive

isolation, via reproductive character displacement and

reinforcement [5,53]. Using D. pseudoobscura and D. persimilis,

we assessed evidence for reinforcement of species barriers in

sympatry via elevated female mate preference or CSP. Pre-

mating isolation is historically considered a strong barrier

to isolation between these species, and one that reinforcing

selection has acted on [34], but we saw no evidence for repro-

ductive character displacement for this trait. By contrast, we

found that the average CSP was higher and the overall

level of phenotypic variation was lower, specifically in
sympatric populations, a pattern consistent with recent or

recurrent directional selection acting on CSP in these popu-

lations. We further asked whether reinforcement could have

had collateral effects on intraspecific sperm competition,

given that this trait is mechanistically associated with CSP

[32]. We found that our two sympatric populations also

had lower offensive sperm competitive ability against con-

specifics, in comparison to our two allopatric populations,

consistent with weakened sexual selection in sympatry.

Our results are consistent with the evolution of signifi-

cantly strengthened reproductive isolation in the form of

CSP in response to reinforcing selection. While CSP is

known to be a barrier to gene flow in Drosophila [11,12] and

other taxa [2], its importance in nature has been difficult to

ascertain [13,15]. Moreover, even though models of specia-

tion by sexual selection predict that strong divergent

selection will erode phenotypic variation in selected traits

[54,55], trait variance is not typically quantified [7,14]. Our

observations of both increased mean CSP and reduced vari-

ation specifically in sympatry provide strong support for

the inference that CSP has responded to selection imposed

by heterospecific interactions, and underscore the important

role that CSP could play in maintaining species boundaries.

While other factors have been proposed to account for

reproductive character displacement, including differential

fusion [56] or ecological differences that have collateral effects

on mating traits [53,57], additional data indicate that the pat-

tern we observe for CSP is most consistent with

reinforcement. For example, differential fusion predicts that

reproductive isolation evolves between species in allopatry

and merely acts to prevent species collapse upon subsequent

secondary contact, creating the incidental appearance of

stronger isolation in sympatry [58,59]. However, if differential

fusion operates specifically in sympatric populations, we

would expect sympatric CSP values to be a subset of allopa-

tric CSP values [14], and this is not the case; sympatric values

of CSP are systematically higher than in allopatry (figure 2).
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Similarly, several lines of evidence argue that systematic

ecological differences between allopatry and sympatry are

unlikely to explain our observed postcopulatory differences.

First, there is little evidence that differential natural selection

acts consistently on sympatric versus allopatric populations;

ecological differences across the range of D. pseudoobscura
are largely continuous, rather than uniquely differentiating

regions of allopatry and sympatry with D. persimilis. More-

over, although both our sympatric populations are located

in California, they are collected from environmentally distinct

mountain ranges [60], whose habitat and ecological vari-

ation maintains stable differences in inversion frequencies

between populations of D. pseudoobscura in these locations

[61]. Second, it is unclear how external ecological factors

would produce our patterns of differential sperm compe-

tition. Indirect effects of diet and nutrition can affect

sperm competition outcomes [62,63], but should not persist

in a laboratory environment. Moreover, if ecological mech-

anisms existed, there is no a priori reason to expect they

would act in the specific direction we observed. Given

this, while the ecological alternative to reinforcement

might be plausible for some premating phenotypes, it is

unlikely to explain the postcopulatory phenotypes that we

examine here.

Our second major inference is that the response to reinfor-

cing selection observed in CSP has had a collateral effect on

the magnitude of offensive ISC because of a negative genetic

correlation between CSP and ISC. This has, in turn, reduced

the opportunity for sexual selection in these sympatric popu-

lations. Sperm competition strongly contributes to sexual

selection in D. pseudoobscura where multiple mating is fre-

quent in wild-caught females [64], and male mating

success, including sperm competition, is a major component

of selection in natural populations [65]. We observed that, on

average, ISC was higher for our allopatric populations com-

pared to sympatric populations—where we found little

difference in postcopulatory fitness among male genotypes

(ISC close to 0.5). An alternative explanation is that direc-

tional selection for weaker ISC indirectly increased CSP but

only in sympatry; however, as well as being generally

implausible, in that case, we should have observed reduced

phenotypic variation in ISC, but did not.

Instead, we infer that selection for stronger CSP in sympa-

try has reduced mean ISC in sympatric populations via a

negative genetic correlation between these two sperm competi-

tive phenotypes. Consistent with this, one female-specific gene

(Esp) showed a significant association with postcopulatory

phenotypes, via an SNP that had opposite effects for CSP

and ISC. This analysis applied a very conservative correction

for population structure and likely underestimates the

number of SNPs contributing to CSP and ISC. Regardless,

any shared genetic basis between CSP and ISC allows selection

on one trait to have collateral effects on the other, when

the strength of selection acting on each trait has different

magnitudes and directions.

For reinforcing selection to interfere with sexual selection

as we propose, selection favouring increased CSP must out-

weigh selection acting to maximize ISC. This requires

sufficient heterospecific contact for interspecific matings to

impose a significant selective burden on D. pseudoobscura.

The rate of heterospecific contact can vary across the sympa-

tric range as a product of the relative frequency of each

species [66,67]. In our no-choice experiments, D. pseudoobscura
females accepted D. persimilis males at relatively high frequen-

cies, suggesting the potential for heterospecific matings is

substantial. Interestingly, these data also indicated that

female acceptance of D. persimilis first males did not differ

between sympatry and allopatry, although elevated pre-

mating isolation has previously been observed in

D. pseudoobscura that are sympatric with D. persimilis ([34];

although see also [68–70]). While there are no prior data on

CSP from these species, our observations here—including

that the average allopatric premating isolation in our exper-

iment is similar to previous reports [34]—suggest that the

relative contribution of different barriers in sympatry might

have changed over time.

Comparative analysis across Drosophila species suggests

that, on average, CSP evolves more slowly than premating

isolation [71]. However, specific conditions could increase

the rate of CSP evolution. For example, a cost of remaining

unmated (‘the wallflower effect’; [72]) can lead to

reductions in female pre-copulatory choice; under these cir-

cumstances, CSP could evolve faster than premating

isolation. In addition, ‘swamping effects’ of gene flow

from allopatric populations [73] might explain a temporal

shift to reduce premating isolation in sympatry, but it is dif-

ficult to disentangle this from costs associated with

preference. Evidence for both gene flow between sympatric

and allopatric populations of D. pseudoobscura [74,75]

as well as a cost of female preference in experimental popu-

lations of D. pseudoobscura [76] suggest that both processes

could contribute to the patterns we observe. Specifically,

sympatric populations had a comparatively large variance

in female mating rates, as evidenced by a bimodal distri-

bution, compared to the more narrow female preferences

observed in allopatry (figure 1).

Additional evidence for interspecific hybridization also

suggests that heterospecific mating rates are sufficiently

common between these two species to impose selection on

CSP. F1 progeny, while rare, have been identified from wild

collections [77], and genomic data suggest a history of post-spe-

ciation heterospecific mating and introgression between D.
pseudoobscura and D. persimilis [74,78]. Notably, these estimates

of hybridization only capture events that successfully produced

F1 progeny and/or later generation hybrids, so they systemati-

cally underestimate the rate of heterospecific matings; for

example, given the presence of strong CSP, many heterospecific

matings may never produce hybrid progeny.

Given this sustained heterospecific contact, one clear way

fitness effects of CSP could outweigh ISC is via a higher selec-

tive premium specifically for females. Weaker CSP imposes

substantial fitness costs on females because it results in repro-

ductive investment in low fitness hybrids, whereas weaker

ISC likely has a comparatively marginal effect on female fit-

ness outcomes. We were able to evaluate the expectation

that females face more costs of hybridization [30,31] and

that choice manifests as female control of sperm use patterns

[79–81] by contrasting the genotype effects (male, female,

and male�female genotype effects) between CSP and ISC.

We detected male�female interactions for both CSP and

ISC but, interestingly, only saw significant female genotype

effects for CSP. This latter finding suggests that cryptic

female choice might operate similarly to premating isolation

mechanisms where females are often the more ‘choosy’ sex

and female effects control the level of reproductive isolation

more so than male effects [82].
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Overall, our data suggest that strong reinforcing selection

for reproductive isolation can have consequences for sexual

selection and sexual interactions, in these important postmat-

ing sperm competition traits. The direction of this interaction

inverts standard expectations about the connection between

sexual selection and speciation. Sexual selection is often

thought of as a driver of sexual characteristics whose evol-

utionary divergence then contributes to reproductive

isolation. But a direct genetic connection between these pro-

cesses implies reproductive isolation also has the reciprocal

potential to shape sexual selection [83]. Based on our obser-

vations of higher mean but lower variance in CSP in

sympatry, a negative correlation between CSP and ISC, and

reduced variance in reproductive success via ISC among

sympatric conspecific males, we infer that strong selection

for reproductive isolation within populations exposed to het-

erospecific species has reduced the efficacy of sexual selection
in these populations, a collateral effect of reinforcing selection

that has not previously been demonstrated.
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