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The amount of information that can be stored in working memory is
limited but may be improved with practice. The basis of improved
efficiency at the level of neural activity is unknown. To investigate
this question, we trained monkeys to perform a working memory
task that required memory for multiple stimuli. Performance de-
creased as a function of number of stimuli to be remembered, but
improved as the animals practiced the task. Neuronal recordings
acquired during this training revealed two hitherto unknown
mechanisms of working memory capacity improvement. First, more
prefrontal neurons became active as working memory improved, but
their baseline activity decreased. Second, improved working memory
capacity was characterized by less variable temporal dynamics,
resulting in a more consistent firing rate at each time point during
the course of a trial. Our results reveal that improved performance of
working memory tasks is achieved through more distributed activa-
tion and invariant neuronal dynamics.
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Working memory is the ability to maintain and manipulate
information in mind (1). The capacity of human working

memory is notoriously limited; only a handful of items can be held
in memory over a period of seconds, creating a central limitation of
human cognition (2). Individual abilities are reliant on working
memory capacity (3, 4). Recent results suggest that capacity can be
improved by training in working memory tasks (5, 6). The extent
over which performance improvements generalize to tasks that
were not part of the training has been a matter of intense debate
(7, 8). No less contentious has been the idea that computerized
training can improve cognitive function in healthy adults (9).
Human fMRI studies have produced conflicting results about the

effects of training, with some studies suggesting increases (10–15)
and others decreases in activity (16–19). The former are interpreted
as reflecting a higher level of activation or recruitment of a larger
cortical area, the latter as suggestive of improvements in efficiency
(20). Humans are able to effectively reduce working memory load
by grouping or “chunking” multiple stimuli (21). For example, a
series of 10 digits comprising a phone number can be remembered
more easily as a set of three groups of three to four numbers. The
effects of training remain speculative, however, and the concept of
efficiency is poorly defined at the neural level.
Working memory is thought to be mediated by persistent activity

in a network of interconnected neurons behaving as a bump attractor
and representing remembered stimuli in the peak of network activity,
which may drift in time, resulting in loss of precision (22–24).
Neurons that are excited by their preferred stimuli remain active in
the delay period of a working memory task. When the capacity of the
network is exceeded, information about an item may decay or merge
with another item, resulting in loss of information about this item (SI
Appendix, Fig. S1). The changes in neuronal activity that allow the
network to increase its capacity are unknown. Computational studies
simulating networks of neurons generating persistent activity show
that improved capacity could be achieved through increased excit-
atory coupling, resulting in increased activity representing stimuli in
the delay period or reduced external drive resulting in lower baseline

and stimulus-driven firing rate (25, 26). However, recent work has
revealed considerable dynamics in the time course of delay-period
activity, and their effects on models of capacity is unclear (27). Al-
ternative mechanisms have also been proposed as the neural cor-
relate of working memory, some of which do not depend on elevated
activity during the delay period at all (28, 29). The site of information
maintenance has also been debated, with some studies suggesting
that information about stimuli is maintained in posterior areas,
rather than the prefrontal cortex itself (30, 31). Our study sought to
determine the changes in neural activity that effect improvement in
working memory performance after practice.

Results
We trained two monkeys to perform a working memory task that
required them to remember the spatial locations of multiple stimuli
appearing on a visual display and to indicate if a second display with
an equal number of stimuli was identical to the first (Fig. 1 A and
B). The monkeys’ performance declined monotonically as a func-
tion of the number of stimuli as the load of information maintained
in working memory increased (Fig. 1C and SI Appendix, Fig. S2).
The effect of number of stimuli on performance was highly signif-
icant (one-way ANOVA, F4,545 = 35.5, P = 2.25 × 10−26 for monkey
EL; F4,105 = 26.65, P = 2.90 ×10−15 for monkey DA). Based on the
pattern of correct and error responses, we were able to determine
the working memory capacity K (Fig. 1D) in this task (defined as
the set size multiplied by hits − false alarms and divided by 1 − false
alarms). Behavioral sessions and neuronal recordings were col-
lected over a period of several weeks, during which performance of
the animals improved gradually (Fig. 1 E and F). A linear re-
gression of capacity on successive recording days showed a positive
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items, creating one of the central bottlenecks of human cogni-
tion, but can be improved by training. The neural basis of this
improvement remains a matter of debate, as human imaging
studies have produced contradictory results about the mecha-
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we recorded neuronal activity from monkeys while they were
being trained to improve their ability in maintaining multiple
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working memory is effected by a more distributed activation of
the prefrontal cortex and invariant temporal dynamics of neu-
ronal activity. These changes render the prefrontal network more
robust, allowing it to maintain more items in memory.
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slope for each animal (b = 0.022, F1,46 = 14.290, P = 4.5 × 10−4 for
monkey EL; b = 0.040, F1,20 = 1.952, P = 0.178 for monkey DA).
We relied on a median split to distinguish between sessions of low
and high performance based on estimated capacity. The monkeys
achieved an overall performance level of 76.7% and capacity K =
2.24 items in the low-performance sessions and 82.6% correct trials
and K = 3.33 in the high-performance sessions. Errors that differ-
entiated sessions of high performance from those of low perfor-
mance involved mostly displays with four to five stimuli, as
evidenced by differences in capacity between these groups of ses-
sions plotted as a function of number of stimuli (Fig. 1G).

Neural Responses to Multiple Stimuli. We recorded from areas 8
and 46 of the dorsolateral prefrontal cortex while the animals
were performing the task (Fig. 2A). A total of 305 neurons were
obtained (218 and 87 neurons from the 2 monkeys, respectively).
Of those, 111 neurons (n = 61 for monkey EL, n = 50 for monkey
DA) exhibited significant selectivity across different displays
(one-way ANOVA, P < 0.05) and therefore could be informative
about the displays that needed to be maintained in memory. We
relied on these selective neurons for most analysis; results from
all neurons are also reported in some figures and in the SI Ap-
pendix. The mean firing rate of selective neurons exhibited a
highly dynamic time course, starting to increase before the first
stimulus display even appeared in the screen (time −1 to 0 in Fig.
2B), peaking shortly after the appearance of the stimulus, de-
creasing further after the stimulus disappeared, but increasing
again at the end of the delay period and during the second
stimulus presentation (Fig. 2B and SI Appendix, Fig. S3).
Across the population of selective neurons, mean firing rate in-

creased monotonically as a function of number of stimuli during the

cue presentation period (Fig. 2 B and C). As the location of the
stimuli was randomized in each session, displays with more stimuli
were more likely to activate a neuron, and higher levels of activity
were elicited across the population. The difference in firing rate
between displays with different numbers of stimuli was highly sig-
nificant (repeated-measures ANOVA, F4,440 = 25.3, P = 7.0 × 10−19).
During the delay period (Fig. 2D), a generally higher firing rate was
present for displays with more stimuli, but the effect was less con-
sistent (repeated-measures ANOVA, F4,440 = 3.88, P = 4.12 × 10−3).
It is important to emphasize that this increase in firing rate for

more stimuli appearing at randomized locations applied to the
overall population activity pooled together. When we examined
responses involving a single stimulus appearing in the receptive
field of a neuron, activity decreased as additional stimuli were
added outside the receptive field (SI Appendix, Fig. S4, red trace).
The same was true when two stimuli appeared in the receptive field
and additional stimuli appeared outside (SI Appendix, Fig. S4, dark
blue trace), and so on. This is akin to effects of crowding and lateral
inhibition (32, 33). The firing-rate difference reached statistical
significance for the condition of one stimulus appearing in the re-
ceptive field as increasing numbers of stimuli were added outside
(one-way ANOVA, F4, 443 = 5.38, P = 3.08 × 10−4) and for two
stimuli in the receptive field as increasing numbers of stimuli were
added outside (F3, 317 = 3.41, P = 0.018 for two stimuli; F2,181 =
1.23, P = 0.293 for three stimuli).
In addition to the cue and delay periods, we also examined

neural activity during the presentation of the second display, and
we distinguished between match and nonmatch responses (SI
Appendix, Fig. S5). Across the population of prefrontal neurons,
responses to the second presentation of stimuli were generally
higher when the display constituted a nonmatch rather than a
match, an effect often referred to as repetition suppression (34).
This effect, too, was sensitive to the number of stimuli. The
absolute difference between match and nonmatch responses
decreased as a function of number of stimuli in the display (one-
way ANOVA, F4, 630 = 2.73, P = 0.029).

Firing Rate Changes Associated with Performance Improvement. As
our neurophysiological recordings were obtained over a period

Fig. 1. Working memory capacity task and behavior. (A) Successive frames
illustrate the sequence of events in the match/nonmatch task. The monkeys
were required to remember the locations of all of the squares in the cue
stimulus during a delay period. A second display then appeared, which con-
tained the same number of stimuli. If one of the squares appeared at a new
location, the display constituted a nonmatch; if the displays were identical,
they constituted a match. Two choice targets of green and blue color
appeared at the top and bottom location (randomly alternating in different
trials), and the monkey was required to saccade to a green target if the two
sequential displays matched each other or to a blue target otherwise. One
animal was trained in a variation of this task that required a lever release for a
matching stimulus instead of choice targets. (B) The 24 possible locations
where stimuli could appear in the spatial match/nonmatch task. (C) The per-
centage of correct trials is shown as a function of the number of stimuli in the
display for the two monkeys. (D) Estimated capacity in low- and high-
performance sessions are plotted for the two monkeys. (E) Capacity esti-
mated in successive daily sessions for monkey DA when neurophysiological
recordings were also obtained. Line represents linear regression. (F) Capacity
for monkey EL. (G) Difference in capacity between sessions of high and low
performance, which were determined based on a median split separately for
each monkey, plotted as a function of number of stimuli.

Fig. 2. Firing rate for displays of varying stimuli. (A) Schematic diagram of
the monkey brain highlighting areas where recordings were performed.
Recordings in dorsolateral prefrontal cortex (PFC) sampled areas 8 and 46.
AS, arcuate sulcus; PS, principal sulcus. (B) PSTH represents mean population
activity obtained during presentation of varying stimuli. (C and D) Mean
firing rate is shown, averaged across displays of different numbers of stimuli,
during the cue period (C) and the delay period (D). Data from two monkeys
(n = 111 neurons that were selective to the stimuli during the cue period or
the delay period). Bars represent SEM.
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of time during which performance in the task improved (Fig. 1 E
and F), it was possible to examine the neural changes that ac-
companied increased ability to maintain a greater memory load.
A total of 203 neurons were recorded in low-performance ses-
sions based on a median split depending on performance (as in
Fig. 2G). Of those, 53 (26%) were selective for the stimu-
lus pattern. A total of 102 neurons were recorded in high-
performance sessions. The percentage of neurons selective for
stimulus pattern increased substantially to 57% (58 of 102 neu-
rons). This increase in percentage of selective neurons was sta-
tistically significant (χ2 test, P = 1.39 × 10−7).
We hypothesized that, as performance of the working memory

task improved, neuronal firing rate among neurons selective for
the stimuli would also increase, as previous studies of the re-
lationship between neuronal activity and working memory per-
formance across sessions in simpler working memory tasks have
shown (35). Unexpectedly, we found that prefrontal activation
generally decreased in sessions of higher performance (Fig. 3 A
and B). A two-way ANOVA with number of stimuli and low/high
performance as factors revealed that the main effect of perfor-
mance was significant in the fixation period (F1,545 = 18.44, P =
2.08 × 10−5; Fig. 3C), the cue period (F1,545 = 10.85, P = 1.05 ×
10−3; Fig. 3D), and the delay period (F1,545 = 5.86, P = 0.016; Fig.
3E). For the sample period (Fig. 3F), prefrontal activation was
slightly higher for sessions of higher performance, although the
difference did not reach significance (F1,545 = 3.27, P = 0.071).
Similar results were obtained if we split sessions purely chro-

nologically, rather than based on performance (SI Appendix, Fig.
S6). These analyses were based on correct trials. As the im-
provement in performance involved a decrease in the rate of
trials that end up being incorrect, we also repeated our analysis
by using correct and error trials (SI Appendix, Fig. S7). The re-
sults including the error trials were essentially identical; a sig-
nificant decrease in activity was present for the fixation period
(F1,545 = 18.73, P = 1.79 × 10−5), the cue period (F1,545 = 10.97,
P = 9.90 × 10−4), and the delay period (F1,545 = 6.98, P = 8.48 ×
10−3) as a function of cumulative number of sessions.
The difference in activity between low- and high-performance

sessions was already present from the baseline fixation period,
we were therefore interested to examine the evoked neuronal
firing rate relative to the baseline and to compare this measure
between sessions of low and high performance (Fig. 3 D–F,
dotted lines). Compared with low-performance sessions, no sig-
nificant difference was found in sessions of higher performance
in the cue period (F1,545 = 0.37, P = 0.543), but now a prefrontal
activation increase was found in the delay period (F1,545 = 22.49,
P = 2.71 × 10−6) and the sample period (F1,545 = 49.45, P =
6.12 × 10−12). The same effect was present if we divided sessions
chronologically (SI Appendix, Fig. S6).

The combined effect of a greater proportion of neurons being
activated and a lower level of absolute firing rate of these neu-
rons resulted in a more distributed representation of stimulus
information across the prefrontal population. This effect could
be seen when we performed a receiver operating characteristic
(ROC) analysis comparing responses for the best vs. worst dis-
play among displays of equal numbers of stimuli for all neurons
recorded in the low- and high-performance sessions (Fig. 4 and
SI Appendix, Fig. S8 for the delay period). A greater proportion
of neurons achieved values of area under the ROC curve greater
than 0.75 (a midpoint between chance and perfect performance)
in the high-performance sessions.
We also examined the selectivity for match or nonmatch re-

sponses in low- and high-performance sessions (SI Appendix, Fig.
S5G). Although, across the population, a substantial difference
in firing rate was evident for match and nonmatch responses
during the presentation of the second stimulus, this proved not to
be predictive of low vs. high performance. A two-way ANOVA
with factors number of stimuli and low/high performance group
revealed no main effect of number of stimuli (F4,625 = 1.81, P =
0.126), performance (F1,625 = 0.75, P = 0.386), or interaction
between number of stimuli and performance group (F4,625 =
0.71, P = 0.584). The results remained essentially unchanged
when we repeated this analysis including error and correct trials
(F1,625 = 1.29, P = 0.256 for main effect of performance; SI
Appendix, Fig. S5H). A negligible difference was evident between
high- and low-performance conditions particularly for five-
stimulus displays, for which the greatest improvement in per-
formance was observed. For this reason, and although the
match/nonmatch effect was predictive of behavior across all
sessions (SI Appendix, Fig. S5F), it could not account for the
working memory performance improvement.

Changes in Neuronal Dynamics. Effects of working memory en-
hancement may not be limited only to mean firing rate changes
between conditions. Indeed, the effects of dynamics in the repre-
sentation of stimulus information have recently began to be ap-
preciated (27). We therefore proceeded to examine changes in the
neural activity beyond simple changes in firing rate averaged across
entire epochs. An additional difference between low- and high-
performance sessions was that the envelope of firing rate changes
became much more stereotypical in high-performance sessions
[evidenced by the smoothness of curves in the population peri-
stimulus time histogram (PSTH) of Fig. 3 A and B]. We quantified
that change by performing a demixed principal component analysis
(dPCA), which identifies components of firing rate related to dif-
ferent aspects of the task and stimuli (36). Similar to PCA, this
technique reduces the dimensionality of the neuronal firing rate
matrix, identifying the dimensions that capture the most variance in
the neuronal population firing rate across conditions. Importantly,

Fig. 3. Activity in low- and high-performance
sessions. (A and B) Population PSTH obtained
during presentation of multiple stimuli for (A)
low-performance sessions and (B) high-performance
sessions. Data from two monkeys (n = 111 neurons).
(C) Averaged firing rate of different stimuli number
for low- and high-performance sessions during the
fixation period. (D–F) Raw firing rate and evoked firing
rate after subtracting the baseline fixation rate in the
cue period (D), delay period (E), and sample period
(F). (G) Autocorrelation function plotting correlation
coefficient between firing rate in the first 500 ms of
fixation and every successive 500-ms interval for low-
and high-performance sessions.
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dPCA segregates variance into components that take into account
experimental parameters, which, in our case, included the time of
stimulus presentation, the different displays used, and the cate-
gorical decision between match and nonmatch.
The results of this analysis indicated that “condition-independent”

components (i.e., components unrelated to which stimulus display
appeared on the screen or whether the trial involved a match or a
nonmatch) represented 50% of the total firing rate variance in
sessions of low performance and increased to 64% in sessions of
high performance (pie charts in Fig. 5). In other words, a larger
proportion of variance could be explained by changes in firing rate
that tracked the time course of the trial (e.g., ramping in anticipation
of the initial stimulus, cue transient, decline of activity in the delay
period, sample transient). In contrast, components representing the
stimulus and mixtures of stimulus and other parameters decreased
from 46% in low-performance sessions to 32% in high-performance
sessions (Fig. 5). The analysis also confirmed that representation of
decision variables (essentially whether a stimulus was a match or
nonmatch in the context of our task) changed little between low- and
high-performance sessions: 24% of the total firing rate variance was
accounted for by decision variables and mixtures in the low-
performance, compared with 18% in the high-performance sessions.
As a result of the invariant dynamics of firing in high-

performance sessions, the firing rate of a neuron during the fixa-
tion period was highly predictive of firing during the delay period
in the high-performance sessions and did not simply reflect a

“baseline” level of activity. As a way to quantify the regularity of
firing rate time course, we performed an autocorrelation analysis,
measuring the correlation coefficient between the firing rate of a
neuron at the first 500 ms of the fixation period and subsequent
500-ms intervals (Fig. 3G). Increases and decreases in firing rate
were highly stereotypical, resulting in much greater positive and
negative deviations in the high- vs. low-performance sessions. This
effect could also be seen in the error bars of Fig. 3E (SI Appendix,
Fig. S6H shows sessions split chronologically). The SD of delay
period firing rate minus fixation firing rate was considerably lower
in the high-performance (σ = 3.2 spikes per second) than in the
low-performance sessions (σ = 12.7 spikes per second). Note that
variability of the absolute rate of firing during the delay period was
not appreciably greater in the high- and low-performance sessions
(error bars for solid lines vs. dotted lines in Fig. 3E).
As the differences in firing patterns between low- and high-

performance sessions were already evident in the fixation period,
before the appearance of the first stimulus display, we calculated
the time constant of the autocorrelation of firing rate in the fixation
period (SI Appendix, Fig. S9). This is a measure of the neuron’s
intrinsic time scale that quantifies the stability of firing dynamics
(37). The time constant increased from 97 ms in the low-
performance sessions to 131 ms in the high-performance ones, a
significant difference (permutation test, P = 7.77 × 10−5).

Relationship with Behavior. Not all changes we identified between
low- and high-performance sessions were predictive of behavior
in the task. To identify the critical aspects of neuronal activity
that were associated with performance, we compared activity
patterns in correct and error trials in the high-performance
sessions (SI Appendix, Fig. S10 A and B). Firing rate differences
were generally subtle between correct and error trials. Whereas
a huge decrease in baseline activity was evident in high-
performance compared with low-performance sessions (Fig. 3),
the average rates in correct and error trials were very similar (SI
Appendix, Fig. S10C) and no significant difference was evident
(paired t test, t58 = 0.4563, P = 0.650). Collapsed across all
stimulus conditions, trials when a cue elicited higher activity were
slightly more likely to result in errors (paired t test, t58 = 2.835,
P = 6.33 × 10−3). The same was true for the sample presentations
(SI Appendix, Fig. S10C). The strongest predictor of perfor-
mance was the regularity of the firing rate time course. The
correlation coefficient between firing rate during the fixation
period and every other time point during the trial was greatly
reduced (i.e., flattened) in error trials (SI Appendix, Fig. S10D).

Fig. 4. ROC analysis. (A and B) ROC values for each recorded neuron in low-
performance (A) and high-performance sessions (B) are shown. Dark red
colors indicate high selectivity between different stimulus displays of the
same number. Dashed white lines indicate the ROC value of 0.75. Data from
two monkeys (n = 305 neurons).

Fig. 5. dPCA analysis of low-performance (Left) and
high-performance sessions (Right). The top row
of graphs represents the first two condition-
independent components of dPCA analysis, the sec-
ond row represents the first two stimulus-related
dPCA components, the third row represents the
first decision-related dPCA component, and the
bottom row represents the first stimulus/decision
mixture dPCA component. Data from two monkeys
(n = 199 neurons with sufficient numbers of trials for
this analysis from low-performance sessions; n = 92
for high-performance sessions).
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In other words, trials in which firing rate did not ramp up or
down during the time course of the trial were more likely to
result in errors. The differences between sessions of high vs. low
performance and correct vs. error trials were additive; the most
pronounced dynamics were observed in correct trials of high-
performance sessions and the least in error trials of low-
performance sessions (SI Appendix, Fig. S10 D–F).

Regional Specificity of Efficiency-Related Changes. A decrease in
activity in the prefrontal cortex after training may imply that
information about the location of stimuli is represented in ac-
tivity of more posterior areas, as some current theories of
working memory suggest (30, 38). To test this idea, we examined
the activity of posterior parietal cortex (area 7a and lateral
intraparietal area), a brain region providing direct afferent input
to the prefrontal cortex (39). Activity changes in the posterior
parietal cortex mirrored those in the prefrontal cortex. Baseline
activity in the posterior parietal cortex also decreased in sessions
of high performance vs. lower performance, and invariant tem-
poral dynamics were also predictive of correct and error trials (SI
Appendix, Fig. S11).

Discussion
Our study examined the neural basis of improvement in a task
that required monkeys to maintain multiple stimuli in working
memory. Improvement in performance was not perfectly
monotonical with respect to practice. We focused primarily on
sessions in which the monkeys had accumulated training and
achieved the benefits of it; however, essentially identical con-
clusions were drawn when we split daily sessions based on level
of performance reached or cumulative amount of practice. Three
types of changes were associated with enhanced working memory
performance. First, a greater percentage of neurons exhibited
selectivity for the stimuli. Second, selective neurons were char-
acterized by decreased firing rate. This was evident from the
baseline, fixation interval of the task. However, no decrease in
firing rate relative to baseline was evident for the delay and
sample periods. The combined effect of the increase in the
number of selective neurons and lower average firing rate
resulted in a more distributed representation of information
about the stimuli across the population. The decrease in firing
rate was not exclusive to the prefrontal cortex; posterior parietal
neurons exhibited similar changes. Third, improved performance
was characterized by a more stereotypical time course of neu-
ronal firing, with a greater proportion of variance being
accounted by condition-independent components. This effect
was predictive of performance after training and appeared to be
more pronounced in the prefrontal cortex. Our results suggest
that improved efficiency of working memory representations rely
on a more distributed representation of information across the
network of neurons, silencing of background levels of activity,
and more invariant temporal activation.

Effects of Working Memory Practice. Evidence exists that training
can improve working memory and that performance increases
emerge not only for the trained tasks, but also for tasks that were
not part of the training; that is, there is transfer from one task to
another (5, 6, 40). Some of these findings have been challenged,
and the benefits of working memory training for healthy adults
remain unclear (9). Nonetheless, recent meta-analyses have es-
timated at least a modest benefit of working memory improve-
ment (7, 8). Furthermore, there is strong evidence that working
memory training is beneficial for clinical populations, including
children with attention deficit/hyperactivity disorder, stroke pa-
tients, and those with schizophrenia (5, 13, 41).
Training may improve efficiency with respect to management

of working memory content and capacity for number of items
maintained in memory (20). Strategies such as chunking allow
subjects to group multiple stimuli in fewer items that can be
more efficiently stored and maintained in memory (21). In the
case of multistimulus visual displays, subjects may group

identical items rather than attempt to recall all of them in-
dependently (42, 43). Factors such as grouping, Gestalt princi-
ples of proximity and connectedness, and the specific
arrangement of stimuli are known to confer an advantage for
groups of stimuli maintained in memory over stimuli distributed
between fields (44, 45). Even perception of visual scenes that are
physically present relies on extraction of summary statistics that
simplify the informational content of complex scenes (46). In the
context of the task we trained monkeys to perform, efficiencies
may be achieved by mentally transforming the display of multiple
squares into a mental “polygon” rather than maintaining in
memory every item separately (47). Our results demonstrate that
such a more efficient representation of information in memory
has tangible effects on neural activity. Firing rate during the trial
decreased to a large extent. Changes in activity were not limited
to the stimulus encoding during the stimulus presentation pe-
riod, but preceded the stimulus and followed it, in the period of
working memory maintenance. Human imaging studies have
produced contradicting results on the effects of working memory
training (20), with some studies suggesting increases (10–15) and
others decreases in activity (16–19). Our results provide a more
detailed picture at the neural population level and offer insights
in these results. We document that more prefrontal neurons
were responsive after practice, with a lower overall level of
baseline activity in sessions during which performance improved.

Neural Basis of Working Memory and Its Capacity Limitation. In ad-
dition to efficiency, working memory capacity can be improved
with training. Working memory is thought to be mediated by
persistent activity generated during the delay interval of working
memory tasks, but this issue, too, has been a matter of debate
(28–30, 38). A well-known effect not dependent on persistent
activity is differential responses to stimuli that match or do not
match a previously presented one (34). Those match/nonmatch-
differentiating responses have been shown to be predictive of
behavior in previous studies (48), and we documented the same
effect here (SI Appendix, Fig. S5). However, we saw no system-
atic changes in the ability of neurons to discriminate between
match and nonmatch stimuli based on level of performance (SI
Appendix, Fig. S5 G and H), and no greater percentage of vari-
ance across the population could be attributed to decision vari-
ables in high-performance sessions (Fig. 5). Therefore, working
memory capacity improvement could not be mediated by such
activity-silent mechanisms.
On the contrary, persistent activity generated in the prefrontal

cortex represents information about stimuli maintained in
memory, is predictive of overall performance in the task, and can
account for the behavioral output of recall (23). The persistent-
activity model of spatial working memory posits that appearance
of a stimulus generates activity that is maintained during the
delay period, but may drift from the original location over time
(24). The location recalled by the subject is precisely determined
by the drift of the delay period activity (SI Appendix, Fig. S1).
The activity for each of multiple stored items held in memory can
also be thought of as a bump attractor (26). As more items are
added to memory, the total population activity increases until the
capacity of the system is exceeded, the persistent activity repre-
senting some stimuli decays, and the respective stimuli cannot be
recalled at the end of the delay period (26). Previous neuro-
physiological studies examining activity in working memory tasks
involving multiple stimuli have shown that activity generally
decreases as additional stimuli are added in the visual field as a
result of factors such as lateral inhibition, and information about
stimuli represented in delay-period activity quickly saturates (31,
49, 50). Our present results are consistent with this interpreta-
tion. Here we show that stimulus-selective persistent activity is
generated in a multistimulus working memory task. After prac-
tice that leads to performance improvement, the absolute level
of delay-period activity decreases relative to the earlier stage;
however, persistent activity remains elevated relative to the
baseline. This is beneficial for the stability of a network that
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requires maintenance of multiple peaks of activity in different
neuronal populations, as predicted by computational studies
showing that reduced external drive that results in lower baseline
and stimulus-driven firing rate can improve the robustness of the
network (26). Such task-specific transformation of neuronal ac-
tivity can also account for psychophysical advantages such re-
lated to grouping and chunking of multiple stimuli (44, 45).
Somewhat analogous decreases in activity have also been
reported in the context of dual task performance, requiring the
maintenance in working memory not simply of multiple stimuli,
but of multiple tasks (51).
A final factor affected by training was the temporal dynamics

of neuronal firing. It has been recently recognized that prefrontal
neurons exhibit strong temporal dynamics, which, however, co-
exist with stable population coding of the remembered stimulus,
as trajectories of neuronal population firing remain separated in
parameter subspace (27). Our results suggest that reducing the

variability of neuronal dynamics enhances the stability of stim-
ulus representation in this coding scheme.

Experimental Procedures
Two male rhesus monkeys (Macaca mulatta) weighing 7–13 kg were used in
this study. The monkeys were previously trained to perform working
memory tasks with a single stimulus (35, 52). All experimental procedures
followed guidelines by the US Public Health Service Policy on Humane Care
and Use of Laboratory Animals and the National Research Council’s Guide
for the Care and Use of Laboratory Animals and were reviewed and ap-
proved by the Wake Forest University Institutional Animal Care and Use
Committee. A detailed description of the study methodology is provided in
SI Appendix, Experimental Procedures.
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