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Introduction

Fatty acid amide hydrolase (FAAH) is the principal inactivat-
ing enzyme of endogenous cannabinoid degradation of the
most important endocannabinoid ligand, anandamide, and
 hydrolyses other long fatty acids, especially 2-arachidonoyl-
glycerol (2-AG) [1–3]. Endocannabinoids are lipid mediators
derived from membrane phospholipids or triglycerides with
complex effects on body weight and metabolic regulation [4].
It has been shown that both exocannabinoid and endo-
cannabinoid are associated with an increased food intake and
weight gain in animals through the central endocannabinoid
pathway [5, 6].
Mice deficient in FAAH display reduced anxiety and ethanol
sensitivity [7, 8], and have reduced levels of the orexigenic pep-
tide CART in several regions of the brain implicated in ap-
petite control [9]. The FAAH gene is located in a region of
linkage for dietary energy and nutrient intakes on chromo-
some 1p33 in human populations [10]. In addition, FAAH
mRNA expression in adipose tissue is negatively correlated
with circulating endocannabinoid and visceral fat mass, and is
increased in mature adipocytes compared with preadipocytes
[11–13]. A functional missense polymorphism Pro129Thr has
been associated with drug use [14–16] and with reduced cellu-
lar expression and activity of human FAAH in T lymphocytes
and COS-7 cells [17]. In addition, the Pro129Thr polymorphism
has been associated with overweight and obesity in a cohort of
European and African ancestry, but this association was not
confirmed in Asian [18] and was borderline associated with
overweight in Danish population-based cohorts [19] but in the
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Summary
Objective: The endocannabinoid pathway is involved in eat-
ing behavior and body weight regulation in both animals
and humans. The association of a missense polymorphism
(Pro129Thr) in FAAH gene with overweight/obesity has been
recently questioned. Subjects and Methods: To evaluate the
contribution of the FAAH gene variation in polygenic obesity
and type 2 diabetes mellitus (T2DM) in the French popula-
tion, we investigated the entire FAAH locus. We selected
and genotyped ten tagged single nucleotide polymorphisms
(SNPs) in 635 obese children, 896 morbidly obese adults,
2,238 T2DM subjects and 1,340 control subjects, all of
French European origin. Case control association tests were
performed using logistic regression models. Results: Nomi-
nal evidences of association were observed for rs6429600,
rs324419, rs324418, rs2295633, rs7520850 and risk for class
III adult obesity (0,001 < p < 0.04). The rs324420 (Pro129Thr)
was nominally associated with class III adult obesity (ORaddi-

tive = 0.79 (95% CI 0.67–0.93), p = 0.005; ORdominant = 0.76
(95% CI 0.63–0.92), p = 0.005), Pro129 being the obesity risk
allele. These associations did not remain significant after
Bonferroni correction for multiple testing. There was no sig-
nificant association between FAAH SNPs and risk for child-
hood obesity or T2DM. Conclusion: Our results in 5,109 sub-
jects suggest that FAAH Pro129Thr polymorphism may
modestly contribute to class III adult obesity in the French
population. Further validation is needed to precise the role
of this gene variant in obesity susceptibility background.
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opposite direction of the initial report of Sipe et al. [18]. These
conflicting data might indicate that both findings are spurious
and highlight the need for further validation studies. 
More recently, Murdolo et al. [20] found that hyperinsulinemia
induced by a euglycemic hyperinsulinemic clamp led to a two-
fold increase in the level of FAAH mRNA in subcutaneous ab-
dominal adipose tissue of lean but not obese subjects. However,
the effect of the Pro129Thr functional polymorphism on the risk
of type 2 diabetes mellitus (T2DM) has not been assessed to
date. Our aim was to investigate the possible role of the whole
FAAH gene variations in susceptibility to polygenic severe obe-
sity as well as to T2DM using a tagged single nucleotide poly-
morphism (SNP) approach in the French population. 

Subjects and Methods

Subjects
Subjects in the case control studies were all French Caucasian, and an in-
formed consent was signed by each subject before participating in the
studies which were approved by local ethics committees.
The control subjects were recruited by the CNRS-UMR8090 or came
from the general-population D.E.S.I.R. study [21]. We selected 1,340 
unrelated adults, with BMI < 25 kg/m2, age ≥ 40 years, fasting glucose 
< 6.1 mmol/l and with no treatment for hyperglycemia (men/women
444/896; mean BMI 21.8 ± 1.6 kg/m2; mean age 55 ± 10 years).
The CNRS-UMR8090 recruited obese children. Childhood obesity was
defined according to the European Childhood Obesity Group (ECOG)
[22] as BMI exceeding the 97th percentile for gender and age in a French
reference population. We selected 635 obese children (mean zBMI 
4.3 ± 1.2; mean age 11 ± 3 years; men/women 296/339).
Obese adults were recruited by the CNRS-UMR8090 and by the Depart-
ment of Nutrition of the Hotel Dieu Hospital in Paris. Class III obesity
status was defined as BMI ≥ 40 kg/m2 in adults. The obese adult group 
included 896 subjects (men/women 207/689) with a mean BMI of 47.5 ±
7.6 kg/m2 and a mean age of 45 ± 12 years.
The diabetic group was recruited by the Corbeil-Essonnes Hospital and
by the CNRS-UMR8090. T2DM was defined as fasting plasma glucose 
≥ 7.0 mmol/l and/or treatment by antidiabetic agents and age at onset of
T2DM ≥ 45 years old. We selected 2,238 subjects (men/women 1,327/911,
mean age of 59 ± 10 years, mean age at onset of T2DM 48 ± 10 years and
mean BMI 30.2 ± 5.6 kg/m2). 

Tagging Procedure
We selected tagged SNPs in the chromosome 1 region defining the FAAH
locus (chr1: 46,224,908_46,254,432), 5kb upstream and 5kb downstream
flanking the gene. We used the Haploview program with the HapMap
phase II database (October 2005) and selected SNPs with an r2 > 0.8 and a
minor allele frequency (MAF) > 0.05. Ten tagged SNPs that captured
100% of the haplotype representation within the 30 kb FAAH locus were
chosen for the case control association study, including the previously
 observed associated SNP Pro129Thr amino acid change (fig. 1).

SNP Genotyping
Genotyping was performed using the Applied Biosystems SNPlex™ (Ap-
plied Biosystems, Foster City, CA, USA) technology based on the oligonu-
cleotide ligation assay (OLA) combined with multiplex PCR target am-
plification. The chemistry of the assay relies on a set of universal core
reagent kits and a set of SNP-specific ligation probes, allowing a multiplex
genotyping of 48 SNPs simultaneously in a unique sample. Allelic discrim-
ination is performed through capillary electrophoresis analysis using Ap-
plied Biosystems 3730xl DNA Analyzer and GeneMapper 3.7 software.
The SNP rs913168 failed during the design process and was therefore
genotyped using LightCycler™480 technology (Roche Diagnostics, Basel,
Switzerland). The conditions are available upon request. The rs324420 was
performed using the TaqMan® SNP Genotyping Assays on ABI 7900
(Applied Biosystems). The genotyping call rate was above 95% for the
ten SNPs. As a standard laboratory quality control measure, a random
10% of DNA samples were systematically re-genotyped, and we recorded
a concordance rate of 100% for each SNP. 

Statistical Analysis
Genotypic distributions were in Hardy-Weinberg equilibrium for all SNPs
in the control subjects (p > 0.05). Case control association tests were per-
formed using logistic regression models to take into account the effect of
co-variables such as gender, age, and BMI. Logistic regression adjusted
for gender and age was used for childhood and adult class III obesity
traits. Logistic regression adjusted for gender, age, and BMI were used for
T2DM trait. We tested additive, dominant and recessive modes of inheri-
tance. For statistical power calculation we used the program QUANTO
[23]. Using spectral decomposition, we estimated the total number of tests
at 8.18 to applied for multiple comparisons to Bonferroni correction (8.18
SNPs × 3 affection traits × 3 genetic models = 73.6; p corrected = 0.00068)
[24]. 
We used linear regression models (corrected for gender and age) to assess
the effect of SNP rs324420 on quantitative traits variation (BMI, fasting
glucose and fasting insulin, waist circumference, triglycerides as well as
HDL cholesterol and total cholesterol).

 

Fig. 1. Schematic
representation of the
FAAH gene in the
30kb studied interval
and the tagged SNPs
selected from Hap
Map II (data Rel19/
phaseII Oct05, on
NCBi B34 assembly).
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Table 1. Genotype distribution of FAAH tagged SNP in lean normoglycemic controls, obese children, class III obese adults and T2DM subjectsa

Taggeds Subjetcs Genotypes Adjusted odds ratio
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

SNP 11 12 22 additive model recessive model dominant model
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
p OR (95% CI) p OR (95% CI) p OR (95% CI)
value value value

rs913168 controls 431 (34.0) 613 (48.3) 225 (17.7)
A>G obese children 228 (37.4) 280 (45.9) 102 (16.7) 0.24 0.92 (0.80–1.06) 0.65 0.94 (0.73–1.22) 0.18 0.87 (0.71–1.06)

obese adults 278 (31.6) 432 (49) 171 (19.4) 0.09 1.12 (0.98–1.27) 0.31 1.13 (0.90–1.42) 0.10 1.18 (0.97–1.43)
T2DM subjects 737 (34.1) 1,042 (48.2) 384 (17.8) 0.90 0.99 (0.82–1.19) 0.94 0.99 (0.71–1.38) 0.90 0.98 (0.75–1.29)

rs17361950 controls 671 (51.2) 528 (40.3) 112 (8.5)
C>T obese children 315 (50.0) 265 (42.1) 50 (7.9) 0.79 1.02 (0.88–1.18) 0.70 0.93 (0.66–1.32) 0.57 1.06 (0.87–1.28)

obese adults 432 (49.9) 365 (42.2) 68 (7.9) 0.74 1.02 (0.89–1.18) 0.53 0.90 (0.65–1.25) 0.44 1.07 (0.90–1.29)
T2DM subjects 1,131 (52.1) 833 (38.4) 206 (9.5) 0.97 1.00(0.82–1.22) 0.67 1.10 (0.70–1.72) 0.84 0.97 (0.75–1.26)

rs6429600 controls 736 (56.5) 487 (37.4) 79 (6.1)
A>G obese children 349 (57.0) 221 (36.1) 42 (6.9) 0.76 1.02 (0.87–1.20) 0.48 1.15 (0.78–1.70) 0.98 1.00 (0.82–1.22)

obese adults 535 (61.7) 294 (33.9) 38 (4.4) 0.001 0.78 (0.67–0.91) 0.08 0.69 (0.45–1.04) 0.002 0.75 (0.62–0.90)
T2DM subjects 1,273 (58.3) 792 (36.3) 118 (5.4) 0.79 1.03 (0.83–1.27) 0.57 0.85 (0.50–1.46) 0.54 1.08 (0.84–1.40)

rs324420 controls 836 (63.3) 432 (32.7) 52 (3.9)
C>A obese children 407 (64.8) 193 (30.7) 28 (4.5) 0.83 0.98 (0.83–1.16) 0.67 1.11 (0.69–1.78) 0.66 0.96 (0.78–1.17)

obese adults 602 (67.7) 262 (29.5) 25 (2.8) 0.005 0.79 (0.67–0.93) 0.20 0.72 (0.43–1.19) 0.005 0.76 (0.63–0.92)
T2DM subjects 1,404 (64.3) 696 (31.9) 84 (3.8) 0.72 1.04 (0.83–1.30) 0.65 0.86 (0.45–1.65) 0.54 1.09 (0.83–1.41)

rs324419 controls 920 (70) 365 (27.8) 29 (2.2)
G>A obese children 466 (74.1) 150 (23.8) 13 (2.1) 0.13 0.86 (0.71–1.04) 0.84 0.93 (0.48–1.81) 0.10 0.83 (0.67–1.04)

obese adults 613 (70.5) 222 (25.5) 34 (3.9) 0.46 1.07 (0.90–1.26) 0.01 1.99 (1.17–3.39) 0.93 0.99 (0.81–1.21)
T2DM subjects 1,555 (71.7) 556 (25.6) 57 (2.6) 0.92 0.99 (0.77–1.27) 0.85 1.08 (0.47–2.51) 0.87 0.98 (0.74–1.29)

rs324418 controls 800 (61) 453 (34.5) 59 (4.5)
T>C obese children 383 (61.1) 206 (32.9) 38 (6.1) 0.53 1.05 (0.90–1.24) 0.19 1.32 (0.87–2.02) 0.86 1.02 (0.84–1.24)

obese adults 561 (64.4) 276 (31.7) 34 (3.9) 0.04 0.85 (0.72–0.99) 0.72 0.92 (0.58–1.45) 0.02 0.80 (0.67–0.97)
T2DM subjects 1,333 (61.5) 739 (34.1) 97 (4.5) 0.54 1.07 (0.86–1.33) 0.82 0.93 (0.51–1.69) 0.40 1.12 (0.86–1.45)

rs2295633 controls 526 (40.6) 606 (46.8) 163 (12.6)
C>T obese children 280 (46.0) 259 (42.5) 70 (11.5) 0.09 0.88 (0.76–1.02) 0.56 0.91(0.68–1.23) 0.55 0.83 (0.68–1.00)

obese adults 378 (44.7) 375 (44.4) 92 (10.9) 0.02 0.86 (0.74–0.98) 0.18 0.82 (0.62–1.09) 0.03 0.82 (0.68–0.98)
T2DM subjects 916 (43.4) 937 (44.3) 260 (12.3) 0.92 0.99 (0.82–1.20) 0.80 0.95 (0.65–1.40) 0.97 1.00 (0.77–1.30)

rs11576941 controls 606 (46.3) 571 (43.6) 133 (10.2)
G>T obese children 285 (45.2) 280 (44.4) 66 (10.5) 0.93 1.01 (0.87–1.16) 0.95 1.01 (0.74–1.38) 0.94 1.01 (0.83–1.22)

obese adults 391 (45.1) 388 (44.8) 88 (10.1) 0.58 1.04 (0.91–1.19) 0.86 0.97 (0.72–1.31) 0.41 1.08 (0.90–1.29)
T2DM subjects 973 (45.0) 959 (44.3) 232 (10.7) 0.60 0.95 (0.79–1.15) 0.96 1.01 (0.67–1.52) 0.46 0.91 (0.70–1.17)

rs324425 controls 1,199 (91.5) 108 (8.2) 3 (0.2)
G>A obese children 570 (90.9) 52 (8.3) 5 (0.8) 0.31 1.17 (0.86–1.60) 0.10 3.34 (0.78–14.21) 0.49 1.12 (0.80–1.58)

obese adults 807 (92.4) 63 (7.2) 3 (0.3) 0.36 0.86 (0.63–1.18) 0.54 1.66 (0.32–8.58) 0.28 0.83 (0.59–1.16)
T2DM subjects 2,009 (92.0) 172 (7.9) 2 (0.1) 0.80 1.06 (0.67–1.69) 0.74 0.55 (0.02–18.65) 0.76 1.08 (0.67–1.75)

rs7520850 controls 1,010 (77.5) 280 (21.5) 14 (1.1)
G>A obese children 488 (80.8) 111 (18.4) 5 (0.8) 0.12 0.84 (0.67–1.05) 0.70 0.82 (0.29–2.30) 0.12 0.82 (0.65–1.05)

obese adults 662 (77.1) 175 (20.4) 22 (2.6) 0.19 1.14 (0.94–1.38) 0.005 2.79 (1.37–5.69) 0.56 1.06 (0.86–1.32)
T2DM subjects 1,662 (76.8) 473 (21.9) 28 (1.3) 0.77 1.04 (0.79–1.38) 0.52 0.64 (0.16–2.54) 0.65 1.07 (0.79–1.45)

aOdds ratios and 95% CIs were calculated using logistic regression model adjusted for gender and age for childhood and adult class III obesity traits.
Logistic regression model adjusted for gender, age and BMI were used for T2DM trait.

Results

Ten tagged SNPs in the FAAH locus were successfully geno-
typed in 1,340 lean normoglycemic adults, 635 obese children,
896 class III obese adults and 2,238 T2DM subjects. Results of

the case control study under both additive, dominant and re-
cessive modes of inheritance are given in table 1. There was no
significant association between FAAH SNPs and risk for
childhood obesity or T2DM. Nominal evidences of association
were observed for rs6429600 (ORadditive = 0.78 (95% CI
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0.67–0.91), p = 0.001; ORdominant = 0.75 (95% CI 0.62–0.90), 
p = 0.002), rs324419 (ORrecessive = 1.99 (95% CI 1.17–3.39), 
p = 0.01), rs324418 (ORadditive = 0.85 (95%CI 0.72–0.99), p =
0.04; ORdominant = 0.80 (95%CI 0.67–0.97), p = 0.02), rs2295633
(ORadditive = 0.86 (95% CI 0.74–0.98), p = 0.02; ORdominant =
0.82 (95% CI 0.68–0.98), p = 0.03), rs7520850 (ORrecessive =
2.79 (95% CI 1.37–5.69), p = 0.005) and risk for class III obesi-
ty. The rs324420 (Pro129Thr) SNP was associated neither with
childhood obesity nor with T2DM in our study. However, we
found a nominally significant association between Pro129Thr
polymorphism and class III adult obesity (ORadditive = 0.79
(95% CI 0.67–0.93), p = 0.005; ORdominant = 0.76 (95% CI
0.63–0.92), p = 0.005), Pro129 being the obesity risk allele.
These associations did not remain significant after multiple
testing correction. 
We then studied the effect of the SNP rs324420 (Pro129Thr)
on metabolic traits in 1,340 lean normoglycemic adults (table
2). The lowest significance was observed between the rs324420
SNP and HDL cholesterol (nominal p = 0.02) but is no more
significant after Bonferroni correction (1 SNP × 3 genetic
models × 7 traits = 21; p corrected = 0.0024).

Discussion

Our study is the first to cover the whole FAAH gene haplo-
type structure in a large data set (n = 5,109). Our results sug-
gest that the FAAH Pro129Thr functional polymorphism [17]
may modestly contribute to class III adult obesity, but not to
childhood obesity or to T2DM in the French population. The
full coverage of the FAAH locus using a tagged SNP approach
did not reveal any additional gene variation significantly asso-
ciated with the same affection traits. Our study was designed
to detect an effect size of 1.35, 1.30 and 1.25 with a statistical
power of 80% (MAF 0.1, p = 0.05) for childhood obesity, adult
class III obesity and T2DM risk, respectively.
Regarding the Pro129Thr non-synonymous SNP, we were un-
able to confirm the initial association between Thr129 and obe-
sity [18]. Indeed we found significant evidence of association

between this polymorphism and class III adult obesity, but in
opposite direction of the one reported by Sipe et al. [18] (obe-
sity risk allele Pro129 in our design). Interestingly, Jensen et al.
[19] found a nominal association of the Pro129 allele with risk
of overweight/obesity in a large Danish population (n = 5,801).
This highlights the need for multiple replication to fully vali-
date new disease susceptibility genes, as recently shown for the
INSIG2 story [25–29]. It remains possible that severe familial
forms of obesity may harbor a different genetic architecture
than moderate forms of common obesity as studied by Sipe et
al. [18]. However, Jensen et al. [19] were unable to replicate
this association in a population-based Danish cohort. 
A recent report has provided evidence that the hyperglycemic
status could modulate FAAH mRNA level in subcutaneous
abdominal adipose tissue of lean patients [20]. From these re-
sults, we hypothesized that FAAH gene variation could be in-
volved in the etiology of T2DM. Our results based on 1,340
lean normoglycemic and 2,238 T2DM subjects exclude a
major effect of FAAH SNPs in the risk for T2DM. 
In conclusion, a tagging SNP approach in the FAAH locus
combined with a case control study of 635 obese children cases,
896 class III obese adults cases, 2,238 T2DM cases, and 1,340
controls suggest that FAAH Pro129Thr polymorphism may
modestly contribute to class III adult obesity in the French
population. Further validation is needed to precise the role of
this gene variant in the obesity susceptibility background.
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Table 2. Study of metabolic traits according to the FAAH rs324420 (Pro129Thr) polymorphisma

rs324420 (Pro129Thr) CC AC AA p value
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
number mean S.D. number mean S.D. number mean S.D. additive dominant recessive

BMI, kg/m2 836 21.6 1.7 432 21.6 1.7 52 21.6 1.5 0.38 0.30 0.98
Fasting glucose, mmol/l 836 5.04 0.42 431 5.01 0.44 52 5.03 0.45 0.40 0.38 0.81
Fasting insulin, mU/l 816 31.6 16.6 426 31.0 15.1 52 33.7 16.6 0.96 0.69 0.26
Waist circumference, cm 813 74.7 7.5 424 73.6 7.7 50 75.6 7.2 0.58 0.31 0.35
HDL cholesterol, mmol/l 775 1.74 0.45 401 1.78 0.41 50 1.86 0.41 0.02 0.06 0.03
Total cholesterol, mmol/l 775 5.58 0.94 401 5.55 0.91 50 5.84 1.01 0.26 0.59 0.05
Triglycerides, mmol/l 775 0.89 0.46 401 0.85 0.40 50 0.86 0.38 0.64 0.59 0.98

ap values were corrected for gender and age.
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