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In recent years, new genome editing technologies have emerged that can edit the

genomeof non-human animals with progressively increasingefficiency. Despite

ongoing academic debate about the ethical implications of these technologies,

no comprehensive overview of this debate exists. To address this gap in the lit-

erature, we conducted a systematic review of the reasons reported in the

academic literature for and against the development and use of genome editing

technologies in animals. Most included articles were written by academics from

the biomedical or animal sciences. The reported reasons related to seven themes:

human health, efficiency, risks and uncertainty, animal welfare, animal dignity,

environmental considerations and public acceptability. Our findings illuminate

several key considerations about the academic debate, including a low disciplin-

ary diversity in the contributing academics, a scarcity of systematic comparisons

of potential consequences of using these technologies, an underrepresentation of

animal interests, and a disjunction between the public and academic debate on

this topic. As such, this article can be considered a call for a broad range of aca-

demics to get increasingly involved in the discussion about genome editing, to

incorporate animal interests and systematic comparisons, and to further discuss

the aims and methods of public involvement.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
1. Introduction
In the past two decades, a host of genome editing technologies have emerged that

can edit the genome with progressively increasing efficiency and ease of use. These

technologies are based on the use of sequence-specific engineered nucleases, such

as zinc finger nucleases (ZFN) [1], meganucleases [2] and transcription activator-

like effector nucleases (TALEN) [3]. In more recent years, genome editing was

revolutionized by the emergence of clustered regularly interspaced palindromic

repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) [4]. In parallel,

new applications of these genome editing technologies have emerged, such as syn-

thetic gene drives, which allow the rapid and super-Mendelian spread of gene

alterations within a population or even a species [5,6].

Overall, this new generation of genome editing technologies allows scientists

to modify the genomes of non-human animals (from here on: ‘animals’) more pre-

cisely than classical transgenesis [7] with comparably fewer off-target effects [8].

Furthermore, engineered nucleases can introduce genetic changes without the use

of foreign DNA [9]. These genome editing technologies have a broad range of

possible applications in animals, including to increase livestock productivity
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and disease resistance [10], create new animal models to study

human disease [11], protect native species by eradicating inva-

sive species, decrease or even eliminate vector-borne diseases

such as malaria, and perhaps even resurrect extinct species

[5,12]. Understandably, these technologies and their appli-

cations have sparked both excitement and apprehension,

raising new questions on ethics and governance and generating

significant debate in both academic and public spaces.

Despite this ongoing debate, to our knowledge, no

comprehensive overview of the arguments raised in the aca-

demic discourse on genome editing in animals exists. Such

an overview is a valuable contribution to the academic litera-

ture, as it provides insights into patterns of argumentation in

the expert debate and can help uncover arguments that go

unmentioned or are insufficiently conceptualized. It is particu-

larly salient to study the academic debate because academic

experts can have a strong influence on related science and tech-

nology policy and governance decisions [13–15]. Moreover,

insight into the academic debate is important for understand-

ing whether it differs from the public debate and arguments.

For technologies that have a high societal impact, such as

genome editing, it is important to identify and bridge potential

gaps between the public and academic discourse in the early

phases of development.

In this article, we present such a comprehensive overview

by reporting the reasons for and against the development

and use of genome editing technologies in animals as these

have been mentioned in the academic literature. We then criti-

cally assess the academic debate and identify perspectives,

issues and arguments that are underrepresented in the existing

literature.
2. Methods
A systematic review of the reasons that have been given for and

against the development and use of new-generation genome edit-

ing technologies in animals was conducted. This review was based

on the method developed by Strech & Sofaer [16], which can be

used to systematically identify reasons and arguments in favour

of or against particular (normative or descriptive) positions or

claims. This method does not assess the adequacy, quality or nor-

mative weight of the reported reasons [16], but enables a

systematic collection of all the relevant literature in which opinion,

point of view, or position is put forward. Subsequently, it allows

for an equally systematic extraction and synthesis of the reasons.

It incorporates relevant items from the preferred reporting items

for systematic reviews and meta-analyses (PRISMA) statements

[17] as well as thematic analysis typical of qualitative research [16].

(a) Search strategy
A literature search of the PubMed, Web of Science, Scopus, CAB

Abstracts and Philosopher’s Index databases was conducted to

find relevant articles. The choice for databases was discussed

with experienced librarians; these five databases were selected as

they cover a comprehensive area of biomedical, veterinary, and

ethics research journals and articles. A search strategy that

combined search terms for genome editing, animals (adapted

from Hooijmans, Tillema, Leenaars & Ritskes-Hoitinga [18]) and

ethics was used (electronic supplementary material, table S1).

(b) Article selection and inclusion criteria
Academic articles or book chapters that were written in English or

Dutch and published in 2010 or later were eligible for inclusion.
Publications that did not contain a reason for or against the devel-

opment or use of new-generation genome editing technologies in

animals were excluded. Publications that specifically focused on

older techniques (e.g. classical transgenesis) were also excluded.

Two researchers independently screened the titles and

abstracts and, if applicable, the full texts of the articles. In the

case of disagreement about inclusion or exclusion, differences

were discussed until consensus was reached. The reference lists

of included articles were subsequently screened for additional

relevant articles.

(c) Data extraction and analysis
The full text of the selected articles was analysed using a

data extraction document (electronic supplementary material,

table S2) that was designed prior to start the data extraction to

extract data in a systematic way. The contextual data of the

included articles, including the discipline of the author(s) and

the specific technologies and applications discussed, were also

included. Subsequently, all the reasons for and against the devel-

opment and use of new-generation genome editing technologies

in animals were extracted. The reasons that were mentioned in

the included articles (reason mentions) were subsequently com-

pared. If different articles mentioned the same reason, these

were bundled under the same ‘narrow reason’. Next, a list of

narrow reasons was generated: for each narrow reason, we

noted which article included that reason and the number of

times it was mentioned.

Additionally, the narrow reasons were used to generate an

overview of broader themes to which the narrow reasons related.

If a narrow reason applied to two themes, the narrow reason

was listed under the most applicable theme, as determined by con-

sensus among the researchers. The formulation of both the narrow

reasons and themes was an iterative process in which the cat-

egories were re-evaluated among all researchers several times to

bundle similar narrow reasons together, categorize them and

define the themes that best encompassed the narrow reasons.

Finally, an overview of the themes and narrow reasons

was created by listing these in a table under the overarching

classifications of ‘human-related’, ‘animal-related’ or ‘environment-

related’ reasons in order of frequency of appearance. Within each

theme, the narrow reasons mentioned in the literature were subcate-

gorized as reasons for or against genome editing in animals; these

subcategories were similarly listed in order of frequency of appear-

ance. Where applicable, rebuttals of reasons in favour of genome

editing were listed in the subcategory ‘against’ and vice versa.
3. Results
The database searches resulted in a total of 760 unique

records. After title/abstract screening, full-text screening,

and cross-referencing, 134 articles were included for data

extraction and analysis (figure 1).

(a) Author affiliation
The included articles were written by professionals working

primarily in academic institutions, in a variety of different

departments or divisions: biomedical or biological sciences

(n ¼ 77/134), animal sciences (n ¼ 30/134), ethics (n ¼ 20/

134), philosophy (n ¼ 14/134), biotechnology companies

(n ¼ 8/134), governmental organizations (n ¼ 6/134), law

(n ¼ 5/134), (bio)engineering (n ¼ 4/134), nutritional or food

sciences (n ¼ 3/134), agricultural sciences (n ¼ 3/134), consul-

tancy (n ¼ 2/134), epidemiology (n ¼ 2/134), political sciences

(n ¼ 2/134), bioinformatics or computational biology (n ¼ 2/

134), psychology (n ¼ 1/134), mathematics (n ¼ 1/134),



PubMed

318 325 205 142

1011

759

137

66

134

21

Web of Science Scopus CAB Abstracts Phil. Index

622 excluded:
not relevant topic (n = 340)
not in animals (n = 202)
not new generation genome editing (n = 50)
not academic article/chapter (n = 29)
other language (n = 1)

deduplication

title/abstract screening

full-text screening
71 excluded:
not new generation genome editing (n = 45)
no reason mentioned (n = 14)
full text unavailable (n = 6)
not in animals (n = 6)

68 included:
snowballing (n = 68)

Figure 1. Flow chart of article selection and inclusion.
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public and international affairs (n ¼ 1/134) and a private

foundation (n ¼ 1/134). In 10/134 articles, no author affiliation

was listed (table 1).
(b) Reasons for and against new-generation genome
editing in animals

In total, 115 different reasons were mentioned in the reviewed

articles; 67 of these reasons were in favour of and 48 against the

development and use of new-generation genome editing in

animals. The included articles contained from 1 up to 13 differ-

ent reasons. The reasons were in response to a broad range of

potential applications of genome editing in animals (table 2).

These narrow reasons were subsequently categorized into

seven broad themes: (1) human health; (2) efficiency; (3) risks

and uncertainty; (4) public acceptability; (5) animal welfare; (6)

animal dignity and species-specific capacities; (7) environmental

considerations (see table 3 in appendix A). In the following sec-

tions, the different broad and narrow reasons are discussed in

more detail.
(i) Human-related reasons
Human health
Most reasons in favour of genome editing in animals

concerned its potential to improve human health. First,

these hoped-for improvements included using gene drives to

reduce the burden of vector-borne diseases [5,6,19–33,101–

109,114,124–127,135,139,140,143], either by suppressing or era-

dicating insect populations [21,101] or inducing vector

resistance to disease pathogens [22,101]. At the same time,
however, some authors noted that gene drives could pose

risks to human health if they disrupted ecosystems on which

humans are dependent [20,143], or if modified mosquitoes did

not confer resistance—or if they actually reduced instead of

increased resistance to the target infection [102,109].

Second, various authors noted that genome editing in ani-

mals could enhance research in animal systems by creating

better animal models of human disease [3,4,7,11,19,26,34–

52,92–95,108,128,129,133,138–140], which could ultimately

benefit human health, for example, by leading to the creation

of new medicines and therapies [26,126,133,140]. At the same

time, it was argued that there is a lack of reproducibility of

animal findings in humans [53,54,110], which could put

human research participants at risk at a later stage of the

research [110].

In a similar way, authors argued that genome editing

could expedite research in other species, including non-

human primates, which could provide more accurate

models for human (neurological) disease [36,43,55–63,126].

The permissibility of this approach was questioned, however,

given available alternatives such as using organoids or stem

cell models of disease [110] or using animal models of smaller

animals such as mice [126]. It was mentioned that although

genome editing in non-human primates could be considered

ethically problematic, it would be even more ethically

problematic to let humans die who could be saved [57].

Third, genome editing in animals could provide a sol-

ution to the long-standing shortage of human organ donors

by facilitating xenotransplantation from pigs into humans

[26,39,47,50,51,64–77,93,111,130,133,135,139,140], either by

reducing the chance of immune rejection in



Table 1. Affiliations of the authors of the included manuscripts.

author affiliation or discipline N* references

biological or (bio)medical sciences 77 [3 – 6,19 – 91]

veterinary medicine or animal sciences 30 [10,11,23,24,27,38,47,48,50,54,61,62,67,71,73,77,79,85 – 88,92 – 100]

ethics 20 [6,19,25,34,64,78,80,101 – 113]

philosophy 14 [9,20,34,81,114 – 123]

no affiliation or no author listed 10 [7,124 – 132]

biotechnology company 8 [10,24,73,74,77,79,133,134]

governmental organization 6 [23,32,83,88,100,135]

law 5 [12,25,122,136,137]

(bio)engineering 4 [49,50,77,138]

nutritional or food sciences 3 [139 – 141]

agricultural sciences 3 [100,133,142]

consultancy 2 [53,115]

epidemiology 2 [23,111]

political sciences 2 [32,139]

bioinformatics or computational biology 2 [32,49]

psychology 1 [26]

mathematics 1 [31]

public and international affairs 1 [143]

private foundation 1 [6]
*The numbers add up to more than 134 as various included articles were written by authors with different affiliations or multiple affiliations.
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xenotransplantation [37,44,45,48,60,62,63,66,67,70–72,94,105,

108,133,139] or by decreasing the risk of transmission

of porcine pathogens such as porcine endogenous virus

(PERV) [26,39,51,64,66,68,73,74,76,77,130,135,140]. It was

mentioned that this solution should be compared to alternative

solutions to this problem in terms of resource allocation and

prioritization [105].

Fourth, genome editing could help to meet the challenge

of producing more food more sustainably to ensure that the

future human population can be fed [34,78,79,141,142], for

example, by increasing skeletal muscle mass and thereby

meat production. Concurrently, it was mentioned that little

is known about the effects these modified organisms would

have on humans when consumed [35] and that it could be

undesirable to increase meat production given the negative

impact of meat consumption on human health [104].

Finally, the authors noted that genome editing could be

used to create a chicken strain with low allergenicity, which

could benefit humans with egg allergies [126]. On the other

hand, authors mentioned that there may not be a compelling

need to produce such chickens because the allergy usually

only occurs in children and because alternatives and egg sub-

stitutes are available [80]. Finally, some authors noted that if

genome editing were used to revive extinct species (also

known as de-extinction), the re-created species could poten-

tially be harmful to humans if it became a vector or reservoir

for viruses [81].

Efficiency
Many reasons in favour of genome editing in animals men-

tioned the efficiency of these techniques. First, it was argued

that genome editing could be a potentially efficient and rapid
tool to improve important traits in livestock [26,96,97], which

could increase production efficiency [19,48,70,96,115,133,139],

for example, by achieving a higher meat yield

[19,48,70,96,139]. Various authors argued that genome editing

using engineered nucleases (ZFN, TALEN or CRISPR) was

more efficient, versatile, precise, easy to use or accurate than

previous genetic technologies [3,4,6,7,9,33–35,37,40–43,46,

49–51,53,56,63,64,69,75,79,82–84,98,105,110,114,126,129,131,

133,134,136,140,142]. On the other hand, it was argued that

genome editing technologies could still have inadequate

gene targeting efficiency and cause off-target effects or

mosaic mutations [76], particularly in non-human primates

[42,47,54,55,58–60,63,95,116]. Other authors mentioned that

these off-target effects could be identical to those of natural

processes that continually create variation in the genomes of

food animals [85], and that they could be fewer and more con-

trolled than the mutations caused by generally accepted

technologies such as conventional breeding [80,142]. Finally,

it was suggested that off-target effects could be minimized by

careful design [85].

Second, authors compared the efficiency of these technol-

ogies to alternative strategies in which genome editing was

not used. It was argued that genome editing could facilitate

quicker or more effective trait improvement than classic

breeding [10,47,79,85,94,99,140,142]. For gene drives, it was

mentioned that this technology could be more efficacious

than other approaches at eliminating vector-borne diseases

[27,28] or than other pest management methods such as

pesticides [20,109].

Third, it was argued that these technologies could lead to

advances in scientific understanding [12,21,26,33,69,75,81,

102,134] or to technological advances [12]. Authors also



Table 2. Potential applications of genome editing in animals mentioned in the literature.

potential application of genome editing in animals ( potential) aim

genome editing in general

create an animal model of Parkinson’s disease [11] create animal models of human disease

delete an antigen that causes hyperacute rejection in pig-to-human

transplantation [51] or inactivating porcine endogenous retroviruses

(PERV) to prevent transmission of these viruses to humans [73]

facilitate xenotransplantation from pigs to humans by reducing the

chance of immune rejection

increase skeletal muscle mass and thereby meat production [48] increase nutritional value for humans; increase production efficiency in

animal farming

create a chicken strain with low allergenicity [126] decrease allergic reactions in humans

increase disease resistance to porcine reproductive and respiratory

syndrome in livestock [98]

decrease suffering of farm animals; increase production efficiency; reduce

use of antibiotics

create polled (hornless) cattle [79] decrease suffering of farm animals (by preventing painful dehorning);

decrease costs; increase production efficiency; decrease moral distress

of farmers

produce poultry in which the embryo’s sex can be recognized in the egg,

in which genetic males become phenotypical females, or in which male

embryos die during early development [100]

decrease suffering of farm animals by preventing the killing of male

chicks

create the so-called diminished animals in which the ability to sense

pain is impaired [78]

decreasing suffering of animals in research and farming

revive the woolly mammoth as a major grazing animal in the Arctic

[81,91]

curiosity; advance scientific understanding; restore an arctic steppe in the

place of the less ecologically rich tundra [139]

gene drives

induce mosquito resistance to malaria parasites [29]; induce infertility in

mosquitos [101]

reduce the burden of vector-borne diseases

reduce fertility or biasing sex towards males in invasive species, creating

a population that is not reproductively viable [83]

control or eradicate invasive species

increase genetic gain in breeding programmes [10] increase economic productivity in animal farming

change reproductive behaviour of wild animals that give birth to large

numbers of offspring, many of which do not survive to adulthood, by

decreasing the number of offspring they produce per cycle [114]

prevent wild animal suffering
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mentioned that genome editing could reduce the overuse of

antibiotics in farm animals by providing these animals with

disease resistance [98,139].

Fourth, issues of cost were addressed. It was mentioned

that CRISPR could be relatively inexpensive in comparison to

both previous genetic technologies [9,26,34,110,114,132,142],

other pest management techniques such as insecticides

[20,23] and traditional sterile insect methods [23], and that it

could increase economic productivity in animals bred for

human consumption [97,137]. Moreover, authors mentioned

that genome editing could save costs for the farming industry

by providing animals with disease resistance [70,75,86,98,126]

or by transferring polled genes to horned cattle, obviating the

need for expensive dehorning [19,79,87,96]. Finally, gene

drives could be a cost-effective strategy for controlling the

transmission of vector-borne diseases [6,27,109].
Risks and uncertainty
Other reasons given for or against the use of genome editing

technologies concerned their potential risks and uncertainties.
For gene drives, the risks addressed primarily related to an

accidental or deliberate release of gene drive organisms. It was

mentioned that the genes drive could spread beyond their

target population [35,83,143] owing to accidental release

[20,23,28,82,88,89,106,124], horizontal transfer [28,109,143],

cross-breeding [20] or gene flow [20], with unpredictable

ecological consequences. Authors noted that it could be

impossible to rule out breaches of containment, which would

constitute a non-negligible risk as release of just a few gene

drive organisms could cause the transgenes to spread on a

global scale [22]. Authors also mentioned that gene drive

organisms could be released deliberately, exposing the public

and the environment to risk [105,117], particularly if these

organisms were engineered to carry diseases rather than pre-

vent them [105]. The potential for off-target mutations

affecting the gene drive was mentioned as another risk

[7,20,35,83]; guide RNA could, for example, mutate over time

and consequently target an unintended part of the genome [7].

Several authors mentioned potential ways to mitigate these

risks. Various designs of the gene drive and other containment

measures could mitigate unintended consequences or the
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risk that the change would spread beyond the target popu-

lation [5,19,23,25,26,31,32,88,89,102,105,125,131]. Authors also

suggested that gene drives could be researched in a phased

approach, allowing sufficient time to evaluate the efficacy

and safety of gene drive organisms before regulatory decisions

are made about whether they are suitable for widespread use

[32,135]. Furthermore, it was argued that these potential nega-

tive consequences are not in themselves a sufficient reason not

to use gene drives; the magnitude and likelihood of these risks

ought to be analysed thoroughly and balanced against the

potential benefits [101] as well as the risks and harm caused

by the unmodified wild-type animal [23].

For genome editing in general, the uncertainty involved

in assessing potential consequences of genome editing technol-

ogies was stressed. It was argued that the risks or consequences

of genome editing technologies could be difficult or even

impossible to characterize beforehand, given their novel fea-

tures [20,102,117,143] and our incomplete knowledge and

understanding of the genetic background of complex traits

[96]. With respect to applications of genome editing in animal

farming, on the other hand, it was argued that genome editing

could be considered similar to conventional breeding because

the created modifications are comparable to natural mutations

and no transgenes are involved [47,48,80,85]. Although genome

editing could result in off-target effects with potential negative

consequences, it was argued that genome editing is more pre-

cise and therefore has fewer risks than conventional breeding

and consequently should be generally regarded as safe [79].

Some authors also argued that it is generally more difficult to

prove that something is safe than to find potential risks;

the damage of not using a new technique may exceed its poten-

tial risks [96].

Finally, it was mentioned that genome editing could be

used to serve the (economic) interests of particular groups,

such as the agriculture or food industry [20], with little

concern for the public interest [20,115]. Additionally, appli-

cations of gene drives to human disease and agricultural

production could primarily benefit the current generation,

with secondary benefits and potential risks placed upon

future generations; it was argued that this may not be accep-

table from a standpoint of intergenerational equity given the

irreversibility and uncertainties inherent to the deployment of

gene drives [143].

Public acceptability
Other human-related reasons in favour of or against genome

editing in animals concerned public acceptance or rejection of

the technologies. Some authors argued that the new generation

of genome editing technologies might be more acceptable to

the public than previous technologies because no foreign

DNA is introduced into the animal [9,33,96,97]. It was men-

tioned that this could consequently increase the chance of a

publicly justified policy [9]. It was also mentioned that the

public might consider gene drive applications in agriculture

less controversial than using pesticides for pest control [20].

By contrast, it was argued that some uses of genome edit-

ing could generate public resistance to the technologies

[12,22,89,102,108,126], for example, if public funds were

used to bring back extinct species [12] or if genetically modi-

fied mosquitoes were to cross borders to other countries that

did not support their release [22,89,102]. Other authors

asserted that the latter concern could be mitigated by using

gene drive designs that could enable local communities to
make decisions concerning their own local environments

[31]. While authors acknowledged that it would not be poss-

ible to seek consent from all humans who could potentially

be impacted by the release of genome-edited mosquitoes, it

was argued that release could nonetheless be justified if the

public health benefits of the trial are important enough for

the community [102]. It was suggested that one way to conduct

field trials with genetically modified animals while respecting

the interests of community members is to use community

advisory boards and a community authority [107].
(ii) Animal-related reasons
Animal welfare
Reasons related to animal welfare were used to argue both

in favour of and against genome editing in different types

of animals.

First, it was argued that genome editing could decrease

the suffering of farm animals. For example, genome editing

could be used to prevent the killing of day-old male chicks

[100,126] by enabling the production of poultry in which

the embryo’s sex can be recognized in the egg, in which gen-

etic males become phenotypical females or in which male

embryos die during early development. Authors also

suggested that genome editing could be used to repair accu-

mulated damage in the genome of breeding animals by

removing harmful recessive alleles that impair animal fertility

and health [96]. Additionally, genome editing could be used

to create hornless cattle, which would not require the painful

dehorning that is commonly performed in the farming indus-

try to protect both cows and farmers from injury [9,19,78–

80,85,96,126,139,140]. At the same time, it was mentioned

that this goal could be accomplished in other ways too;

instead of creating polled animals, the rearing environment

of cattle could be improved to prevent accidents, horn

covers could be used, or dehorning could be performed

under anaesthesia [80,118].

Other authors emphasized the potential use of genome

editing to increase animal health and welfare by making ani-

mals resistant to diseases [78,80,96,98,126,133,135,139] or

better able to adapt to environmental conditions [19,137]. By

contrast, it was argued that such uses of genome editing

would enable even greater intensification of farming, for

example, by generating polled or disease resistant animals

that could be kept at higher density [36,104,116]. While these

authors noted that any intensification of farming would

decrease animal welfare, others questioned the likelihood of

this outcome given recent trends of companies improving

animal welfare [78].

Some authors considered the possible use of genome edit-

ing to counter welfare problems of farm animals by creating

the so-called diminished animals with an impaired ability to

sense pain [78,112,115,116,119–121,137]. In response, the

authors noted that there is no proof-of-concept experiment

for such an application in farm animals and argued that con-

ducting these experiments would itself cause suffering [116].

Lastly, authors noted that if farm animals were edited to

improve production efficiency, some of these genome modifi-

cations could result in secondary complications that are bad

for animal welfare [80,96,104]; increased muscle growth, for

example, could lead to increased rates of Caesarean sections,

leg problems or breathing complications.
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Second, it was argued that genome editing could be

used to decrease the suffering of research animals, for

example, by decreasing the occurrence of unwanted gen-

etic effects [53] and reducing the number of animals [110]

used to create animal model systems compared to tra-

ditional methods [110]. On the other hand, it was argued

that, if genome editing were to be widely used, this

decrease in suffering per experiment would be offset by

the overall increase in the numbers of transgenic animals

used in research [36,53]; in this way, genome editing

could contribute to animal suffering by perpetuating

their continued use in research [9,36,53,108]. Moreover, it

was mentioned that genome editing could bring routine

genome editing of non-human primates within reach,

which could substantially diminish these organisms’

welfare and quality of life [110].

Third, it was mentioned that genome editing might

decrease the suffering of many species of wild animals, for

example, by changing the reproductive behaviour of prey ani-

mals in ways that reduce their high infant mortality rate [114].

It was argued that the harm that would be prevented by doing

so would outweigh the harm inflicted on animals during devel-

opment and testing of these strategies [114]. On the other hand,

authors argued that scientists cannot be confident enough that

this strategy will successfully decrease wild animal suffering

given the complexity of ecosystems, the unpredictability of cli-

mate change and the indeterminacy of human behaviour [122].

With regards to reviving extinct species, it was mentioned that

these animals could end up suffering as a result of the pro-

cesses used or because of their genomic variations [12], and

that revived species could threaten other animals if they

become a vector or reservoir for viruses [81].

Finally, it was argued that genome editing could affect

animal welfare in several other ways. Authors noted that

genome editing could decrease animal welfare if somatic

cell nuclear transfer (SCNT) cloning were used to deliver the

nuclease-mediated modifications; SCNT is associated with

embryonic losses, postnatal death and birth defects [95,97].

Authors also mentioned that genome editing could result in

off-target mutations or unintended effects, which could nega-

tively affect animal health [9,80,90,104,139]. Others argued

that genome editing using engineered nucleases could result

in fewer off-target effects than previous techniques [9]. Further-

more, the so-called non-identity problem was raised in the

context of creating genetically modified animals; if these ani-

mals have a life worth living, one cannot conclude that they

are worse off, even if they have welfare problems, for they

would not have existed if they had not been genetically

modified [115,118].

With regard to gene drives, it was mentioned that this

technology could be a humane method to eliminate inva-

sive species [6]. On the other hand, it was argued that

such applications could lead humans to ignore the predi-

cament of the animal and to accept negative effects on

animal welfare for the sake of other goals [9], although

this risk could be prevented by using less drastic

gene drive designs and using them to promote animal wel-

fare (for instance, by driving disease resistance into wild

populations) [9].

Animal dignity and species-specific capacities
Several authors argued that (applications of) genome editing

are undesirable not because they might harm the welfare of
these animals, but because they might be harmed in other

ways. First, it was argued that genome editing instrumentalizes

animals by using them as mere objects to serve human pur-

poses [36,64,81,104,115], whereas these animals have intrinsic

value [104], and in any case prospective human benefits

should not be used to justify harm to animals [36]. For particu-

lar applications such as reviving extinct species or creating

genome-edited pets, authors argued that it could be inap-

propriate to alter physiological limits [126,128] or to exploit

the animals for unimportant human purposes like entertain-

ment [12]. Additionally, it was mentioned that genome

editing could be viewed as the initiation of increasingly imbal-

anced power distribution between humans and animals [80].

On the other hand, some authors argued that genome editing

could prevent additional violations to animal rights, which

should be considered preferable to the status quo, even on an

account that considers raising animals for human consumption

to be impermissible [78].

Second, it was argued that genome editing could be an

affront to an animal’s dignity [96] or could prevent the

animal from living according to its instincts [111]. On the

other hand, it was argued that the Kantian concept of dignity

cannot be applied to animals, for it is tied to prerequisite con-

ditions, such as the ability to exert self-determination or to be

a moral agent, that animals do not possess [113]. Likewise, it

was argued that it does not make sense to propose that

genome editing could impinge on an animal’s dignity and

thereby harm that animal even if its welfare is improved,

because what is good for an individual must in some way res-

onate with that individual [78]. Similarly, it was argued that

dignity-related arguments ultimately cannot justify an objec-

tion that is based on a species norm rather than on respect for

individual animals, as is the case in the discussion on

enhancement [115,118]. Finally, authors noted that because

genome editing could determine which individual comes

into existence, it could be hard to say that its rights were

infringed, its dignity violated, or even that it was wrongly

instrumentalized because it would otherwise not exist [119].

Third, it was argued that genome editing could affect the

telos (the essence and purpose) of an animal [80] if they are

genetically altered to the point where they lose the behaviour

that makes them that particular animal [120], for example, if

genome editing were used to create diminished animals

[137]. In response, it was argued that the idea that there is

a ‘true essence’ of a species is mistaken, as behaviours and

tendencies change over time [78]; furthermore, the telos of a

creature could still be respected by providing it with an

environment that fits its altered genetic predispositions [78].

Moreover, it was argued that it could be morally acceptable

to modify an animal’s telos if the animal was made less mis-

erable or indeed happier because only an individual animal,

not its telos, can be harmed [121].

With regard to species-specific considerations, it was

argued that genome editing could expedite transgenesis in

non-human primates, which likely occupy a level of moral

status that would obligate us to protect them from being

used in this way [110] or to allow it only in extremely excep-

tional circumstances [53]. It was also mentioned that genome

editing could only be rightfully done if its permissibility were

evaluated for each species on its own merits [36]. With regard

to mosquitoes, it was mentioned that using gene drives to

drive them to extinction could breach the sanctity of their

lives, however, it was argued that neither existing mosquitoes
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(that will not die nor suffer, but merely fail to reproduce), nor

the species holistically (for which it could not be considered

clear that they possess relevant cognitive capacities) bear a

significant degree of moral status [101].

Finally, objections were made to specific applications of

genome editing. It was argued that although genome editing

could increase animal welfare by facilitating diminishment,

this result would be an inappropriate response to the sys-

tematic wronging [119] or inappropriate valuation [116] of

agricultural animals, whereas we have a duty of reparation

to members of this historically wronged group [119]. Authors

also mentioned that genome editing could facilitate

xenotransplantation, which might be considered ethically

untenable because it compromises species boundaries and

treats animals as re-designable systems for human use [64].

On the other hand, it was argued that species norms

(which could also be breached if genome editing were used

for animal diminishment) are only indirectly morally signifi-

cant as a generally useful guide to evaluating animal welfare

[118,119]. Similarly, it was mentioned that ‘disabilities’

caused by diminishment, which could affect the species-

typical essence of these animals, would not necessarily

make these animals worse off, as the literature on human

disabilities has taught us [78,112].
(iii) Environment-related reasons
Environmental considerations
Environmental considerations were mostly used to argue

against genome editing. One line of argument pursued the

potential impacts of genome-edited animals on ecosystems.

Authors argued that both genome-edited organisms

[28,139] and gene drive organisms [6,7,20,28,34,35,82,83,106,

108,126,139,143] could have unknown negative effects on eco-

systems. It was mentioned that gene drive organisms could

be more transformative, uncontrollable and ecologically

damaging than other genome-edited organisms that contain

self-limiting genes [107], particularly if gene drives were

used to eradicate species [7,34,35,83,108,139]. By eradicating

a species, gene drives could disrupt the positive contributions

of these species in native ecosystems [89], for example, by

eliminating the food source of another species [7,34,83] or

promoting the proliferation of invasive pests [7,34]. By con-

trast, it was argued that genome editing could enable

ecological conservation [21,143] and save endangered native

species [5,103,124] if used to eradicate invasive species

[5,31,103,124] or revive ecological proxies of extinct species

[12,91]. It was argued that using gene drives to protect threa-

tened species and reduce invasive species could conserve the

natural and cultural world for future generations, possibly

rendering its use imperative from an intergenerational justice

perspective [143].

Authors also argued that genome editing could impact

the environment in other ways. On the one hand, it was

reasoned that using genome editing to increase the pro-

ductivity of livestock could be undesirable given the

negative impact of farming on the environment, for example,

through greenhouse gas production and water and land pol-

lution [104]. On the other hand, genome editing could

perhaps contribute to reducing the environmental impact of

animal production, for example, by decreasing the amount

of phosphate pollution [96]. Similarly, authors noted that

using gene drives to control agricultural pests could be a
more environmentally sound control method than using

insecticides [23] and that gene drives could help scientists

to develop and support more sustainable agricultural

models [5,31,32,105], for example, by editing populations of

resistant species to become vulnerable to pesticides and

herbicides again [5,32,105].

Authors raised several environmental considerations in

response to specific proposed applications of genome editing,

in particular reviving extinct species. On the one hand, it was

argued that reviving extinct species could be just; because

humans caused the extinction and have the power to revive

them, they may have a duty to do so [12]. On the other

hand, it was mentioned that in some cases there may no

longer be a niche for a particular revived species [12,81],

and as a result the revived species may do substantial

environmental damage if it is released or escapes into the

environment. Reviving animals could also diminish the

desire to protect existing species [12,81]. Finally, it was men-

tioned that genome editing will fail to genuinely recreate

species because there would not be a reproductive nor

spatio-temporal relationship between the resurrected animal

and other members of its species [12,123]. In response to

the ecological damage that could result from using genome

editing to change the reproductive behaviour of wild animals

to prevent suffering, it was mentioned that such damage

could be offset by modifying other features of the ecosystem,

too [114].

Finally, it was argued that genome editing could cross

moral limits if humans were to use it to breach natural

boundaries or to act out of hubris [12,36,115,117], as nature

and life should not be completely manufactured or planned

and we should acknowledge their unpredictability [12,115].

Some authors noted that genome editing might in itself con-

stitute an unnatural interference with nature [100,115].

Authors also argued that while the natural order might not

hold an intrinsic moral value, deleting genetic diversity

risks eliminating advantageous traits [105]. In response,

authors noted that it is unclear what is meant by ‘naturalness’

[78,111]. Furthermore, the natural is not necessarily good and

the unnatural is not necessarily bad [78,111]. Similarly, it was

argued that although it could be said that using genome edit-

ing could amount to ‘playing God’ or displaying hubris, there

may be sufficient reasons—such as saving many lives—to

justify improving the given [101]. For gene drives, it was

mentioned that the use of this technology to control certain

invasive species, if successful, could become a Trojan horse

to legitimize the eradication of other species without

questioning to whom or what they are harmful [20].
4. Discussion
To the best of our knowledge, this review constitutes the first

systematic review of reasons for and against development

and use of new-generation genome editing technologies in

non-human animals as reported in the academic literature.

Our review shows that a wide and diverse range of reasons

is brought forward and provides a descriptive overview of

these reasons, offering a starting point for subsequent further

research and normative analysis [16].

Importantly, many arguments mentioned in this review

are not reasons for or against all uses of genome editing in

animals. Instead, they point to possible conditions for the
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responsible use of these technologies. For example, the fact

that genetically modified (non-gene drive) mosquitoes

could potentially cause negative consequences by spreading

the modified gene beyond the target population, could lead

to the requirement that, among other conditions, a first trial

site be geographically isolated, such as an island [102]. Our

review also underlines that different ethical considerations

apply to different applications of genome editing in animals.

From this point of view, the question is not whether genome

editing in animals is ethically acceptable, but whether there

are conditions under which it can be ethically employed.

In what follows, we make four additional observations

about the academic debate, and suggest areas for future

research and analysis. In particular, we note a low disciplin-

ary diversity in the authors shaping the academic debate, a

scarcity of systematic comparisons of potential consequences

of using these technologies, underrepresented or missing

concerns, especially regarding animal interests, and a disjunc-

tion between the public and academic debate on this topic.

We elaborate on these observations below.

(a) The academic literature lacks disciplinary diversity
Our findings provide insight into who is shaping the aca-

demic debate on the use of gene editing technologies in

non-human animals. As table 1 illustrates, while authors

from different backgrounds are involved in this debate, the

large majority are (mostly biomedical or veterinary) scien-

tists, investigating the technical feasibility of different

applications of genome editing in animals. On the one

hand, a concern for ethics on the part of scientists is impor-

tant and encouraging. On the other hand, it shows that

authors working in ethics, philosophy and the social sciences

are underrepresented. This low disciplinary diversity is par-

ticularly problematic as the debate moves from discussions

of technical feasibility to (potential) real-world applications,

in which academic experts will likely influence policy and

regulatory decisions [14,144]. To critically assess the appli-

cations of genome editing in animals from different

perspectives, multidisciplinary and proactive evaluation of

the technologies and their ethical and societal implications—

for example, through ethics parallel research [145,146]—is

essential. Ethics parallel research entails an ethical evaluation

of emerging technologies in parallel with—or even in advance

of—the developing science, allowing scientists and ethicists to

co-shape innovation processes and governance in an ethically

sound way during the development of the technology [145].

(b) Few articles include systematic comparisons
Our findings also illuminate the characteristics of the specific

reasons addressed in the literature. While many reasons

related to potential harms and benefits, surprisingly few

articles engaged in a systematic comparison of the harms

and benefits of the proposed application of genome editing

compared to alternatives. This is noteworthy, as such sys-

tematic comparisons are necessary to draw conclusions

about what would result in the best overall consequences.

Such an analysis could draw on the principles of proportion-

ality and subsidiarity. According to the principle of

proportionality, potential benefits should be balanced against

potential harms or risks; those that argue in favour of or

against (applications of) genome editing in animals ought

to present an explicit comprehensive overview of the benefits,
harms and risks in question and argue why the harms out-

weigh the benefits or vice versa. The principle of

subsidiarity entails that a policy should only be adopted if

there is no less harmful policy that would achieve the same

result. This principle suggests that applications of genome

editing ought to be compared to alternative policies in

terms of potential harms and benefits, including the—often

forgotten—benefits and harms of the status quo, including

the costs of inaction. In the case of gene drives, for example,

potential ecological damage resulting from their use is a

pressing concern, warranting a thorough inventory of related

risks and harms. When weighing those, the principle of sub-

sidiarity requires us—among other things—to balance the

possible ecological damage of using gene drives to eradicate

vector-borne diseases with the deaths that are now caused by

these diseases and the ecological damage of using pesticides.

This kind of analysis is consistent with calls from the scienti-

fic community to integrate comparative assessment of harms,

risks and benefits into the regulatory framework [147,148].

Yet where some scientific reports define benefits in narrow

economic terms, the principle of subsidiarity requires a

broad definition of and metric for benefits.

(c) Underrepresented or missing concerns
Given that this review concerns genome editing in animals, it

is remarkable how few animal-related reasons have been put

forward; most reasons for or against the use of genome edit-

ing in animals rest on human-related grounds. Little of the

biomedical literature considered the welfare of (research) ani-

mals; for example, articles that mentioned off-target effects

seldom considered whether these effects could have an

impact on animal welfare. Similarly, there was relatively

little reflection on species-specific considerations. Although

the moral status and interests of non-human primates were

brought up [53,110,126], the moral status of other animals

was rarely mentioned. Given that accounts of moral status

are generally founded in sentience [149] and consciousness,

the interests of other animals appear worthy of more

attention within this debate.

On a related note, while the relationship between humans

and animals was brought up in several reasons, particularly

those related to animal dignity, this relationship was never

framed in terms of human virtues [150]. Such an analysis

might ask, for example, who we become when we use and

alter animals in certain ways. Indeed, when it comes to ethical

theory, we note that the most frequently reported reasons—to a

large extent originating from biomedical literature—were con-

sequentialist in nature, i.e. focusing on potential (positive or

negative) outcomes of using genome editing technology in ani-

mals for human health, animal welfare or ecosystems. While an

initial emphasis on consequentialism is consistent with general

argumentative patterns around new and emerging science and

technologies [151], other ethical theories are relevant to this

debate and will also be necessary to understand and engage

with public attitudes and concerns.

(d) Disjunction between the expert and public debate
Academic experts have made significant calls for public

engagement with and debate about genome editing

[4,28,70,126,152,153], particularly with regard to the possible

use of gene drives [5,6,20,32,83,88,109,140]. A study commis-

sioned by the United Kingdom’s Royal Society explores
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public perceptions and the reasoning behind them [154]. In

both this study and the academic debate more generally, con-

siderable weight is given to the potential for genetically

modified animals to improve human health or (negatively)

impact ecosystems [154]. However, other public concerns

regarding genome editing technologies are thus far underre-

presented in the academic literature, including the public

concern for equity of access to the potential benefits of

genome editing technologies, questions about the just distri-

bution of governmental funding of genome editing

compared with other investments, and concerns about the

commercialization of genome editing technologies. With

regard to commercialization, members of the public have

raised the worry that businesses could prioritize profit-

making over the public good and could fail to provide a

balanced representation of the benefits and risks of these

technologies [154]. The fact that these concerns are largely

absent from the academic debate on genome editing in ani-

mals is particularly significant given ongoing calls for

public engagement and raises interesting questions that

relate to a broader discussion about what the rationale,

form and aim of public engagement should be. If the goals

of such engagement are not merely to inform the public,

but also to address societal challenges and to allow the

public to be involved in shaping technological developments

together with other stakeholders, then issues regarding com-

mercialization, distributive justice and access to the benefits

of genome editing technologies are worthy of more attention

in the academic literature.

(e) Limitations
This systematic review provides a comprehensive overview of

the reasons brought forward in the academic debate on

genome editing in animals. The articles presented were

included after a thorough screening of the academic literature

on the topic by two independent reviewers, based on a search

strategy that was guided by experienced librarians. Nonetheless,

this review has several limitations.

First, given the focus on relatively new genome editing

technologies and a large amount of literature on this topic,

this review included articles published between 2010 and

2018. We recognize that arguments raised previously, in differ-

ent contexts or in older but related debates, may be relevant for

the current discussion of genome editing. Second, a systematic

review of this kind always involves reporting bias; a different

group of researchers could have selected or grouped the

included reasons in a different way. Third, we could not sys-

tematically perform a quality assessment of the included

literature, as there is no screening instrument to assess the qual-

ity of normative papers or the reasons mentioned. Finally, we

note that it was beyond the scope of this paper to assess the
scientific validity of the reasons and different applications of

genome editing discussed in the included articles.
5. Conclusion
Genome editing has a broad range of possible applications in

research animals, farm animals and wild animals. Despite an

ongoing academic debate on this topic, this study is the first

comprehensive overview of this debate. Our article provides

a systematic review of the reasons for and against the develop-

ment and use of genome editing technologies in animals as

reported in the academic literature. We identified 67 different

reasons for and 48 different reasons against genome editing

in animals, which related to human health, efficiency,

risks and uncertainty, animal welfare, animal dignity, environ-

mental considerations and public acceptability. Our findings

illuminate several key features of the academic debate thus

far, including a low disciplinary diversity in the contributing

professionals, a scarcity of systematic comparisons of potential

consequences of using these technologies, an underrepresenta-

tion of animal interests, and a disjunction between the public

and academic debate on this topic.

As such, our article can be considered a call for pro-

fessionals from a wide range of disciplines to become

involved in the academic discussion about genome editing

in non-human animals. We also suggest that this ongoing

debate seek to incorporate animal interests, systematically

compare applications of these technologies using the prin-

ciples of proportionality and subsidiarity, and further

research the range of concerns uncovered through public

engagement. Proactive and multidisciplinary collaboration

can both advance these technological developments and the

academic discourse about them, allowing us to go beyond

rhetoric of promises or fears and positioning their ethical

analysis in real-world practices [145,155].
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