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Abstract

DNA sequencing made huge strides in the last decade. Studies based on large sequencing datasets 

appear frequently, and public archives for raw sequencing data have been doubling in size every 18 

months. Meanwhile, commercial and academic cloud computing have matured, leading to more 

providers, greater total capacity, and a larger variety of services. Here we describe how cloud 

computing is used for large-scale genomics collaborations and research and argue how cloud 

computing will likely be a basic underpinning for future large-scale genomics collaborations and 

for efforts to re-analyze archived data, including privacy-protected data.

Introduction

Commercial cloud computing and DNA sequencing have been twin technology success 

stories of the past decade. Commercial cloud services have matured rapidly, creating new 

data centers, lowering prices, adding services, and generating notable profits (https://

www.nytimes.com/2017/04/27/technology/quarterly-earnings-cloud-computing-amazon-

microsoft-alphabet.html). DNA sequencers improved dramatically, and large genomics 

collaborations like The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression 

(GTEx) Project1, and TopMed (https://www.nhlbiwgs.org) generated ever-larger datasets. 

Public archives for sequencing data such as the Sequence Read Archive (SRA)2 grew 

rapidly and now have a doubling time of 10–18 months.

How are these stories related? While cloud computing was not invented with science and 

genomics in mind --- its major users are technology companies and other businesses --- there 

is a growing list of cases where cloud computing helped to achieve important scientific goals 

[TODO: cite]. Here we review cloud computing’s role in recent genomics research, focusing 

on two areas where the cloud is making major contributions. The first involves the vast 

datasets now available in sequencing data archives like the SRA. The SRA currently 
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contains over 12 petabases of raw data, more than double its size 10 months ago (https://

trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=announcement) (Figure 1). These data are 

available to download, with the caveat that most of the human data, and a majority of the 

nucleotides in the SRA overall, are protected by Database of Genotype and Phenotype 

(dbGaP) measures for maintaining privacy of donors. In short, the SRA gives researchers 

ready access to valuable data, some of it quite unique – e.g. from individuals with rare 

phenotypes or from hard-to-obtain tissues -- and at a scale no one laboratory or institution 

could recreate.

But the archived data is not easy for typical researchers to use. To get new results from 

archived datasets, a researcher must secure sufficient storage space, perform large and time-

consuming downloads, then perform a compute-intensive re-analysis of the data from 

scratch. Many labs aren’t equipped for this, so valuable data go unused3. But the cloud’s 

elasticity and the increasing availability of cloud-enabled software tools are easing the way. 

We will discuss how the cloud has been applied in this area and why its elasticity, 

reproducibility and privacy features make it an apt fit for large-scale reanalysis of public 

data.

The second area where cloud computing has made inroads is in enabling collaborations on 

large amounts of shared data. The distributed nature of the cloud has made it a natural venue 

for driving the collaborative computing effort, and for otherwise facilitating the 

collaboration. This has been happening most visibly in projects like the International Cancer 

Genome Consortium (ICGC)4,5, the Cancer Genomics Cloud (CGC) Pilot6, and the 

Encyclopedia of DNA Elements (ENCODE and modENCODE)7.

The cloud model

In the cloud-computing model, computational resources like processors and hard disks are 

thought of as utilities to be rented from a service provider like Amazon Web Services, 

Microsoft Azure or Google Cloud Platform. The providers control vast pools of computers 

and storage, organized into data centers scattered across the world. Users request resources, 

use them, then release them back into the pool when the work is complete. Fees are incurred 

according to usage. Storage incurs a per-gigabyte-per-month fee and computers incur a per-

computer-per-hour fee. Users are billed monthly, just as for a home utility.

The cloud’s hallmarks are elasticity and convenience. Elasticity refers to the ability to rent 

and pay for the exact resources needed. The user is not compelled to downscale the task to 

fit the confines a local cluster (“under provisioning”), nor must the user incur the cost of 

“over provisioning”: purchasing an amount of computing to match the largest possible future 

need.

Because cloud datacenters are vast, computational requests large and small can be fulfilled 

quickly, sometimes immediately. A user requesting a 1,000-computer cluster for 1 hour is 

about as likely to succeed as a user requesting a single computer for 1,000 hours. This is not 

as true for smaller institutional clusters. The ability to recruit vast resources is an 

extraordinary advantage; instead of waiting for the trickle of computer-hours available on a 
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busy institutional cluster, the user can rent a cluster the size of your entire institutional 

cluster for a day. Work completes in a fraction of the time and you pay only for what you use 

(Figure 2).

The cloud also frees the user from maintaining computer hardware. Cloud providers 

maintain data centers in a way that achieves economies of scale. Users need not be 

concerned with outages, software patches, service contracts, or damaged parts. That said, the 

task of recruiting and maintaining cloud resources appropriate for one’s needs is itself a 

complex administrative task that can require a professional administrator or a dedicated 

effort to learn.

For scientific users, the cloud has two other major advantages: reproducibility and global 

access. Cloud resources are rented in virtualized slices called instances. Providers advertise a 

stable menu of instance types, each with defined capabilities: a certain processor speed, 

amount of disk space, amount of memory, etc. This predictability extends to the software 

running on the instances; the user decides exactly which software catalog should be pre-

installed, including the operating system and software. This makes it easy for two users, 

perhaps on opposite ends of the globe, to create near-identical hardware and software setups. 

Similar reproducibility advantages are possible using virtual machines8,9 and Docker 

containers10,11, but the cloud makes it particularly easy to do this for entire clusters of 

computers, plus the software used to tie them together. Frameworks like StarCluster (http://

star.mit.edu), Elastic MapReduce (https://aws.amazon.com/emr/) make this easier, and 

genomics frameworks like Galaxy12,13 and Omics Pipe14 extend these advantages to typical 

genomics workflows.

The cloud is also globally accessible. A user anywhere in the world can rent resources from 

a provider, regardless of whether the user is near a data center. Data can be secured and 

controlled by the collaborators, without having to navigate several institutions’ firewalls. 

Team members can use the same commands to run the same analysis on the same 

(virtualized) hardware and software. This makes the cloud an attractive venue for large 

genomics collaborations, and an important tool in the effort to break down data silos and 

promote robust sharing of genomics data15. The cloud is also the substrate for the NIH Data 

Commons Pilot, an effort to increase availability and utility of data and software from NIH-

funded efforts16,17.

The cloud has disadvantages as well. Depending on the user’s financial incentives, the cloud 

might be more expensive than a local cluster18. While building and maintaining a local 

cluster is work-intensive, initial costs are amortized over the cluster’s lifetime. The marginal 

cost of doing one more computation is low; once hard disks have been purchased and set up, 

storing one more gigabyte of data is practically free. In the cloud, on the other hand, each 

experiment incurs a usage-based cost. That said, cloud providers do allow a degree of cost 

amortization through sustained use discounts, through use of partially prepaid “dedicated” 

instances, or through resellers or enterprise agreements. While funding agencies are 

increasingly willing to support these costs, as evidenced by the Commons Credit Pilot 

(https://www.commons-credit-portal.org) and the NSF Jetstream science cloud19, this 

represents only a fraction of the computational cost of science.
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Another key issue is data privacy. Later we discuss ways in which the cloud can make it 

easier to adhere to privacy standards like dbGaP. But the overall issue of privacy is not so 

simple. For one thing, stronger privacy standards like HIPAA add substantial complication 

and expense on top of what’s needed for dbGaP compliance. And while it may be possible 

to adhere to the relevant standards, the user must often invest substantial time and effort to 

convince other bodies, such as Internal Review Boards or Information Technology 

administrators, that the standards are indeed being followed20.

Revitalizing archived data

The Sequence Read Archive (SRA)2, the central archive in the US for published sequencing 

data hosted at the National Center for Biotechnology Information (NCBI), now contains 

over 12 petabases of data from over 100,000 distinct studies. These data are heterogeneous, 

spanning many species, individuals, tissues, sequencing instruments, and assays. Vast 

archives like this allow researchers to reproduce past studies or to borrow data from those 

studies to address new questions. This is an avenue more research groups are taking. For 

example, one recent study gathered human RNA sequencing samples from various projects, 

including TCGA and ENCODE21, to create a catalog of long non-coding RNAs 

(lncRNAs)22. Another reanalyzed RNA sequencing data from modENCODE23,24, which 

studied transcription in Drosophila melanogaster over developmental time. The reanalysis 

focused on gene expression in an endosymbiont, Wolbachia pipientis22,25, yielding new 

insights into gene expression patterns related to symbiosis.

In short, public archives are comprehensive enough to allow researchers to ask and answer a 

broad range of sophisticated questions without generating new data. But there are major 

obstacles to using archived data. One is computational. Downloading, storing and analyzing 

the data is resource-intensive, subject to bottlenecks like Internet uplink speeds, and beyond 

the skill set of many researchers.

A second major obstacle is data quality, both of raw data and metadata. Not all datasets in 

the SRA are of high quality, or annotated with informative (or even correct) metadata. In the 

absence of reliable and automatic methods for dealing with poor quality data and metadata 

--- a problem that is receiving more attention26,27 --- researchers must approach public data 

cautiously. We return to this issue in the following section.

Cloud computing addresses many problems posed by data archives. The cloud’s elasticity 

allows users to scale computing resources in proportion to the amount of data being 

analyzed, sidestepping constraints imposed by local clusters. Input data can be downloaded 

directly to the cloud computers that will process it, without first traversing a particular 

investigator’s cluster. If data are protected, e.g. by dbGaP, existing protocols make it possible 

to craft a compliant cloud-based computational setup28. Commands used to rent the cluster 

and run the software can be published or shared so that collaborators can do the same, 

sidestepping inter-cluster compatibility issues.

Why has cloud computing not been more popular? We and others have advocated for cloud 

computing in genomics since the early days of Amazon Web Services29–31. Archives like the 
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SRA were far smaller at the time, so public data was not the main concern. Instead the 

prevailing argument was that sequencing throughput was growing much faster than Moore’s 

law, forcing labs to grow their computational resources quickly with no upper bound in 

sight30,31. Computational studies32–35 showed cloud computing could be used to analyze 

data fresh from the sequencer at reasonable speed and cost. But this assumed data could be 

transferred to the cloud conveniently. Researchers found this cloud-transfer step to be a 

challenge, worrying because of the specter of having the data stolen, or simply too slow 

depending on Internet uplink speed. Though there are now commercial services that 

similarly advocate cloud-based analysis of freshly-sequenced samples (https://

www.dnanexus.com, https://basespace.illumina.com, https://www.sevenbridges.com/

platform/, http://globusgenomics.org), we expect reanalysis of public data to be a more 

durable motivation for use of cloud computing in genomics research.

Recent years have seen a series of studies applying cloud computing can be used to study 

large collections of public archived data. The ReCount effort36 used Myrna34 and computing 

resources rented from the AWS cloud to re-analyze 475 RNA-seq samples from 18 different 

experiments which; this is a small study by modern standards but constituted a large fraction 

of publicly available RNA-seq data in 2011. The study summarized the raw data into tables 

giving expression levels summarized genomewide at the level of genes and exons. The 

Intropolis37 and recount238 efforts used AWS and a custom cloud-enabled RNA-seq 

aligner39 to re-analyze over 70,000 human samples spanning TCGA, GTEx, and the SRA, 

releasing expression-level summaries at the level of splice junctions, exons, genes and 

individual genomic bases. The Toil effort40 used Spark-based computational pipeline and 

AWS to analyze nearly 20,000 samples spanning 4 major studies, including TCGA and 

GTEx. After a total of about 1.3M core hours of work, the estimated cost was about $1.30 

per sample, but a much lower per-sample cost of $0.19 was achieved using an alternate 

pipeline based on the Kallisto pseudo-alignment tool41. Another effort42 used Google Cloud 

Platform to quantify transcript expression levels for over 12,000 RNA-seq samples from 

large cancer projects. One the pipelines proposed in this work, again based on Kallisto, was 

shown to achieve a cost of just $0.09 per sample, the lowest of any effort to date and a small 

fraction of the cost of sequencing43,44.

Combined with similar efforts that used large local clusters rather than cloud 

computing45,46, the field has produced an array of uniformly processed and summarized 

datasets, summarized in Table 1. While these developments are recent, we expect resources 

like these to become popular starting points for studies that derive new conclusions from 

archived data. Microarrays are an instructive precedent: once appropriate resources and 

methods were available, it became common to combine and reanalyze large collections of 

microarray data, e.g. for platform comparisons47, improved methods48,49, meta-analyses50,51 

and clinical predictors52,53. Cloud computing enables this for sequencing data as well.

A shared computational laboratory

Because of the complexity of genomics studies and the need to enroll patients in 

geographically dispersed labs, collaboration on large-scale genomics sequencing projects 

across multiple sites is quite common. Before a computational analysis begins, all relevant 
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data is gathered at whichever site has the requisite computing capacity and expertise. In 

practice, it is common for more than one site to analyze the full dataset, necessitating copies 

and transfers. The larger and more decentralized the project, the more copies must be made, 

yielding an adverse multiplier effect31 (Figure 2a). The cloud combats this by providing a 

single common venue for data and computation (Figure 2b). Collaborators at the various 

sites can use computers located near the data.

This approach is exemplified by the NCI Cancer Genomics Cloud Pilots, initiated in 2015 

and managed separately by the Broad Institute, the Institute for Systems Biology, and Seven 

Bridges Genomics (https://cbiit.nci.nih.gov/ncip/nci-cancer-genomics-cloud-pilots/nci-

cloud-initiative). The goal was to facilitate querying and reanalysis of large cancer datasets 

like TCGA (https://medium.com/@theNCI/advancing-a-national-cancer-knowledge-system-

a1c016046fbe). Two of the three efforts, the Broad’s FireCloud and Seven Bridges’ Cancer 

Genomics Cloud (CGC), additionally allow users to upload their own data and perform 

analyses in workspaces that can be shared privately with collaborators or publicly with the 

broader community (https://software.broadinstitute.org/firecloud/documentation/, http://

docs.cancergenomicscloud.org/docs). Common analysis workflows are provided, but users 

can develop and share new workflows using the Common Workflow Language (CWL)54. 

One recently published workflow uses this platform to detect patient-specific tumor 

neoantigens from sequencing data55.

FireCloud and CGC rely on Amazon Web Services and the Google Cloud Platform for 

compute and data storage (https://software.broadinstitute.org/firecloud/documentation/, 

http://docs.cancergenomicscloud.org/docs). In addition to charges for these commercial 

services, users pay convenience surcharges. By contrast, since 2007, the Galaxy Project56 

has allowed executing sharable analysis workflows for free through its main public server, 

which uses computing hardware at the Texas Advanced Computing Center (TACC), part of 

the NSF-supported Extreme Science and Engineering Discovery Environment (XSEDE)57. 

According to the project website (https://galaxyproject.org/main/), hardware allocated 

exclusively for Galaxy users spans the Rodeo cluster, with 256 processing cores and 2 TB of 

memory, and Corral, with 20 PB of disk space. Hardware shared with non-Galaxy users 

includes the Stampede cluster, with over 400,000 processing cores and 205 TB of memory. 

However, a registered user has a 250-GB disk space quota for their own data and is limited 

to running 6 concurrent jobs, each using at most 16 processing cores. Galaxy can also be 

used with Jetstream57, a large-scale cloud computing resource that is also part of XSEDE 

and broadly serves as an alternative to commercial cloud computing services. Investigators 

can request XSEDE allocations to use Jetstream (https://www.xsede.org/allocations), and 

analyses can be run there through the Galaxy main server.

Collaboration using Galaxy is less direct than on FireCloud and CGC. Multiple collaborators 

do not manage an analysis in a shared workspace; rather, a single user completes all or part 

of an analysis, and Galaxy records its history, or the sequence of intermediate and final 

outputs (https://galaxyproject.org/tutorials/histories/). The history is then shared with 

another Galaxy user, and they import it, essentially creating a new branch of the history. The 

history can also be published for public consumption.
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The Galaxy interface can run atop different computing infrastructures, and the community 

has set up over 80 public servers besides the main server (https://galaxyproject.org/public-

galaxy-servers/). Users can also install Galaxy on cloud clusters using CloudMan12, which 

not only supports Amazon Web Services for pay-as-you-go storage and compute but also 

private and public clouds that leverage OpenStack58 or OpenNebula59. Galaxy servers may 

also be launched on Jetstream (https://galaxyproject.org/cloud/jetstream/). Globus Genomics 

is an alternative way to use Galaxy on Amazon Web Services. An initiative by the 

Computation Institute at the University of Chicago, Globus Genomics not only combines an 

enhanced Galaxy instance for workflow management with Amazon Web Services for 

powering computational analyses60, but also uses the GridFTP-backed Globus Online61 to 

speed data transfer among endpoints. These endpoints include Amazon’s cloud storage 

service S3 and major sequencing centers62.

Another way to combat the multiplier effect would be to distribute different parts of a 

dataset across multiple sites while leveraging the computational resources at those sites 

(Figure 2c). A layer of software coordinates computational activity across sites, turning them 

into a federated cloud that can run a common analysis workflow while enforcing co-location 

of data and the compute infrastructure used to analyze them. This is the approach of projects 

such as Beacon from the Global Alliance for Genomics and Health (GA4GH)63. It is also 

used by the Collaborative Cancer Cloud (CCC), a partnership among Intel, Oregon Health 

and Science University, the Dana-Farber Cancer Institute, and the Ontario Institute for 

Cancer Research (http://www.dana-farber.org/Newsroom/News-Releases/dana-farber-and-

ontario-institute-for-cancer-research-join-collaborative-cancer-cloud.aspx). The CCC will be 

a platform that allows cancer researchers to search for patient omics data across multiple 

sites and perform analyses while keeping identifying information about patients secure 

(http://siliconangle.com/blog/2016/12/16/collaborative-cancer-cloud-intel-ohsu-team-

cancer-research-thecube/).

Many collaborations already use the cloud to consolidate project data. ENCODE uses 

DNANexus for cloud-based analysis and data sharing, and DNANexus in turn uses Amazon 

Web Services (https://aws.amazon.com/solutions/case-studies/dnanexus/). modENCODE 

and ICGC host their datasets in the cloud through Amazon Web Services (http://

data.modencode.org/modencode-cloud.html, http://docs.icgc.org/cloud/about/).

Conclusions

Cloud computing is a popular and enduring paradigm that has changed how large and small 

companies manage computational resources. Increasingly, it is also changing how scientists 

in genomics and in other fields collaborate and deal with vast archive datasets. As the cloud 

makes inroads into genomics, it is important for researchers to understand it and the new 

modes of analysis and collaboration it enables. For readers looking for further information 

about cloud computing and its uses in genomes, we recommend the “Galaxy on the Cloud” 

tutorial (https://galaxyproject.org/cloud/), the “Informatics for RNA-seq” site (https://

github.com/griffithlab/rnaseq_tutorial/wiki).
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While the cloud can be viewed as an alternate way of running existing genomics software, it 

has also spurred software deeper thinking about how to design software for large datasets. A 

typical approach is to take software originally designed to analyze a single sample on a 

single computer, then attempt to scale it by launching many simultaneous copies, each 

analyzing a distinct sample. But the rise of cloud computing has driven a rise in certain 

programming frameworks, MapReduce in particular64, that make it easier to scale software 

to the kinds of large clusters available from cloud providers. In return, the programmer must 

adhere to certain permitted programming patterns. MapReduce is discussed in other 

reviews30,65,66 but a prime advantage is that it allows programs to scalably aggregate and 

sort data in between computational steps64. For genomics this makes it particularly easy to 

analyze many samples at once, naturally allowing “strength borrowing” across replicates39. 

MapReduce and similar frameworks have been used in many types of sequencing data 

analysis, including variant calling33, RNA-seq34,39, and ChIP-seq analysis67. Notably, the 

popular GATK variant caller68 uses MapReduce to parallelize population-scale variant 

calling.

By making it easier to leverage public data, cloud computing encourages another dimension 

of “strength borrowing.” That is, researchers can use public data to boost the power available 

to analyze a locally-generated dataset, a paradigm that already prevails in microarray data 

analysis49. We expect this trend to continue and evolve, even to the point new sequencing 

data analyses are performed in the cloud and with the benefit of being able to “see across” 

many past studies with important variables in common. The RNASeq-er API46 and Xena 

(http://xena.ucsc.edu) resources show how this is already possible for RNA-seq.

As the cloud gains users, funding agencies must learn about and facilitate this new kind of 

computing. Funders have traditionally viewed computing as a one-time expense yielding 

benefits that can be spread over future projects. The cloud model is radically different: all 

costs are ongoing, and little or nothing is subsidized or amortized. Funders do seem to be 

making adjustments for cloud computing, though. The NIH is funding cloud computing 

activities through its Commons Credit Pilot (https://www.commons-credit-portal.org) as is 

the National Science Foundation through its BIGDATA program (https://www.nsf.gov/news/

news_summ.jsp?cntn_id=190830&WT.mc_ev=click). Both programs allow investigators to 

apply for cloud credits redeemable with major cloud providers. The NSF-funded Jetstream 

resource19 is a cloud geared toward sciences such as genomics that have not traditionally 

made heavy use of supercomputers. While smaller than the commercial clouds, Jetstream 

can handle cloud workloads without charge, via grants through the XSEDE program57.

Funders can further control costs for grantees by working to keep key genomic datasets in 

cloud storage, as suggested previously5. NIH and others are beginning to do this, as 

evidenced by the NIMH Data Archive (https://ndar.nih.gov/index.html), and Cancer 

Genomics Cloud (CGC) Pilot6. Staging the raw data in the cloud at the outset greatly 

reduces the effort and cost of moving the data to the cloud computers doing the work. Cloud 

providers are aware of this advantage, with AWS and Google advertising availability of data 

from several large projects, including the 1000 Genomes Project69 on their cloud storage 

services (https://aws.amazon.com/public-datasets/, https://cloud.google.com/genomics/v1/

public-data).
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Figure 1: 
Four doublings of the Sequence Read Archive from July 2012 to March 2017. The large 

jump in October 2016 is chiefly due to the TopMed project. As of June 2017, the SRA 

contains over 12 petabases (millions of billions of bases) of data.
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Figure 2: 
Elasticity allows the user to rent resources while paying only for what gets used. Panel (a) 

illustrates a scenario with two computational tasks to perform, colored red and blue. The red 

task requires 36 computer-hours and runs on up to 8 computers simultaneously. The blue 

task requires 18 computer-hours and runs on 3 computers simultaneously. On a smaller 

cluster (left) both the tasks run sequentially and require 15 hours to complete. On a larger 

cluster (right), representing a cloud cluster, the tasks can run simultaneously and the red task 

can use its full complement of 8 computers. As a result, both complete within 6 hours. This 

ignores the fact that many more users are contending for cloud clusters than are contending 

for an institutional cluster. The greater number of users is mitigated by the fact that needs 
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and timing vary from user to user. Cloud providers also provide incentives, such as spot 

pricing, to encourage renting at less busy times.
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Figure 3: 
Each site (blue rectangle) has some computational resources and also generates a portion of 

the data (red puzzle pieces). In (a) analysis that require the full datasets are to be performed 

at multiple sites, requiring each of these sites to gather all portions of the data. As more sites 

join the analysis, more copies must be made. (b) and (c) are alternate solutions. In (b) sites 

consolidate their data in a cloud-based data center, where all analyses are performed. In (c), 

multiple sites organize themselves into a federated cloud, where each analysis of the full 

dataset is automatically coordinated to minimize data transfer. Where possible, the 

computers located where data are generated are used to analyze that subset.
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Table 1:

Cloud-based efforts to re-analyze RNA sequencing samples from large consortium projects and public 

archives.

Effort Data summarized Summaries URL Resources

recount2 38 • 9,662 human 
RNA-seq 
samples in the 
V6 release of 
GTEx 1. 
Various tissues, 
many tissues 
per individual.

• 11,350 RNA-
seq cases from 
TCGA 70

• 50,186 human 
RNA-seq runs 
from the 
Sequence read 
archive

Junction-, exon-, gene- level expression 
measurements. Genomewide coverage.

https://jhubiostatistics.shinyapps.io/recount/ Amazon Web Services

Toil 71 • 19,952 human 
mRNA-seq 
samples from 4 
large studies: 
TCGA, 
TARGET 
(https://
ocg.cancer.gov/
programs/ 
target), PNOC 
(http://
www.pnoc.us/) 
and GTEx

Gene- and isoform-level expression 
measurements. Genomewide coverage 
for GTEx.

http://xena.ucsc.edu
https://genome.ucsc.edu/

Amazon Web Services

Tatlow and 
Piccolo 42

• 12,307 RNA-
Sequencing 
samples from 
the Cancer Cell 
Line 
Encyclopedia 
72 and TCGA

Isoform-level expression measurements https://osf.io/gqrz9/ Google Cloud Platform
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