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Communication with humans is a multi-faceted phenomenon where the

emotions, personality and non-verbal behaviours, as well as the verbal beha-

viours, play a significant role, and human–robot interaction (HRI)

technologies should respect this complexity to achieve efficient and seamless

communication. In this paper, we describe the design and execution of five

public demonstrations made with two HRI systems that aimed at automati-

cally sensing and analysing human participants’ non-verbal behaviour and

predicting their facial action units, facial expressions and personality in

real time while they interacted with a small humanoid robot. We describe

an overview of the challenges faced together with the lessons learned

from those demonstrations in order to better inform the science and engin-

eering fields to design and build better robots with more purposeful

interaction capabilities.

This article is part of the theme issue ‘From social brains to social robots:

applying neurocognitive insights to human–robot interaction’.
1. Introduction
A social robot is defined as a (semi-)autonomous robot that is able to commu-

nicate with humans or other robots, and engage in social interactions by

following social behaviours and norms [1]. Arguably, the most important

aspect of a social robot is its perception capability—if a robot is able to accu-

rately understand its surrounding world and its people, it can be made to

communicate in an appropriate and social manner.

Social robots are a disruptive technology that have an enormous potential to

transform multiple domains. However, the public, largely misled by sci-fi

movies and driven mainly by fear or fascination, has skewed opinions and

unrealistic expectations of these robots. Therefore, there is a genuine need

for scientists working in the fields of robotics and artificial intelligence to

demonstrate their work and engage the public.

The field of social robotics is exponentially growing and evolving, motiv-

ated by a wide range of promising applications in public settings [2]

including assisting people in hospitals, schools, shopping malls [3] and

homes [4]. User profiling and behavioural adaptation is key in deploying

social robots in such dynamic environments. Rossi et al. [5] divided user profil-

ing strategies into three categories, namely, physical, cognitive and social,

which are essential to enhance user’s satisfaction and robot acceptance. Physical

profiling is concerned with processing human sensory inputs and recognizing

actions and activities, whereas cognitive and social profiling requires a higher

level of interpretation of human behaviours, namely recognizing their inten-

tions, inferring their mental states, personalities and emotions. In these

applications, the success of social robots will depend on how proper use profil-

ing can be achieved, and how effective behavioural adaptation can be made
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based on the users’ profiles, and to what degree individuals

come to trust the robot that assists them.

Within the scope of cognitive and social user profiling,

affective and social signals play a prominent role. Humans

exchange information and convey their thoughts and feelings

through gaze, facial expressions, body language and tone of

voice along with spoken words, and infer 60–65% of the mean-

ing of the communicated messages from these non-verbal

behaviours [6]. These non-verbal behaviours carry significant

information regarding higher-level social phenomena such as

emotions, personality and engagement. Recognizing and

interpreting these signals comes naturally for humans. The

main thrust of an effective human–robot interaction platform

should be to empower robots with similar skills.

In this paper, we describe a number of public demon-

strations we conducted for automatically sensing and

analysing human participants’ non-verbal behaviours in

real time while the participant interacted with a small huma-

noid robot in two different contexts: (i) predicting their

perceived personality via the MAPTRAITS-HRI system and

(ii) predicting their facial action units (AUs) and facial

expressions in the context of an interactive game via the

TeachMeEQ system.
 026
2. Background and related work
Researchers addressed the effect of various phenomena

during human–robot interaction (HRI), such as cognitive

biases [7], erroneous behaviour by the robot [8] or the

social gaze [9], in order to better understand and improve

HRI. In particular, a number of studies focused on predicting

the personality and emotions of humans during HRI as we

summarize in the following sections.

(a) Personality prediction in human – robot interaction
Incorporating human personality analysis to adapt a robot’s

behaviour for engaging a person in an activity is becoming

an important component for social robots [10–12]. One pro-

minent work by Rahbar et al. [13] focused on the prediction

of the extroversion trait only, when a participant was interact-

ing with the humanoid iCub [14], a robot shaped like a 4

year-old child. They extracted both individual features and

interpersonal features. The individual features were associ-

ated with the participant’s amount of movement. The

interpersonal features modelled synchrony and dominance

between the movements of iCub and the participant, as

well as proxemics features (i.e. the distance between iCub

and the participant). They achieved the best recognition

results by fusing individual and interpersonal features.

Research has shown that humans tend to be attracted

to characters who have either matching personality traits (simi-

larity rule) or non-matching personality traits (complementarity

rule) [15]. Salam et al. [11] investigated the impact of the partici-

pants’ personalities on their engagement states in a setting

where two participants interacted with a Nao robot.1 Similar

to Rahbar et al. [13], they extracted two sets of features,

namely, individual and interpersonal features. Individual fea-

tures described the individual behaviours of each participant,

e.g. body activity. Interpersonal features characterized the inter-

personal behaviours of the participants with respect to each

other and the robot. These included the total amount of group

movement, the relative body orientation of the participants
with respect to the robot, etc. They first predicted the personality

of each participant, and then combined the personality predic-

tions with the individual and interpersonal features to

recognize whether the participants were engaged or not. The

best results were achieved using individual features together

with personality predictions.

Motivated by applications such as childcare and edu-

cation, a recent work by Abe et al. [16] focused on predicting

children’s extroversion and agreeableness during interactions

with a social robot. To this effect, they observed their distance

from the robot, their facial expressions and the duration of

their eye contact during these interactions, which yielded an

accuracy over chance.

Despite its importance, research on automatic personality

analysis in the context of social robotics is scarce. To the best

of our knowledge, there is no system that is integrated onto a

robot, and performs real time analysis of personality in the

course of human–robot interactions. One of the challenges is

that, although modelling the dynamics of expressions and

emotions has been extensively studied in the literature, how

to model personality in a time-continuous manner has been

an open problem. Most of the previous approaches make infer-

ence about personality from a post analysis of short behavioural

episodes, ranging from 10 to 14 s to several minutes. During our

demonstrations, we therefore used the MAPTRAITS system,

which we specifically designed for predicting personality in

real-time, in the course of interactions.
(b) Emotion recognition in human – robot interaction
Emotion recognition methods used by social robots were

extensively surveyed by Yan et al. [1] and McColl et al. [17].

Here, we only considered the prominent works that per-

formed the recognition task by automatically extracting

features from visual cues, and integrated the developed

method onto a robotic platform.

The categorical model of emotion has been the most

widely adopted approach in the literature. Cid et al. [18]

developed an emotion recognition system by extracting fea-

tures based on the facial action coding system (FACS) [19],

and implemented it on a robotic head, Muecas [20], for an

imitation task. For emotion recognition, they first applied a

preprocessing step to the face image taken by Muecas to nor-

malize the illumination and remove the noise, and highlight

the facial features. From the processed face, a set of edge-

based features were extracted and modelled to detect a total

of 11 AUs. The detected AUs were used to represent the

four basic emotions of happiness, sadness, fear and anger,

according to a rule-based approach, and were mapped on

the Muecas robot to display the inferred emotion in real

time. Boucenna et al. [21] used similar visual features for

enabling the robot to learn facial expressions of emotion

from interactions with humans, through an online learning

algorithm. The Muecas robot was able to learn all the

emotions successfully, except for sadness. This was due to

the large intra-class variability for sadness, namely, each

person expressed sadness in a different manner.

Leo et al. [22] developed an automatic emotion recognition

system to measure the facial emotion imitation capability of

children with Autism Spectrum Disorders (ASD). R25 is a

small cartoon-character-like robot by Robokind2 that was

first made to display a facial expression, and then the child

was instructed to imitate the displayed facial expression
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while being analysed through R25’s camera located in its right

eye. The emotion recognition method was based on a generic

pipeline including four components: face detection, face

registration, appearance-based face representation and classi-

fication. This method was tested on three children with

ASD, and achieved good emotion recognition performance

especially for happiness and sadness.

Robust facial expression recognition is technically challen-

ging, especially if there is no control over illumination

conditions and the age range of the intended participants is

large; the latter is particularly problematic if young children

are considered to be included, as facial expression datasets

generally contain only adult participants. The technical chal-

lenges are compounded by the fact that expression

recognition needs to be carried with real-time processing

speed on a standard computer. With TeachMeEQ, we

intended to do multiple live demonstrations in different

locations and include children as well as adult participants.

This required us to build a robust facial expression recog-

nition pipeline. Three technical improvements have been

critical to achieve this and to reach high accuracy: (i) using

(neutral) features based on an initial calibration stage, (ii)

using illumination-normalized spatio-temporal Gabor fea-

tures and (iii) combining appearance and shape features.

Those improvements and our facial expression recognition

pipeline are discussed in more detail in §3bi.
3. Public demonstration platforms
In this section, we introduce two platforms that were publicly

demonstrated throughout 2016 and 2017, namely, the MAP-

TRAITS-HRI system and the TeachMeEQ system. First, the

MAPTRAITS-HRI system was demonstrated live in 2016 in

the context of two public demonstrations, namely in a

Research Showcase setting and an International Conference

setting. In the subsequent year, the TeachMeEQ system was

demonstrated live in the context of science communication

at the Cambridge Science Festival 2017, the Wellcome Collec-

tions’ Friday Late Spectacular—Body Language Event, and

the Humans and Robots in Public Space Showcase. In the

rest of this paper, we first review emotion and personality

prediction in the context of human–robot interaction, and

then describe the design and the execution of the demon-

strations, and provide an overview of the challenges faced,

together with the lessons learned.

(a) The MAPTRAITS-HRI system for automatic
personality prediction

(i) The MAPTRAITS system
The MAPTRAITS system is a multimodal framework that

performs automatic personality prediction according to the

Big Five personality model in real time [23], which comprises

the trait set of extroversion, agreeableness, conscientiousness,

neuroticism and openness, and is the standard and widely

used approach in the area of personality computing [24].

The MAPTRAITS-HRI system has been trained [25] using

human data recorded with the SEMAINE system [26]. The

MAPTRAITS-HRI dataset was created as a subset of the

audio-visual recordings of the SEMAINE corpus [27]. It

consists of 30 clips of 10 subjects interacting with three

SEMAINE agents. Annotations for these data were obtained
by asking the independent raters to provide their impressions

continuously in time along the dimensions of agreeableness,

openness, neuroticism, conscientiousness and extroversion.

The temporal variability of personality impressions is exam-

ined by developing time-continuous assessment. Rather than

obtaining a single rating for the whole clip, raters continuously

recorded their annotations for the aforementioned dimensions

as the clip of the target subject played. For feature extraction,

we took into account a multitude of visual features including

face appearance, face geometric and body features. We then

used the long/short term memory neural networks for time-

series regression to model the temporal relationships between

the continuously generated annotations and extracted features.

In table 1, we presented our best results for each feature type in

terms of coefficient of determination (R2) and mean square

error (MSE), where body features were the most useful feature

in general, yielding larger R2 and smaller MSE as compared to

face features.

We extended the MAPTRAITS system [28] to work in a

human–robot interaction setting (MAPTRAITS-HRI system,

henceforth).
(ii) The real-time demonstrator
The robotic system we used is the humanoid robot Nao

developed by Aldebaran Robotics1 with NaoQi v. 2.1, head

v. 4.0 and body v. 25 operating on it.

In the MAPTRAITS-HRI system demonstration, one

human participant is sitting facing the Nao robot. The partici-

pant is wearing a headset for voice analysis and a video

camera is used for head gesture, facial and bodily expression

analysis. The robot is speaking and showing both verbal and

non-verbal behaviour. A computer screen next to the robot is

displaying graphically the current system detection of the

participants’ face and the prediction of their perceived per-

sonality, estimated based on the participants’ observable

behaviour. The robot sustains the conversation by being an

active speaker and listener using verbal utterances and

head and hand gestures.

We adopted a Wizard of Oz (WoZ) interaction set-up to

design the initial stages of the MAPTRAITS-HRI system for

which the sensing component has been fully implemented,

but not the robotic component. WoZ refers to a human oper-

ator, unknown to the participant, remotely controlling the

robot [29]. WoZ is widely used in HRI studies particularly

when ‘the robot’s hardware and design has been completed

but the robot’s sensory, motor or cognitive abilities are still

limited’ [29].

The non-verbal behaviour of the robot is adopted as it has

been implemented by default. More specifically, the Wizard

does not control the non-verbal aspects of the robot behav-

iour such as blinking, head movement, hand and arm

gesturing, and body posture. The natural language proces-

sing aspect of the robot was controlled via a graphical user

interface specifically designed with a pre-scripted structure

and flow of the envisaged interaction. The Wizard was

required to listen to the participant answer and select

between two possible options either in the form of feedback

(e.g. ‘That is exciting!’ or ‘I see . . .’) or asking the next ques-

tion. Prior to the demonstrations, the Wizard learned how

to use the interface to control the WoZ setup. In summary,

by employing WoZ we aimed to learn the limitations of the

automatic sensing system and if this impedes the interaction.



Table 1. The best prediction results per personality trait are highlighted in
italics. AG, agreeableness; CO, conscientiousness; EX, extroversion; NE,
neuroticism; OP, openness.

AG CO EX NE OP

face R2 0.22 0.41 0.07 0.20 0.23

appearance MSE 0.53 0.38 0.62 0.57 0.75

face R2 0.23 0.33 0.07 0.20 0.13

geometric MSE 0.47 0.44 0.55 0.45 0.71

body R2 0.19 0.39 0.10 0.26 0.25

MSE 0.60 0.39 0.69 0.45 0.59
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Our goal was to compensate for these issues in the final

autonomous version of the system.

In previous research, we analysed human-robot inter-

actions with an extroverted and an introverted robot and

found that people enjoyed interacting more with the robot

that exhibited an extroverted personality [10,12]. Therefore,

for the live MAPTRAITS-HRI demonstrator, we used the

extroverted robot personality from our previous study [12],

which displayed hand gestures and talked relatively fast

and loud.

The conversation consisted of five parts: (1) Greeting. The

robot initiates the interaction by greeting the person and

making small talk, and asks the person about her name and

occupation, and how the day has been. The robot provides

verbal and nonverbal feedback via simple comments (e.g.

‘That sounds amazing!/Exciting!’). (2) Task. The robot asks

the person to bring her face closer so that he can learn her

face. The robot provides verbal feedback (e.g. ‘I have now

learned your face/I could not learn your face, let’s try

again.’). (3) Emotions. The robot asks the person a personal

question, i.e. ‘Is there something you would like to change

in your life?; Can you tell me about the best memory you

have or the best event you have experienced in your life?/

Can you tell me about an unpleasant or sad memory you

have had in your life?’ The robot provides verbal and gestural

feedback (e.g. ‘How nice!’/‘I understand.’). (4) Opinion. The

robot asks the person about their feelings and knowledge

of robots (e.g. ‘What are your feelings toward robots? Do

you like them?/Have you watched Wall-e? Do you like

it?’). (5) Performance. The robot offers to dance (i.e. ‘Would

you like me to dance for you?’). Once the participant

agrees, the robot performs Tai-Chi moves.
(iii) Observations
Even though we had the personality predictions printed in

real time on the computer screen, participants did not pay

much attention to that and simply focused on the conversa-

tion. In the conference demo, we had an additional screen

that showed the overall personality prediction of the partici-

pant right after the conversation, and this was the only

moment when participants were indeed interested in seeing

their personality prediction results. The system listed person-

ality predictions in terms of three dimensions: agreeableness,

extroversion and neuroticism. When people were assessing

their personality predictions, they did not focus on the pre-

cise meaning of these dimensions, they were rather

interested in the connotations. For instance, people thought
that both agreeableness and extroversion have a positive con-

notation, and they simply wanted to see if they score high in

these positive personality dimensions, or if they score high in

the negatively perceived neuroticism dimension, without being

interested in the actual meaning of the personality traits.
(b) The TeachMeEQ system for automatic expression
prediction

(i) The TeachMeEQ system
Our goal with the TeachMeEQ system was to elicit facial

expressions with simple instructions from Nao. For this

purpose, we decided to ask participants to display three

out of the six basic expressions, namely, happiness, surprise

and sadness, as in-house experiments showed that those

were the best for generating cohesive expressions across par-

ticipants. Indeed, multiple studies showed that those are

the expressions that are the easiest to recognize for humans

[30–32]; challenging the notion of universality for the six

basic expressions, those studies showed that the recognition

rates for expressions such as fear or disgust can be as low

as in the range of 40–50%.

As a result, we decided to consider only the expressions of

happiness, surprise and sadness. We opted for an FACS-based

recognition of those expressions to address the possibility that

participants display those expressions only partially; for

example, a participant instructed to display the expression

of surprise may display it only with eyebrow raising (AU

1 þ 2), overlooking the lip part (AU 25) and/or the jaw

drop (AU 26) movements. We focused on a total of seven

AUs, namely, inner brow raiser (AU1), outer brow raiser

(AU2), brow lower (AU4), cheek raiser (AU6), lip corner

puller (AU12), lips parted (AU25) and jaw drop (AU26). For

the automatic AU detection, Sariyanidi et al. [33] highlighted

the importance of two practices: (i) combining shape and

appearance features, which yields better performance because

they carry complementary information, and (ii) using differ-

ential features that describe information with respect to a

reference image (i.e. the neutral face in the case of emotion rec-

ognition). The main advantage of the differential features is to

place higher emphasis on the facial action by reducing person-

specific appearance cues. We therefore extracted four types of

features, namely, shape, appearance, differential-appearance

and differential-shape features. The details of this system are

described by Ondras et al. [34].

During the on-the-fly tests, we ensured that we had the

neutral face of human subjects by programming the robot

to ask the participant to stand still and make a neutral face

in front of the camera prior to beginning the interaction

session. We trained four binary support-vector machine clas-

sifiers, each in conjunction with one of the above-mentioned

feature types, per AU. The final AU detection decisions are

obtained by fusing the outputs of the four individual classi-

fiers. Specifically, we adopt the consensus fusion approach,

where an AU is detected based on the condition that all

four classifiers are in full agreement. Prior to using in live

demonstrations, we evaluated the performance of this AU

detection system offline using the MMI dataset [35] via five-

fold cross-validation. Table 2 presents AU detection results of

the four individual features as well as their combination via

consensus fusion approach in terms of 2AFC metric [36],

where higher AFC scores indicate a better recognition



Figure 1. Illustration of AU detection results. Vertical and horizontal bars indicate the head rotation—green colour is associated with frontal/nearly frontal head
pose. The detected AUs in each face image are highlighted in blue: AU1 and AU2, and AU4.

Table 2. AU detection performance in terms of 2AFC score. Italic text indicates the best (i.e. highest) score.

2AFC AU1 AU2 AU4 AU6 AU12 AU25 AU26

shape 0.74 0.53 0.67 0.61 0.79 0.73 0.53

appearance 0.74 0.73 0.65 0.78 0.82 0.78 0.67

d-shape 0.78 0.67 0.71 0.74 0.78 0.82 0.64

d-appearance 0.90 0.92 0.87 0.82 0.92 0.89 0.78

fusion 0.91 0.89 0.78 0.87 0.93 0.86 0.79
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performance. Looking at the AFC scores, the best-performing

individual feature is the d-appearance feature, and the con-

sensus fusion achieves a higher AFC score than the d-

appearance feature for 4 (AU1, AU6, AU12, AU26) out of 7

AUs. We further used the best performing trained models

in the real-time demonstration.
(ii) The real-time demonstrator
We performed the real-time implementation using C++ and

integrated it onto the Nao robot. The computational power

of the Nao robot did not allow us to run the AU detection

algorithm in real time. For this reason, we used a pair of

external cameras plugged into a laptop (Intel Core i6, 16

GB RAM), and ran the AU detection algorithm on the

laptop. These cameras were attached to Nao’s head using

custom three-dimensional printed glasses. Example AU

detections from the robot’s point of view are shown in

figure 1. Vertical and horizontal bars indicate the head

pose, and green colour is associated with frontal/nearly fron-

tal head poses that yield more reliable AU detection. The

detected AUs are highlighted in blue on the left-hand side

of each frame (e.g. AU1 and AU2 in figure 1a).

For the live demonstrations, the Nao robot was pro-

grammed to stand on a table while the participant sat

facing the robot, participant’s eye level matching the robot’s

eye level. The robot was programmed to interact with the par-

ticipant autonomously by asking questions to the participant

and sensing their audio-visual response (whether they say

yes/no and what facial or hand gesture they display) through

the cameras and the headphones mounted on his head.

The first part of the live demo focused on analysing the

facial gestures of the participant. The Nao robot emulates a
child who is only 4 years old, and it does not have all the

facial features a human has such as eyebrows, lips, nostrils,

etc. These make the robot less capable of expressing itself in

an emotionally and socially intelligent way. Therefore, the

motivation for the first part of the TeachMeEQ system is

that the Nao robot needs to work on improving its emotional

intelligence (EQ). The game starts with the robot asking the

participant to teach him how to express himself emotionally

by displaying facial gestures. The participant could choose

to display any facial gesture such as pulling lip corners up

(smile), pulling eyebrows up (surprise), dropping the

mouth/chin (surprise), lowering the eyebrows (frown), etc.

As illustrated in figure 2, Nao attempted to recognize each

AU displayed by the participant, and inferred the expressed

emotion based on a rule-based approach, and then asked

the participant for feedback in the form of pressing the

button on his left/right toes for yes/no.

Sample images from the Body Language Spectacular that

took place in the Wellcome Collection, London, on the 4

November 2016,3 are shown in figure 2. The images illustrate

the moment that the participants from the public displayed

different facial gestures.
(iii) Observations
The majority of the participants tended to sit far away from

the robot and tended to back away when the robot prepared

itself to stand up to start the game. The participants seemed

not to listen to the robot fully and carefully, instead they had

their own mental models of, for example, which button to

press and when. More specifically, they would be more

focused on how the robot looked and behaved and therefore

not listen to his instructions and end up asking the



Figure 2. Images from the Body Language Spectacular at the Wellcome Collection (copyright: Wellcome Images).
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experimenter questions such as ‘what did he say?’ and ‘what

do I press?’ Additionally, they would not wait for the robot to

finish its instructions, and would go ahead and press a button

immediately before waiting for the robot to tell them which

one to press. But when the robot asked them to touch its

head to continue the game, the majority of the participants

were reluctant to touch the robot’s head, and they would

first look at the experimenter for confirmation that this was

indeed the request and it would be OK to touch the head

of the robot.

When the robot asked the participants to display a neutral

face participants were mostly displaying a smiling face

assuming that this was their neutral face. The participants

also tended to hold the expression they displayed for the

robot for a very long time without the robot giving them

instructions about this. We hypothesize that people assumed

that the robot needed extra time to detect and recognize their

facial gestures and expressions.
4. Challenges and lessons learned
Methods of evaluation for human studies in HRI are listed as

(1) self-assessments, (2) interviews, (3) behavioural measures,

(4) psychophysiology measures and (5) task performance

metrics, with self-assessment and behavioural measures

being the most common ones [37]. In our formal study [10],

we took into account these methods and asked the partici-

pants to fill in a pre-study questionnaire to record

demographics information and self-reported personality

and a post-study questionnaire to evaluate their interaction

experience [10]. We also recorded their physiological signals

and audio-visual behaviour.

For the live demonstrations, we wanted to follow these

methodologies and asked the participants to fill in question-

naires. However, we quickly realized that this was not going

to work in a public demonstration due to the following reasons:

(i) people were not interested in filling out formal documents,

they wanted to have an experience with the technology; and

(ii) there were other demos in the area that they wanted to try

out and had only a limited amount of time. Although around

72 one-to-one interactions with the robot took place during

our live public demonstrations, we are unable to report detailed

statistics. In what follows, we summarize the challenges faced

during the public demonstrations under novelty effect, assump-

tions and misconceptions, side effects, system effects, effects

of the self-reported feedback and effects of WoZ, based on

qualitative observations.
(a) Novelty effect
Participants are ‘too’ excited about being able to interact with

a ‘real’ robot, which for some people was probably a first time

experience. To overcome this issue in a ‘formal’ experimental

setting, Kidd and Breazeal suggest that the participant should

be introduced to the experiment and should be familiarized

with the robot prior to the actual experiment taking place

[38]. At the end of the interaction, the participant should ide-

ally be interviewed and debriefed about the aims of the

experiment. Following such a protocol is reported to reduce

novelty effects [38]. But how do we define and follow such

a protocol for public demonstrations? This remains an open

question to be explored and will potentially enable better

ways for gathering public-setting data.
(b) Assumptions and misconceptions
A humanoid robot that has ‘a head with eyes suggests that

the robot has advanced sensory abilities e.g. vision’ [29, sec-

tion 38.9]. During the MAPTRAITS-HRI demo participants

therefore assumed that the robot sees them through its eyes

which is not the case with Nao—its cameras are positioned

around the mouth and the forehead. To mitigate this issue

in the TeachMeEQ demo, we placed a three-dimensional

printed headset with two cameras where the eyes are located.

This correctly corresponded to the users’ assumptions

regarding the location of the eyes and ultimately provided

better image quality to aid the automatic analysis process.
(c) Side effects
Participants are likely to experience and be affected by side

effects of various events that occur during a public demon-

stration. These include effects attributed to the public

nature of the environment–social desirability effect, which

is due to participants answering in a way that they perceive

as socially acceptable in the given situation, and high levels

of variability due to noise/chatter, lighting and crowds,

other people walking into the setting, other people asking

questions, commenting or interrupting the interaction. The

latter is also known as the Hawthorne effect [39], a phenom-

enon that relates to participants displaying certain behaviour

because they know that they are being observed, in our case

either by the robot or by others around them. Investigating

the value of side effects, and exploring whether it should

be mitigated in some ways, remain interesting research

questions to be explored for HRI in public settings.
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(d) System effects
Participants are likely to experience effects attributed to the

system, e.g. the automatic analyses system crashing, the sen-

sors halting, robot breaking or behaving in ways that were

not anticipated. On the occasions that the system does not

crash, there might be errors in the analysis of the human

non-verbal behaviour and prediction of the personality or

facial expressions due to the system not getting a clean

input image. The ideal solution to such issues would how-

ever depend on the interaction type and the intended

context. In our demonstrations, we observed that participants

did not care about system effects as long as the speech and

the behaviour of the robot was not affected.
Phil.Trans.R.Soc.B
374:20180026
(e) Effects of the self-reported feedback
There are no standardized methods for evaluating HRI in

public settings. As pointed out by Bethel & Murphy [37]

using a single evaluation measure is not sufficient to interpret

accurately the responses of participants to a robot with which

they are interacting. Self-assessments have problems with

validity and corroboration—e.g. participants might report dif-

ferently from how they are actually thinking or feeling [37]. It

is indeed a challenge to attribute the participants’ responses to

their true behaviours. We expected that the system effects

described above would directly affect the self-reported feed-

back. However, participants refrained from making negative

comments about the system output. Rather, they used vague

comments, which might be due to the social desirability effect.
( f ) Effects of WoZ
The main critisim for WoZ is the ethical problems referred to as

Turing Deceptions by Miller [40]. More specifically, it is not nice

to deceive humans and make them believe that they are interact-

ing with a fully autonomous robot when in reality they are

interacting with a human that is hiding behind the robot. This

is indeed a challenge for designing and executing public dem-

onstrations that rely in one way or another on WoZ set-ups.

During the MAPTRAITS-HRI demonstrations, we observed

that the majority of the participants believed that the robot

was fully autonomous. Despite differences in demographics,

it was clear that the public expects a humanoid robot interacting

with them to be fully autonomous in its perception, control and

output. This was also confirmed during our discussions with

the curator, Ben Russell, of the London Science Museum’s

2017 exhibition that explored the 500-year story of humanoid

robots.4 Indeed, we observed this trend during the live Teach-

MeEQ public demos which were designed and executed as

autonomous human–robot interactive demonstrations.
5. Conclusion
The availability of commercial robotic platforms and develop-

ments in collaborative academic research show we have

achieved a lot, but the cognitive and social capabilities of the

current humanoid robots are still very limited. There is a

genuine need for scientists working in the fields of robotics

and artificial intelligence to demonstrate their work and

engage the public. As emphasized on the EPSRC’s website,5

this is important for two reasons: (i) to demystify the human-

like robots and to help the general public become technology

literate by creating a better understanding of the abilities and

the potential of these robots and (ii) to acknowledge the public’s

concerns and get to know their views that can help steer how we

develop human-like robots in the best interests of society.

In this paper, we presented the design and implemen-

tation of a number of live public demonstrations we have

conducted in the period of 2015–2017 with the two proposed

systems, namely the MAPTRAITS-HRI system and the Teach-

MeEQ system, in the context of science communication.

These demonstrations aimed at automatically sensing and

analysing human participants’ non-verbal behaviour and

predicting their personality, facial AUs and expressions in

real time while they interacted with a humanoid robot (Nao).

HRI is known to have lower repeatability [1], and tools and

metrics developed in human–computer interaction do not

directly transfer to HRI. Public demonstrations provide insights

into various aspect of human–robot interactions that may not be

obvious or emerge during formal HRI studies. As the area of

social robotics and HRI is growing, public demonstrations

have the potential to provide insights about the robot/system

effectiveness in public settings and reactions of the people. As

indicated by our Challenges and Lessons Learned section, live

public demonstrations enable us to better understand humans

and inform the science and engineering fields to design and

build better robots with more purposeful interaction capabilities.
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