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The population diversity and structure of CRISPR-Cas immunity provides

key insights into virus–host interactions. Here, we examined two geographi-

cally and genetically distinct natural populations of the thermophilic

crenarchaeon Sulfolobus islandicus and their interactions with Sulfolobus spin-

dle-shaped viruses (SSVs) and S. islandicus rod-shaped viruses (SIRVs). We

found that both virus families can be targeted with high population distribu-

ted immunity, whereby most immune strains target a virus using unique

unshared CRISPR spacers. In Kamchatka, Russia, we observed high immunity

to chronic SSVs that increases over time. In this context, we found that some

SSVs had shortened genomes lacking genes that are highly targeted by the

S. islandicus population, indicating a potential mechanism of immune evasion.

By contrast, in Yellowstone National Park, we found high inter- and intra-

strain immune diversity targeting lytic SIRVs and low immunity to chronic

SSVs. In this population, we observed evidence of SIRVs evolving immunity

through mutations concentrated in the first five bases of protospacers. These

results indicate that diversity and structure of antiviral CRISPR-Cas immunity

for a single microbial species can differ by both the population and virus type,

and suggest that different virus families use different mechanisms to evade

CRISPR-Cas immunity.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
1. Introduction
Infection by viruses is a common feature among the three domains of life. Genetic

diversity within genes associated with antiviral immunity is often high compared

with the rest of an organism’s genome and is maintained by diversifying selection

[1,2]. Maintenance of diversity at immunity-associated genes may result from

negative frequency-dependent selection or arms race dynamics [3–5]. The struc-

ture of this diversity, which describes how immunity is similar or different

among members of a population, can be used to infer the nature of interactions

between virus and host populations at a given point in time and ultimately to pre-

dict viral epidemics within microbial populations. In microbial populations, the

most common dynamic described is a Lotka–Volterra model in which recurring

selective sweeps of resistant types are fixed to create low diversity at any single

time point within a population but high diversity among populations through

time [6]. Some single-celled microbes exhibit high genetic diversity in their

CRISPR-Cas systems both within and among populations [7–9].

Clustered regularly interspaced short palindromic repeats (CRISPRs) are gen-

etic loci that function with CRISPR-associated system (Cas) genes to provide

bacteria and archaea with adaptive immunity against viruses and foreign nucleic

acids [10]. In these systems, short genome-encoded sequences called spacers
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match viral sequences called protospacers to confer immunity.

Spacers are generally incorporated unidirectionally at the

leader end of CRISPR spacer arrays [11–13]. The entire

CRISPR spacer array is expressed and processed into individual

spacer containing CRISPR RNAs that associate with Cas genes,

which they direct to complementary protospacers [14,15]. The

effector proteins of type I CRISPR-Cas systems cleave viral

DNA containing protospacers with protospacer adjacent

motifs (PAMs) [16,17]. Most type III CRISPR-Cas systems

target and degrade RNA or actively transcribed DNA contain-

ing protospacers without a PAM requirement [18,19]. Viruses

can evade CRISPR-Cas-mediated immunity by mutating

their targeted protospacer or PAM sequences, mutating the pro-

motor of genes targeted by type III CRISPR systems, or by

encoding anti-CRISPR proteins [20–23]. CRISPR spacers are

heritable and maintain a chronology of ancestral interactions

with viruses. Characterizing the diversity and structure of

CRISPR-Cas immune spacers at the population level is impor-

tant for understanding microbial evolution in the context of

virus–host interactions.

The population structure and dynamics of CRISPR-Cas

immunity have been studied using laboratory evolved, artifi-

cially constructed or simulated microbial populations [22,24–

30]. These studies show that host populations diversify their

CRISPR spacers in response to virus challenge. This immune

diversity, characterized by many evenly distributed CRISPR

spacer genotypes leading to the same immunity phenotype, is

called population distributed immunity (PDI) [26]. Simulations

suggest that certain conditions (low virus mutation rate, high

rate of spacer addition, large numbers of spacers and protospa-

cers) promote high PDI, which, in turn, maintains stability and

diversity in microbial populations by limiting genetic sweeps of

immune host genotypes [26]. Like epidemiology in human popu-

lations, the number of susceptible individuals in a population is a

key factor to determining whether a virus can establish and

spread as an epidemic in a single population. High PDI limits

the ability of a virus to adapt and evade immunity, keeping

viral titres low and prone to extinction [26,27,29,31,32]. Studies

of CRISPR-Cas immunity using natural populations show

substantial diversity in CRISPR-Cas immunity, but their appli-

cation to population structure is limited by the use of small

numbers of individual virus and host isolates, incomplete identi-

fication of all spacer sequences or difficulty linking spacers from

metagenomic sequences to individual cells [8,33–38].

To expand our understanding of the population structure

of CRISPR diversity and its impact on virus–host interactions,

we present findings from our study of Sulfolobus islandicus
populations isolated from hot springs in Yellowstone National

Park in the United States and near Mutnovsky volcano in

Kamchatka, Russia. We examined their interactions with

contemporary chronic, non-lytic Sulfolobus spindle-shaped

viruses (SSVs) from the Fuselloviridae family and lytic S. islandi-
cus rod-shaped viruses (SIRVs) from the Rudiviridae family.

We suggest that differences in immunity structure and virus

escape from immunity reveal distinct virus–host interactions

and coevolution in each local population.
2. Material and methods
(a) Cell and virus isolation and sequencing
The isolation of S. islandicus strains from hot springs near

Mutnovsky volcano in Kamchatka, Russia, in 2000 (21 strains
used in this study) and 2010 (29 strains used in this study) were

described previously [8,25,39,40]. Water and sediment were

collected from hot springs near Nymph Lake in Yellowstone

National Park, USA, in 2012. Individual S. islandicus strains

(clones) were isolated by sequential colony purifications

[8,25,40]. Thirteen of the strains from Mutnovsky were previously

sequenced with complete genome assemblies [39,40]. The DNA of

the remaining eight Mutnovsky strains from 2000, the 29 Mut-

novsky strains from 2010 and the 40 Yellowstone strains from

2012 was purified using either DNeasy Blood and Tissue kit

(Qiagen, Hilden, Germany) or phenol, chloroform and isoamyl

alcohol precipitation of cell lysates [41,42]. Genomic libraries

were prepared using the Nextera XT library preparation kit (Illu-

mina, San Diego, CA, USA) and sequenced at the W.M. Keck

Center for Comparative and Functional Genomics at the Univer-

sity of Illinois at Urbana-Champaign. Strains from Yellowstone

were sequenced on an Illumina HiSeq 2000 with 2 � 100 bp

paired-end reads. Strains from Mutnovsky were sequenced on

an Illumina MiSeq with 2 � 250 bp paired-end reads. Down-

stream analysis did not appear biased by the different

sequencing methods as both were sufficient for spacer identifi-

cation and assembly of integrated viruses and CRISPR loci (see

below).

Isolation and sequencing of cell-free SSVs from Mutnovsky

volcano in 2010 and Yellowstone National Park in 2012 was

done as previously described [43]. Briefly, filtered environmental

samples or enrichment culture supernatants were spotted on

S. islandicus overlays. Samples that produced zones of clearance

were selected for further purification. Individual plaques were

picked and used to inoculate mid-log cultures of S. islandicus grow-

ing in dextrin-tryptone media [44] followed by two more rounds

of plaque purification and screening by transmission electron

microscopy for the presence of a single virus morphotype. The

genomes of SSVs were isolated from concentrated samples using

phenol/chloroform extractions as described previously [43,45].

The resulting nucleic acids were desalted using QIAEX II beads

(Qiagen), prepared for sequencing using the Nextera XT kit (Illu-

mina) and sequenced using an Illumina MiSeq with 2 � 250 bp

paired-end reads. Reads were quality filtered using the FASTX-

Toolkit and Cutadapt [46]. Viral genomes were assembled using

Geneious v. 9.1.2 [47].

(b) Identification of spindle-shaped viruses integrated
into S. islandicus genomes

Quality filtered reads from each Mutnovsky and Yellowstone strain

were used as queries in BLASTn searches against all known SSV

genomes [48–52]. Reads similar to SSV sequences were pooled

along with their paired-end mates, assembled into contigs using

SPAdes genome assembler, and manually verified [53]. The ends

of the viral genomes were determined by the locations of two iden-

tical attP-like sequences [54]. Viral integration sites were determined

by the cellular sequences adjacent to these attP-like sequences.

(c) Comparison of spindle-shaped viruses
All putative open reading frames (ORFs) from all SSVs were deter-

mined using glimmer3.02, allowing for alternative start codons,

ORFs overlapping up to 250 bp, and ignoring the in-frame score

for ORFs longer than 200 bp [55]. Putative ORFs were translated

and homologous protein sequences were determined using CD-

HIT with a sequence identity cut-off of 0.4 [56,57]. Ten ORFs

(homologues of SSV1 VP1, VP3, C166, B251, A154, B277, A82,

B115, B129 and C84/A92) identified in all 47 SSV genomes were

aligned using MAFFT v. 7, concatenated into a single nucleotide

sequence retaining alignment positions, and used to generate a

phylogenic tree with RAxML using options -f a –x 100 -p 100 -N

autoMR -m GTRGAMMA [58–60].



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180093

3
(d) Identification of CRISPR spacers and Cas genes
in S. islandicus genomes

The CRISPR spacer sequences from all S. islandicus strains were

identified from quality filtered sequencing reads by extracting

the sequences between CRISPR repeats (Mutnovsky A1 and A2

repeat ¼ GATAATCTACTATAGAATTGAAAG; Mutnovsky C

repeat ¼ GATTAATCCTAAAAGGAATTGAAAG; Yellowstone

A1 and A2 repeat ¼ GCTAATCTACTATAGAATTGAAAG; or

the previously unreported Yellowstone NL repeat ¼ ATTTGTA

GAAATCCTTAGAGGACTTGAAAC) [8]. The novel Yellowstone

NL repeat sequence was identified from repetitive sequences

within reads. Redundant spacers resulting from sequencing

errors were removed by aligning spacers with high nucleotide

identity and keeping only the consensus for each spacer from

each strain. CRISPR loci were assembled by identifying reads con-

taining CRISPR repeat sequences or Cas genes and assembling

using SPAdes [53]. The presence of type I and type III CRISPR-

Cas systems was determined using Cas3 and Cas10/Cmr2 from

diverse S. islandicus strains (M.16.4, M.16.27, HVE10/4, REY15A,

LAL 14/1, Y.G.57.14, Y.N.15.51 and L.S.2.15) as queries for

tBLASTn analysis against reads and partly assembled CRISPR

loci for each sequenced strain [39]. The location of spacers within

Yellowstone CRISPR loci relative to the leader sequence was deter-

mined by sequentially matching spacers to the regions between

repeats in assembled CRISPR loci.

(e) Identification of protospacers in viral genomes
All CRISPR spacers were used with BLASTn and CLdb (https://

github.com/nick-youngblut/CLdb) [43] to identify putative pro-

tospacer sequences in all Mutnovsky and Yellowstone SSVs and

SIRVs along with the genetic locations, protospacer flanking

sequences, PAM sequences and the locations of spacer:protospacer

mismatches. Scripts written in R were used to perform subsequent

analyses. Except where noted, our analyses included spacers with

up to four mismatches to viral protospacers. All spacers containing

a CC PAM dinucleotide in the -3 and -2 positions of the protospa-

cer (same strand as crRNA) were classified as providing immunity

[16,61]. Except where noted, spacers targeting protospacers lack-

ing PAM sequences were only considered to provide immunity

if the host strain had a type III CRISPR-Cas system. The relative

locations of spacers within CRISPR loci were determined by

their spacer order relative to the CRISPR leader sequence divided

by the total number of spacers in the loci. The locations of all mis-

matches between spacers and protospacers containing PAMs were

oriented by the spacer sequence in the 50 to 30 direction. Mis-

matches from all unique spacer:protospacer pairs were combined

and binned by 5 bp windows. The expected distribution of mis-

matches, assuming they were located randomly across the

protospacer, was determined by simulating mutations in a 40 bp

nucleotide sequence (average spacer size). The number of

mutations simulated was equal to the number of mismatches

observed in the unique spacer:protospacers matches from

the dataset.

( f ) Immunity metrics
Four complementary metrics were used to describe a population’s

immunity structure. Population immunity (PI), which describes

how immune a population is, was calculated by dividing the

number of immune strains by the total number of strains in a popu-

lation. The inverse of PI describes how susceptible a population is

to a virus. Distributed immunity (DI), which describes the diver-

sity and distribution of virus-targeting spacers, was calculated

by comparing the immunity providing spacers for every pair of

immune strains in a population. Every unique pairwise compari-

son of immune strains with non-identical spacers targeting a

virus added 1. Pairwise comparisons of immune strains targeting
a virus with identical spacers added 0. The sum of these compari-

sons was divided by the total number of unique pairwise

comparisons between immune strains to obtain DI. Individual dis-

tributed immunity (IDI), which describes how many virus-

targeting spacers each strain has, was calculated as the total

number of spacers in a population targeting a virus divided by

the number of strains in the population. PDI, which compares

how all strains in a population target a virus, was calculated

according to Childs et al. [26]. The equation is

PDI ¼
X

i

X
j

X
k

1�
jNi �Njj
max (N)

� �
sijk Ni Nj Vk

and

sijk ¼
1, if R(Gi,Hk) R(Gj,Hk) . R2(Gi,Gj,Hk)
0 otherwise

,

�

where Ni and Vk are the population proportions of the ith strain and

kth virus, Gi is the spacers encoded by the ith strain, Hk is the pro-

tospacers in the genome of the kth virus and R(G,H) determined

the number of overlapping spacers and protospacers between

G and H. This equation is simplified to

PDI ¼
X

i

X
j

sijk Ni Nj

because we looked at each unique virus independently (Vk ¼ 1)

and N is equivalent for each strain in the population (1/number

of strains). Only comparisons in which both strains are immune

to the virus through a distinct set of spacers add to the result,

which ranges from 0 to 1 – (1/number of strains).

(g) Statistical analyses
Statistical analysis of data was performed using either Graphpad

Prism for Windows (v. 7.02) or R (v. 3.3.2).

3. Results
(a) S. islandicus populations have high CRISPR spacer

diversity
To investigate the spatio-temporal structure and dynamics of

antiviral CRISPR-Cas immunity in nature, we used two

geographically separated populations of the thermophilic cre-

narchaeon, S. islandicus. We sequenced individual strains

(colonies) isolated from hot springs near Mutnovsky volcano

in Russia in 2000 (21 strains) and in 2010 (29 strains), and near

Nymph Lake in Yellowstone National Park in 2012 (40

strains) [25,39,42,62,63]. Many of the strains from Mutnovsky

have been described previously, including 13 with complete

genome assemblies [8,25,39,40]. All Yellowstone strains are

previously unreported. For each of these strains, we

identified the sequences of all the CRISPR spacers from

sequencing reads containing Sulfolobus repeat sequences.

S. islandicus can encode both type I-A DNA-

targeting CRISPR-Cas systems (characterized by Cas3) and

type III-B systems (characterized by Cas10 (Cmr2)) which

target transcribed DNA and RNA [10,64]. All strains encode

a Cas3 gene and were classified as possessing type I systems.

Type III-B CRISPR were identified by the presence of a

Cas10/Cmr2 gene in 45% of Yellowstone strains and 66% of

Mutnovsky strains (electronic supplementary material, tables

S1 and S2). All strains possess spacers with a minimum of 31

spacers found one of the Yellowstone strains (NL03.C02.08).

The Mutnovsky population (combined time points) had

9832 total spacers with 4659 unique sequences. The Yellow-

stone population had 6348 total spacers with 2455 unique
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sequences. All strains isolated from Mutnovsky and Yellow-

stone possess both A1 and A2 CRISPR arrays [8].

Additionally, 58–72% of strains from each population possess

a third CRISPR array (C or NL repeat sequence, electronic sup-

plementary material, tables S1 and S2) [8]. The presence of this

array is not correlated with the presence or absence of type III

systems. We found that Mutnovsky strains from 2000 and 2010

have similar numbers of CRISPR spacers, while Yellowstone

strains have, on average, fewer CRISPR spacers than strains

from the 2010 Mutnovsky population (figure 1a). The average

length of spacers in each population is 40 bases.

S. islandicus populations possess high diversity in their

CRISPR spacers [8,25]. To quantify this diversity, we deter-

mined the number of strains that shared each unique spacer

sequence. We found that most spacers are unique to only

one or a few strains (figure 1b). We also found no overlap

between spacers identified from Mutnovsky and Yellow-

stone, suggesting that all spacers were acquired in response

to geographically specific nucleic acids [43,50,65].

(b) Local virus diversity
Hot springs are home to diverse virus types, some of which are

targeted by S. islandicus CRISPR immunity [50,66,67]. In this

study, we first focused on SSVs because they are prominent

and ubiquitous [49,50]. The SSVs have circular genomes

around 15 kb in length that encode a highly diverse set of vari-

able genes [48,49]. These viruses have non-lytic replication

cycles and can be maintained for extended periods as an inte-

grated virus or in an episomal form [68–70]. To determine the

contemporary viruses of our S. islandicus populations, we

identified SSVs integrated into host cell genomes. Each of the

three populations had a similar percentage of strains carrying

an integrated SSV (29% of 2000 Mutnovsky strains, 24% of

2010 Mutnovsky strains and 40% of 2012 Yellowstone strains),

suggesting that each population interacts with this family of

virus to a similar extent. We identified a range of SSV

genome sizes and four unique tRNA integration sites within

these populations (table 1). Three SSVs are integrated into

two S. islandicus strains and strain M.06.0.8 has two unique

viruses integrated into its genome (table 1). Many integrated

viruses appear to be actively replicating, because sequencing

reads indicating circularized, non-integrated viral genomes
were observed for 3 of 11 integrated Mutnovsky SSVs and

12 of 16 integrated Yellowstone SSVs (table 1).

In addition to the integrated SSVs, we identified five freely

circulating viruses from filtered hot-spring samples from

Mutnovsky collected in 2010 (table 1). We constructed a phylo-

genetic tree using the nucleotide sequences of 10 core genes

shared by all known SSVs (figure 2) [48–50]. All the integrated

and free SSVs from Mutnovsky are monophyletic, but their

relationships do not correspond to time point or whether

they are free or integrated. Some closely related SSVs are

integrated into closely related S. islandicus strains, suggesting

either viral evolution occurring while integrated as a provirus

or susceptible host strains being grouped phylogenetically

(electronic supplementary material, figure S1). Additionally,

we found that Yellowstone SSVs cluster together and are dis-

tant from the Mutnovsky strains, showing that the SSV

populations are geographically distinct (figure 2).
(c) CRISPR immunity differs with geographical location
and time

Sulfolobus CRISPR-Cas systems have a functional tolerance for

mismatches between spacers and protospacers [71]. To accom-

modate this tolerance for mismatches, while maintaining high

confidence that a spacer provides effective immunity, we con-

servatively limited our analysis to spacers that target viral

protospacers with four or fewer mismatches. Within this

limit, all spacers targeting a PAM-containing protospacer

were classified as providing immunity [61]. Spacers targeting

protospacers lacking PAM sequences were only counted if

the host strain possessed a type III CRISPR system [18,64].

From Mutnovsky, 92 spacers (2% of the unique spacer

sequences) target SSVs and none target SIRVs. In the Yellow-

stone population, only seven spacers (0.3% of unique) target

SSVs, while 211 spacers (8.6% of unique) target SIRVs. We

characterized the immunity of populations to individual

viruses using four metrics. PI is the proportion of strains in a

population with at least one virus-targeting spacer and

describes how immune the population is to a virus. DI is the

proportion of immune strain pairs that target a virus using

distinct spacers and describes how diverse the ways that the

population targets a virus are. PDI accounts for both the PI
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and the DI of the population [26]. Low PDI values indicate that

viruses can easily find susceptible hosts or evolve to find sus-

ceptible hosts within a population because of either low PI or

low DI. IDI is the average number of virus-targeting spacers

possessed by each strain in the population and describes

whether strains target a virus using few or many spacers.

Each metric describes a different aspect of a population’s

immunity structure, which individually would not adequately

describe this structure. The use of these metrics improves with

the depth of population sampling. Low sampling could bias

the observable immunity and decrease the ability to resolve

differences between populations.

We first tested how each population targets contemporary

SSVs, because both Yellowstone and Mutnovsky populations

interact with this virus type. We define contemporary to

mean from the same hot spring and time point. We found

very low PI to contemporary SSVs in the Yellowstone popu-

lation (figure 3a). By contrast, the Mutnovsky population had

high PI to contemporary SSVs, especially freely circulating

viruses (figure 3a), suggesting that this population has high

antiviral immunity to SSVs. Most SSV-specific spacers

target multiple viruses (cross-immunity) (electronic sup-

plementary material, figure S2A) and are not widely shared

among S. islandicus strains (electronic supplementary

material, figure S2B). A small proportion (5%) of SSV-specific

Mutnovsky spacers cross-react with SSVs from Yellowstone.

Only 2 of 50 Mutnovsky strains from the two time points

are not immune to at least one contemporary SSV, suggesting

that most strains from this population have encountered this

virus type. There is still a large proportion of this population

that is susceptible to each SSV (the inverse of the PI value)

and individual strains are immune to on average 7 of the

16 SSVs (electronic supplementary material, table S1),

suggesting that this population is unlikely to prevent virus

spread or future -epidemics through herd immunity [30].

The Mutnovsky population is more susceptible to viruses

we identified in an integrated state than to freely circulating

viruses. We also note that three Mutnovsky strains

(M.03.0.42, M.04.0.37 and M.06.0.8) have spacers that target

their own integrated SSVs.

High PI can result from either selective sweeps of CRISPR

spacers or the independent acquisition of unique CRISPR

spacers by many strains. To differentiate between these

possibilities and to determine the structure of CRISPR immu-

nity, we assessed the diversity of spacers (DI). There was high

DI to SSVs with most pairs of immune strains targeting a

virus through different spacers (figure 3b). The PDI, which

takes into account both PI and DI, was highest for freely cir-

culating Mutnovsky SSVs and very low for Yellowstone SSVs

(figure 3c). Populations with high PDI targeting a virus

have a diversity of virus-targeting CRISPR spacers that are

distributed among the strains that comprise the population

(electronic supplementary material, figure S3). The higher

this value, the more difficult it is for a virus to find a suscep-

tible host to infect or evolve to evade CRIPSPR immunity

within its local population.

We next investigated whether CRISPR-Cas immunity

changes over time by comparing the targeting of SSVs from

2000 and 2010 by the Mutnovsky S. islandicus population at

each time point. We found that the population in 2010 had a

higher PDI to all SSVs from both time points than the popu-

lation in 2000 (figure 3d). This finding, along with the genetic

similarity of the viruses from each time point (electronic
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supplementary material, figure S1), indicates that the S. islandi-
cus population in hot springs near Mutnovsky volcano evolved

to better target their local virus population over 10 years.

(d) Spindle-shaped viruses with short genomes are
rarely targeted in accessory genes

Among the SSVs found in the Mutnovsky population, there is a

large range of genome lengths. We investigated how genome
length affects how a virus is targeted by CRISPR spacers. We

found that the PI is significantly higher for long genome

SSVs (greater than 14 500 bp) than short genome SSVs (less

than 12 000 bp) (figure 4a). Each of the SSVs from Mutnovsky

contains a core set of 13 genes, which comprise 6800–7500 bp

of the genome, with the remainder of the genomic content

containing accessory or variable genes that are not shared by

all viruses. Short genome SSVs encode only 9–10 variable

genes, while long genome SSVs have 22–28 variable genes.
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SSVs of all sizes are equally targeted at protospacers in

core genes (figure 4b), but only long genome SSVs are highly

targeted in accessory genes (figure 4c). Even though

variable genes comprise greater than one-third of the genome

of short SSVs, they are rarely targeted. This finding may

suggest that SSVs can evade CRISPR-Cas immunity and

increase the size of the host population that is susceptible to

infection by losing or rearranging accessory genes. In support

of this hypothesis, passage of SSV9 (SSV Kamchatka-1) with
S. islandicus strain M.16.04 evolved a viral variant that

deleted bases 2823–9693 of its genome, which include the

only targeted viral protospacer. While the parental virus (17

382 bp genome) forms no zones of clearance in a plaque

assay on strain M.16.04, the variant virus (10 513 bp genome)

does. All of the integrated SSVs from the Yellowstone popu-

lation have long genomes, possibly indicating that the lower

level of PI to these viruses provides less pressure to lose

targeted protospacers.
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(e) S. islandicus rod-shaped viruses are highly targeted
in Yellowstone

Having investigated population-level CRISPR-Cas immunity

to the non-lytic SSVs, we next compared these results with a

lytic family of viruses. The SIRVs have large linear genomes

that can use a lytic replication cycle or establish a carrier

(non-integrated) infection state that does not include inte-

gration into the host genome [72,73]. For this study, we used

five previously reported SIRVs identified from the same

Nymph Lake hot springs as our Yellowstone S. islandicus
strains, but from 2 years earlier (table 1) [43]. We did not ident-

ify any SIRVs from filtered hot-spring samples collected from

Mutnovsky in 2010 and no Mutnovsky strains have spacers

targeting known SIRVs with four or fewer mismatches.

We measured the CRISPR-Cas immune structure of the

2012 Yellowstone S. islandicus population targeting Yellow-

stone SIRVs from 2010 using the same CRISPR spacer

targeting criteria as above for SSVs. We compared these results

with those obtained from the 2010 Mutnovsky population that

highly targets freely circulating contemporary SSVs, because

the Yellowstone population has low immunity to its contem-

porary SSVs (figure 3). We found that the Yellowstone

population, where nearly all strains possess spacers targeting

each SIRV, has a higher PI to SIRVs than the Mutnovsky popu-

lation has to SSVs (figure 5a). The DI was very high for local

targeting of SIRVs in Yellowstone and SSVs in Mutnovsky

(figure 5b), indicating that most immune strains target the

virus through unique spacers. PDI was significantly higher

for Yellowstone targeting of SIRVs than for Mutnovsky
targeting of SSVs, probably driven by their differences in PI

(figure 5c). As with Mutnovsky SSV-specific spacers, Yellow-

stone SIRV-specific spacers target multiple viruses (electronic

supplementary material, figure S2c) and are generally shared

with only a few other strains (electronic supplementary

material, figure S2D). We also assessed immunity to three

SIRVs [43] and two novel freely circulating SSVs (SSV11 and

SSV18, accession numbers MK054237 and MK054236, SSV18

has been previously called SSV10 [74]) isolated from a distinct

region of Yellowstone National Park (Norris Geyser Basin)

(electronic supplementary material, figure S4). As with the

local Nymph Lake viruses, we found high PDI to the SIRVs,

but very low immunity to freely circulating SSVs from a

different location.

PDI does not describe the number of virus-targeting

spacers each strain has. To test whether viruses with different

lifestyles are equally targeted on an individual strain level,

we measured IDI, which is the average number of spacers

that a strain in the population targets a virus with. We found

that Yellowstone SIRVs are targeted by an average of seven

spacers per strain, while Mutnovsky SSVs are targeted by an

average of only one spacer per strain (figure 5d ). The longer

genomes of SIRVs do not account for this difference as SIRVs

have significantly more targeted protospacers per kilobase of

genome than SSVs (figure 5e). Protospacers targeted by indi-

vidual strains are distributed across the genome without local

clustering [75]. The majority of SSV- and SIRV-specific spacers

target PAM-containing protospacers (figure 5f ). Interestingly,

we found that SIRVs had a much lower PAM density (31

PAMs per kilobase of genome) than either SSVs or the genomes
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of S. islandicus (74 and 64 PAM per kilobase, respectively).

Together, these finding may suggest that low PAM density in

SIRV genomes is selected for by high type I CRISPR-Cas

targeting (figure 5f ).

Requiring strains to have type III CRISPR-Cas systems

to include spacers targeting protospacers without PAM

sequences means that only 90% of the unique virus-specific

spacers were included in our analyses (figure 5f ). To acquire

a historical, rather than a contemporary, picture of the PI, we

used all spacers regardless of the presence of PAM sequences

or type III CRISPR-Cas systems (electronic supplementary

material, figure S5). The only major change using these con-

ditions is the increased immunity of the Yellowstone

population to SSVs provided by a shared spacer that cross-tar-

gets several viruses (low DI values, electronic supplementary

material, figure S5B). This finding suggests that PAM loss

from targeted protospacers has little effect on the overall PI

structure within these two S. islandicus populations.
( f ) S. islandicus rod-shaped viruses evolve
in response to CRISPR immunity

We investigated whether there were signatures of CRISPR-Cas-

driven viral evolution in the mismatch mutations between

the PAM, spacer and protospacer in our populations. While

we cannot directly follow viral evolution with sequences repre-

senting a single point in time, we can assume that some

CRISPR spacers targeted ancestral versions of the virus. By

analysing spacers that target mismatched protospacers, we

can infer how viruses have evolved. To increase the number

of putative viral mutations and our power to detect directed

evolution, we expanded our mismatch limit to 10 bases in

spacers targeting PAM-containing protospacers. We observed

that a higher proportion of SIRV-specific spacers have mis-

matches than do SSV-specific spacers (figure 6a). To

determine whether these mismatches between spacers and

protospacers indicate directed evolution in response to

CRISPR targeting, we identified the location of SIRV-specific

spacers within CRISPR arrays. The addition of new spacers

generally occurs at the leader end of a CRISPR array [11,76].

Therefore, we would expect newer spacers to have fewer mis-

matches than older spacers if viruses are evolving after being

targeting by CRISPR immunity. We found that Yellowstone
spacers perfectly targeting SIRV protospacers are on average

nearer the leader end of their CRISPR locus than spacers that

target PAM-containing protospacers with mismatches

(figure 6b). This finding suggests that mutated protospacers

arise in SIRVs after spacers are acquired by the host population.

Owing to fewer mismatched spacers targeting SSVs, we did not

have sufficient power to test this hypothesis in these viruses.

Finally, we used the location of mismatches within a pro-

tospacer to investigate whether there is directed virus

evolution to evade CRISPR immunity. Mutations in the

PAM and in the seed region, which are the seven nucleotides

nearest to PAM (for S. islandicus), have the greatest effect on

the efficiency of CRISPR interference [71,77,78]. Bacterio-

phage CRISPR escape mutants accumulate mutations in the

seed region of protospacers [21]. Using PAM-containing pro-

tospacers with no more than 10 mismatches to a spacer, we

determined the location of all mismatches in all unique

SIRV protospacers and found that they were not randomly

distributed (x2 (7, N ¼ 2037) ¼ 24.23, p ¼ 0.0010) (figure 6c).

We found that mutations in the five bases nearest to the

PAM occur more frequently than in even the most extreme

value obtained in 100 simulations of 2037 random mutations

in a 40 nucleotide protospacer (figure 6c). Additionally, we

found a relatively high number of mismatches between pos-

itions 21 and 25 of the protospacer, which may be important

for spacer targeting specificity in S. islandicus [78]. We also

performed this analysis on the 169 mismatches between

spacers and Mutnovsky SSVs, but the distribution of

mismatches was no different than random (x2 (7, N ¼
169) ¼ 4.804, p ¼ 0.6839). Together, our results suggest that

SIRVs evolve in a directed way in response to CRISPR-Cas

immunity in the Yellowstone population.

4. Discussion
We investigated whether in silico and in vitro predictions about

the distributed population structure of CRISPR-Cas immunity

are applicable in nature using two geographically distinct popu-

lations of S. islandicus [26,27]. Consistent with these predictions,

we found that both populations evolve DI, whereby individual

strains are immune to local viruses through unique, rather

than shared, CRISPR spacers. Each population develops this

immunity structure targeting a different family of viruses. The

Mutnovsky volcano population from Kamchatka, Russia,
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exhibits high, increasing PDI to chronic SSVs circulating at the

time point of sampling, but does not have immunity to lytic

SIRVs, which have never been identified at this location. By con-

trast, the Nymph Lake population from Yellowstone National

Park, USA, exhibits very low immunity to SSVs, despite their

prevalence in the population, and nearly complete immunity

to circulating lytic SIRVs. Using a conservative spacer mismatch

tolerance, the average PDI of the 2010 Mutnovsky population

targeting free SSVs (0.45) is lower than that of the Yellowstone

population targeting SIRVs (0.92) and higher than Yellowstone

targeting SSVs (0.009), suggesting that the immune structure

of one population does not always indicate how others are

structured, even in targeting similar viruses. Despite our

study being limited to only two virus types, our results may

suggest that lytic viruses and freely circulating viruses are

more likely to elicit broad diversified immune responses in

Sulfolobus communities than are non-lytic or integrated

viruses. These different interactions may also be related to

SSVs following a different trajectory of symbiosis from

antagonisms to mutualism [79].

High PDI can promote increased genetic diversity, a stable

population structure and constrained viral evolution [26,27].

We have previously shown that the Mutnovsky population

has high genetic diversity that is maintained over time [8,25].

The high virus-targeting PDI we present here, with different

immunity providing spacers in different genetic backgrounds,

may be a key contributor to the maintenance of genetic diver-

sity within this natural microbial population. The general lack

of dominant virus-targeting CRISPR spacers in both of our

populations suggests that there has been relatively stable popu-

lation without selective sweeps of immunity. While there are a

few SSV- or SIRV-specific spacers that are shared by more than

10% of a population, these spacers are dwarfed in number by

those that are unshared or shared sparingly. Spacers that

target multiple viruses are common within these S. islandicus
populations. A cross-reactive spacer would provide a strain

with immunity to multiple viruses at once, increasing its utility

and allowing it to retain function if some of the targeted viruses

evolve to evade immunity. Immune cross-reactivity may also

lead to viruses being structured into genetically divergent

groups that can only infect subsets of the host population [80].

High PDI combined with cross-reactive spacers would

make it difficult for viruses to efficiently evade CRISPR-Cas

immunity. We found that different types of viruses use differ-

ent mechanisms to evade immunity. Mutnovsky SSVs may

increase the size of the susceptible host population by shorten-

ing their genomes through the loss or shuffling of variable

genes containing targeted protospacers. Recombination has

been suggested as a strategy to evade CRISPR-Cas immunity

[21,28]. This strategy is plausible for SSVs because much of

their genetic content is unnecessary for replication and recom-

bination has been suggested to promote the genetic diversity

observed among fuselloviruses [49,81]. Indeed, we observe

that some SSVs appear to be chimeras of multiple SSVs

suggesting recombination events (electronic supplementary

material, figure S6). While SSVs have relatively few mismatches

in protospacers, most targeted SIRV protospacers contain mis-

matches. These mismatches are enriched in the seed region that

is important for protospacer recognition by spacers. Addition-

ally, we observe a much lower density of PAM sequences in

SIRVs than SSVs. Therefore, we conclude that point mutation

in protospacers and the preemptive loss of PAM targets are

common CRISPR-Cas immune evasion mechanisms of SIRVs.
Even with the possibility of evading CRISPR-Cas immu-

nity through point mutations, SIRVs are still targeted with

very high PDI and IDI, raising the question of how these

viruses persist in the Yellowstone population. With nearly all

strains immune to SIRVs, herd immunity would probably

make it difficult for CRISPR-escape mutants to spread within

the S. islandicus population. In addition to S. islandicus, SIRVs

may have other host organisms that they infect. Sulfolobus acid-
ocaldarius and Acidianus hospitalis populations from

Yellowstone National Park encode CRISPR spacers that

target SIRVs, suggesting that they encounter this type of

virus [42,82]. Alternatively, these viruses may have ways of

inactivating CRISPR-Cas systems. Anti-CRISPR proteins that

inhibit type I-D CRISPR-Cas systems have been recently ident-

ified in SIRVs isolated from elsewhere in the world [83]. While

SIRVs from Yellowstone do not possess close homologues of

the reported Sulfolobus virus anti-CRISPRs, these types of pro-

teins are structurally diverse even among closely related

bacteriophage [84].

The potential for anti-CRISPR genes in Sulfolobus viruses

may help to explain the auto-immunity we observe in the Mut-

novsky population. Three of the 11 integrated SSVs are

targeted by their own host strain with one or more spacers

that perfectly match PAM-containing protospacers. Self-targeting

CRISPR spacers provide a strong selective pressure to avoid

auto-immunity by losing or modifying either the targeted pro-

tospacer or the CRISPR system [61,85]. The type I CRISPR

system is intact for each of these strains. While type III

CRISPR targeting can prevent replication of proviruses, this

is unlikely here owing to the presence of PAMs in the protospa-

cers and that only one of the four auto-immune spacers is

antisense to a predicted mRNA strand [23,86]. While we did

not identify any known Sulfolobus anti-CRISPR genes in any

of the Mutnovsky SSVs or strains, their presence could allow

for the observed tolerance of auto-immunity [87]. Of note,

the three strains that self-target their integrated SSV

(M.03.0.42, M.04.0.37 and M.06.0.8) have the second, fourth

and sixth most spacers out of the 50 Mutnovsky strains

(figure 1b), suggesting that high spacer number may be corre-

lated with autoimmunity and/or tolerance to autoimmunity.

Strains M.03.0.42 and M.04.0.37 are both immune to most con-

temporary SSVs, many of which they target with multiple

spacers (electronic supplementary material, table S1). It is

also worth noting that strain M.06.0.8 has two integrated

SSVs. Additionally, different SSVs may elicit different

CRISPR-Cas responses in their host cell [88].

Our data from natural populations paint a richer picture of

how antiviral CRISPR immunity is structured in S. islandicus
than would have been possible if we had looked at only a

few individual strains or viruses. Our results show that natural

populations do indeed evolve immunity that is distributed

among many individuals that each possess unique ways of tar-

geting a single virus. Both sides of this coevolutionary equation

promote the maintenance of genetic diversity within the host

and virus populations, which our dataset probably underesti-

mates owing to sampling depth and culture biases [89,90].

While our approach using the CRISPR spacer repertoires of

21–40 individual cells from a population is a step towards

more completely defining immunity in microbial populations,

this level of sampling has probably not exhausted the diversity

or fully captured the nuances of the population structure. To

further refine this picture of CRISPR-Cas immunity, and to

apply it to other microbial systems, we will need future studies
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focusing on natural isolates that sample populations more fre-

quently, more deeply or over longer periods of time. Our study

shows the utility of using natural populations as a tool to test

hypotheses that stem from in silico and in vitro work, and as a

tool to generate new hypotheses related to the mechanisms

of CRISPR immunity and virus–host coevolution.
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