
A minimal-length approach unifies rigidity in
underconstrained materials
Matthias Merkela,b,1, Karsten Baumgartenc, Brian P. Tighec, and M. Lisa Manninga

aDepartment of Physics, Syracuse University, Syracuse, NY 13244; bCentre de Physique Théorique (CPT), Turing Center for Living Systems, Aix Marseille Univ,
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We present an approach to understand geometric-incompat-
ibility–induced rigidity in underconstrained materials, including
subisostatic 2D spring networks and 2D and 3D vertex models for
dense biological tissues. We show that in all these models a geo-
metric criterion, represented by a minimal length ¯̀

min, determines
the onset of prestresses and rigidity. This allows us to predict not
only the correct scalings for the elastic material properties, but
also the precise magnitudes for bulk modulus and shear modulus
discontinuities at the rigidity transition as well as the magnitude
of the Poynting effect. We also predict from first principles that
the ratio of the excess shear modulus to the shear stress should be
inversely proportional to the critical strain with a prefactor of 3.
We propose that this factor of 3 is a general hallmark of geometri-
cally induced rigidity in underconstrained materials and could be
used to distinguish this effect from nonlinear mechanics of single
components in experiments. Finally, our results may lay impor-
tant foundations for ways to estimate ¯̀

min from measurements
of local geometric structure and thus help develop methods to
characterize large-scale mechanical properties from imaging data.

biopolymer networks | vertex model | constraint counting | rigidity |
strain stiffening

Amaterial’s rigidity is intimately related to its geometry. In
materials that crystallize, rigidity occurs when the con-

stituent parts organize on a lattice. In contrast, granular systems
can rigidify while remaining disordered, and arguments devel-
oped by Maxwell (1) accurately predict that the material rigidifies
at an isostatic point where the number of constraints on particle
motion equals the number of degrees of freedom.

Further work by Calladine (2) highlighted the important role
of states of self-stress, demonstrating that an index theorem
relates rigidity to the total number of constraints, degrees of
freedom, and self-stresses. Recent work has extended these
ideas in both ordered and disordered systems to design mate-
rials with geometries that permit topologically protected floppy
modes (3–5).

A third way to create rigidity is through geometric incom-
patibility, which we illustrate by a guitar string. Before it is
tightened, the floppy string is underconstrained, with fewer con-
straints than degrees of freedom, and there are many ways to
deform the string at no energetic cost. As the distance between
the two ends is increased above the rest length of the string, this
geometric incompatibility together with the accompanying cre-
ation of a self-stress rigidifies the system (3, 6). Any deformation
will be associated with an energetic cost, leading to finite vibra-
tional frequencies. This same mechanism has been proposed to
be important for the elasticity of rubbers and gels (6) as well as
biological cells (7).

In particular, it has been shown to rigidify underconstrained,
disordered fiber networks under applied strain, with applications
in biopolymer networks (8–22). Just as with the guitar string,
rigidity arises when the size and shape of the box introduce
external constraints that are incompatible with the local seg-
ments of the network attaining their desired rest lengths. For
example, when applying external shear, fiber networks strongly

rigidify at some critical shear strain γ∗ (9, 14, 16, 18–20, 22, 23),
although it remains controversial whether the onset of rigidity is
continuous (14, 15, 20, 24) or discontinuous (18) in the limit with-
out fiber-bending rigidity. Similarly, fiber networks can also be
rigidified by isotropic dilation (10), and the interaction between
isotropic and shear elasticity in these systems is characterized by
an anomalous negative Poynting effect (19, 21, 25–27), i.e., the
development of a tensile normal stress in response to externally
applied simple shear. However, it has as yet remained unclear
how all of these observations and their critical scaling behavior
(9, 16, 18, 20, 28) are quantitatively connected to the underlying
geometric structure of the network. Moreover, while previous
works have remarked that several features of stiffening in fiber
networks are surprisingly independent of model details (13),
it has remained elusive whether there are generic underlying
mechanisms.

Rigidity transitions have also been identified in dense biologi-
cal tissues (29–33). In particular, vertex or Voronoi models that
describe tissues as a tessellation of space into polygons or poly-
hedra exhibit rigidity transitions (34–49), which share similarities
with both particle-based models, where the transition is driven
by changes to connectivity (48), and fiber (or spring) networks,
which can be rigidified by strain. Therefore, an open ques-
tion is how both connectivity and strain can interact to rigidify
materials (22).

Very recently, some of us showed that the 3D Voronoi model
exhibits a rigidity transition driven by geometric incompatibility
(46), similar to fiber networks. This has also been demonstrated

Significance

What do a guitar string and a balloon have in common?
They are both floppy unless rigidified by geometric incom-
patibility. The same kind of rigidity transition in undercon-
strained materials has more recently been discussed in the
context of disordered biopolymer networks and models for
biological tissues. Here, we propose a general approach to
quantitatively describe such transitions. Based on a minimal
length function, which scales linearly with intrinsic fluctu-
ations in the system and quadratically with shear strain,
we make concrete predictions about the elastic response of
these materials, which we verify numerically and which are
consistent with previous experiments. Finally, our approach
may help develop methods that connect macroscopic elas-
tic properties of disordered materials to their microscopic
structure.

Author contributions: M.M., B.P.T., and M.L.M. designed research; M.M. performed
research; M.M. and K.B. analyzed data; and M.M., B.P.T., and M.L.M. wrote the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence should be addressed. Email: mmerkel@syr.edu.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1815436116/-/DCSupplemental.y

Published online March 20, 2019.

6560–6568 | PNAS | April 2, 2019 | vol. 116 | no. 14 www.pnas.org/cgi/doi/10.1073/pnas.1815436116

https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:mmerkel@syr.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815436116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815436116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815436116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1815436116&domain=pdf


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

for the 2D vertex model, using a continuum elasticity approach
based on a local reference metric (42). For the case of the 3D
Voronoi model, we found that there was a special relationship
between properties of the network geometry and the location of
the rigidity transition, largely independent of the realization of
the disorder (46).

Here, we show that such a relationship between rigidity and
geometric structure is generic to a broad class of undercon-
strained materials, including spring networks and vertex/Voronoi
models in different dimensions (Table 1 and Fig. 1). We first
demonstrate that all these models display the same generic
behavior in response to isotropic dilation. Understanding key
geometric structural properties of these systems allows us to
predict the precise values of a discontinuity in the bulk mod-
ulus at the transition point. We then extend our approach
to include shear deformations, which allows us to analytically
predict a discontinuity in the shear modulus at the onset of
rigidity. Moreover, we can make precise quantitative predic-
tions of the values of critical shear strain γ∗, scaling behavior
of the shear modulus beyond γ∗, Poynting effect, and sev-
eral related critical exponents. In each case, we numerically
demonstrate the validity of our approach for the case of spring
networks.

We also compare our predictions to previously published
experimental data and highlight additional predictions, includ-
ing a prefactor of 3 that we expect to find generically in a
scaling collapse of the shear modulus, shear stress, and critical
strain.

We achieve these results by connecting macroscopic mechani-
cal network properties to underlying geometric properties. In the
case of the guitar string, the string first becomes taut when the
distance between the two ends attains a critical value `∗0 equal
to the intrinsic length of the string, so that the boundary con-
ditions for the string are geometrically incompatible with the
intrinsic geometry of the string. As the string is stretched, one
can predict its pitch (or equivalently the effective elastic modu-
lus) by quantifying the actual length of the string ` relative to its
intrinsic length. While this is straightforward in the 1D geometry
of a string, we are interested in understanding whether a simi-
lar geometric principle, based on the average length of a spring
¯̀, governs the behavior near the onset of rigidity in disordered
networks in 2D and 3D.

Here, we formulate a geometric compatibility criterion in
terms of the constrained minimization of the average spring
length ¯̀

min in a disordered network. Just as for the guitar string,
this length ¯̀

min attains a critical value `∗0 at the onset of rigid-
ity. As the system is strained beyond the rigidity transition,
we demonstrate analytically and numerically that the geometry

constrains ¯̀
min to vary in a simple way with two observables: fluc-

tuations of spring lengths σ` and shear strain γ. Because ¯̀
min is

minimized over the whole network, it is a collective geometric
property of the network.

Just as with the guitar string, the description of the geome-
try given by ¯̀

min then allows us to calculate many features of
the elastic response, including the bulk and shear moduli. This
in turn provides a general basis to analytically understand the
strain-stiffening responses of underconstrained materials to both
isotropic and anisotropic deformation within a common frame-
work. Even though ¯̀

min describes collective geometric effects,
our work may also provide an important foundation to under-
stand macroscopic mechanical properties from local geometric
structure.

Models
Here we focus on four classes of models, which include 2D
subisostatic random spring networks without bending rigidity (9,
50–54) and three models for biological tissues: the 2D vertex
model (34, 37), the 2D Voronoi model (38, 44), and the 3D
Voronoi model (46) (Table 1).

Two-dimensional spring networks consist of nodes that are
connected by in total N springs, where the average number of
springs connected to a node is the coordination number z . We
create networks with a defined value for z by translating jammed
configurations of bidisperse disks into spring networks and then
randomly pruning springs until the desired coordination number
z is reached (9, 27). We use harmonic springs, such that the total
mechanical energy of the system is

es2D =
∑
i

(li − l0i)
2. [1]

Here, the sum is over all springs i with length li and rest length
l0i , which are generally different for different springs. For conve-
nience, we reexpress Eq. 1 in terms of a mean spring rest length
`0 = [(

∑
i l

2
0i)/N ]1/2, which we use as a control parameter acting

as a common scaling factor for all spring rest lengths. This allows
us to rewrite the energy as

es2D =
∑
i

wi(`i − `0)2 [2]

with rescaled spring lengths `i = `0li/l0i and weights wi =
(l0i/`0)2, such that

∑
iwi =N (for details, see SI Appendix, sec-

tion IA). In simple constraint-counting arguments, each spring
is treated as one constraint, and here we are interested in

Table 1. Models discussed in this article

“Area”
Dimension No. of

Transition
Coefficients

Model rigidity d D dof Constraints point `0* a` aa b

2D spring network — 1 2 4N/z N (1.506± 0.004)− (1.33± 0.06)/∆z1/2 — (0.7± 0.1)/∆z
(0.378± 0.009)∆z

2D vertex model kA = 0 1 2 4N N 3.87± 0.01 0.30± 0.01 — 0.48± 0.02
2D vertex model kA > 0 1 2 4N 2N 3.92± 0.01 1.7± 0.4 3.3± 0.7 0.6± 0.2
2D Voronoi model kA = 0 1 2 2N N 3.82± 0.01 0.64± 0.03 — 0.68± 0.03
3D Voronoi model kV = 0 2 3 3N N 5.375± 0.003 0.25± 0.01 — 0.61± 0.02
3D Voronoi model kV > 0 2 3 3N 2N 5.406± 0.004 2.0± 0.1 6.6± 0.4 1.1± 0.1

For the spring networks, the values indicated apply to a system size of 2N/z = 1,024 nodes, and for all cellular models values apply to a system size of
N = 512 cells. For each model, we indicate the respective dimension d of the “length springs” and the spatial dimension D, as well as the numbers of degrees
of freedom (dof) as well as constraints (i.e., length + area springs). The provided values for transition point `0* and geometric coefficients a`, aa, and b are
average values extracted from simulations exploring the rigid regime near the transition point. For the cellular models, they are indicated together with
their SDs across different random realizations. For the 2D spring networks, the indicated numbers and their uncertainty correspond to the respective fit
of the average values with fixed exponent of ∆z. Differences from earlier publications (37, 44, 46) result from differences in sampling due to a different
energy minimization protocol used here (SI Appendix, section IV).
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Fig. 1. Comparison of the rigidity transition across the different models. Models studied are (A and B) 2D spring networks (coordination numbers z =

3.2, 3.4, 3.6, 3.8, 3.99), (C and D) the 2D Voronoi model (with kA = 0), and the 2D vertex model (with kA = 0 in C and kA = 0, 0.1, 1, 10 in D), and (E and F) the
3D Voronoi model (with kV = 0 in E and kV = 0, 1, 10, 100 in F). In all models, the transition is discontinuous in the bulk modulus (A, C, and E) and continuous
in the shear modulus (B, D, and F). (B, Inset) For 2D spring networks, the value of the transition point `0* (quantified using the bisection protocol detailed
in SI Appendix, section IVB) increases with the coordination number z. This relation is approximately linear in the vicinity of the isostatic point zc ≡ 4. Blue
circles are simulation data and the red line shows a linear fit with `0* = (1.506± 0.004)− (0.378± 0.009)∆z with ∆z = zc − z. Close to the transition point
in C and E, data points are scattered between zero and a maximal value. This scattering is due to insufficient energy minimization in these cases. In B, D,
and F, shaded regions indicate the SEM.

subisostatic (i.e., underconstrained, also called hypostatic) net-
works with z < zc ≡ 4.

The tissue models describe biological tissues as polygonal (2D)
or polyhedral (3D) tilings of space. For the Voronoi models,
these tilings are Voronoi tessellations and the degrees of free-
dom are the Voronoi centers of the cells. In contrast, in the 2D
vertex model, the degrees of freedom are the positions of the
vertices (i.e., the polygon corners). Forces between the cells are
described by an effective energy functional. For the 2D models,
the (dimensionless) energy functional is

ec2D =
∑
i

[
(pi − p0)2 + kA(ai − 1)2

]
. [3]

Here, the sum is over all N cells i with perimeter pi and area ai .
There are two parameters in this model: the preferred perimeter
p0 and the relative area elasticity kA. For the 3D Voronoi model,
the energy is defined analogously:

ec3D =
∑
i

[
(si − s0)2 + kV (vi − 1)2

]
. [4]

The sum is again over all N cells i of the configuration, with
cell surface area si and volume vi , and the two parameters of
the model are preferred surface area s0 and relative volume
elasticity kV .

All four of these models are underconstrained based on simple
constraint counting, as is apparent from the respective numbers
of degrees of freedom and constraints listed in Table 1. We stress
that Calladine’s constraint-counting derivation (2, 3) also applies
to many-particle, non–central-force interactions.

Throughout this article, we often discuss all four models at
once. Thus, when generally talking about “elements,” we refer
to springs in the spring networks and cells in the tissue models.
Similarly, when talking about “lengths `” (of dimension d), we
refer to spring lengths ` in the spring networks, cell perimeters
p in the 2D tissue models, and cell surface areas s in the 3D tis-

sue model (Table 1). Finally, when talking about “areas a” (of
dimension D), we refer to cell areas a in the 2D tissue models as
well as cell volumes v in the 3D tissue model.

Here we study the behavior of local energy minima of all four
models under periodic boundary conditions with fixed dimen-
sionless system size N ; i.e., the model is nondimensionalized
such that the average area per element is one (41, 44, 46). Under
these conditions, a rigidity transition exists in all models even
without area rigidity. In particular, for the 2D vertex and 3D
Voronoi models, we discuss the special case kA = 0 separately
(Table 1). Moreover, the athermal 2D Voronoi model does not
exhibit a rigidity transition for kA> 0 (44), and thus we discuss
only the case kA = 0 for this model.

Results
Rigidity Is Created by Geometric Incompatibility Corresponding to a
Minimal-Length Criterion. We start by comparing the rigidity tran-
sitions in the four different models using Fig. 1, where we plot
both the differential bulk modulus B and the differential shear
modulus G vs. the preferred length `0. In this first part, we use for
all models the preferred length `0 as a control parameter. Note
that because `0 is nondimensionalized using the number den-
sity of elements, changing `0 corresponds to applying isotropic
strain (i.e., a change in volume with no accompanying change
in shape). Later, we additionally include the shear strain γ as a
control parameter.

In all models, we find a rigid regime (B ,G > 0) for pre-
ferred lengths below the transition point `∗0 and a floppy regime
(B =G = 0) above it, with the transition being discontinuous in
the bulk modulus and continuous in the shear modulus. For the
spring networks, we find that the transition point `∗0 depends
on the coordination number, where close to the isostatic point
zc ≡ 4 it scales linearly with the distance ∆z = zc − z to iso-
staticity (Fig. 1B, Inset), as previously similarly discussed in ref.
10. Something similar has also been reported for a 2D vertex
model (48).
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For the cellular models, we find that the transition point for
the case without area rigidity, kA = 0, is generally smaller than in
the case with area rigidity, kA> 0 (Fig. 1 D and F and Table 1).
Moreover, our 2D vertex model transition point for kA> 0 is
somewhat higher than reported before (37). Here we used a dif-
ferent vertex model implementation than in ref. 37 (SI Appendix,
section IVC), and the location of the transition in vertex models
depends somewhat on the energy minimization protocol (44), a
feature that is shared with other models for disordered materials
(55). Also, in Fig. 1 D and F the averaged shear modulus always
becomes zero at a higher value than the respective average
transition point listed in Table 1. This is due to the distribu-
tion of transition points having a finite width (see also finite
width of `0 regions with both zero and nonzero bulk moduli in
Fig. 1 C and E).

We find that in all these models, the mechanism creating the
transition is the same: Rigidity is created by geometric incom-
patibility, which is indicated by the existence of prestresses. We
have already shown this for the 3D Voronoi model (46) and the
2D Voronoi model with kA = 0 (44), while others have shown
this for the ordered 2D vertex model (42). Furthermore, our
data confirm that this is the case for the 2D spring networks and
the kA = 0 cases of both (disordered) 2D vertex and 3D Voronoi
models (SI Appendix, section IIA).

We find something similar for the disordered 2D vertex model
for kA> 0. Although there are special cases where prestresses
appear also in the floppy regime (SI Appendix, section IIA),
to simplify our discussion here, we consider only configurations
without such typically localized prestresses.

We observe that in all of these models, a geometric criterion,
which we describe in terms of a minimal average length ¯̀

min,
determines the onset of prestresses. For example, we can exactly
transform the spring network energy Eq. 2 into (SI Appendix,
section IA)

es2D =N
[
(¯̀− `0)2 +σ2

`

]
. [5]

Here, ¯̀= (
∑

i wi`i)/N and σ2
` = (

∑
i wi(`i − ¯̀)2)/N are

weighted average and SD of the rescaled spring lengths. This
means that ¯̀ and σ` are average and SD of the actual spring
lengths li , each measured relative to its actual rest length
l0i . In particular, the SD σ` vanishes whenever all springs i
have the same value of the fraction li/l0i , even though the
absolute lengths li may differ among the springs. Moreover,
importantly, the mean rest length `0 enters the definitions
of ¯̀ and σ`, but only via the ratios l0i/`0, which characterize
the relative spring length distribution. Hence, the “rescaled”
geometric information contained in both ¯̀ and σ` is a combi-
nation of the actual spring lengths and the relative rest length
distribution, but is independent of the absolute mean rest
length `0.

According to Eq. 5, energy minimization corresponds to a
simultaneous minimization with respect to |¯̀− `0| and σ`: In the
floppy regime we find numerically that both quantities can van-
ish simultaneously and thus all lengths attain their rest lengths,
`i = `0 (SI Appendix, section IIA). In contrast, in the rigid regime,
|¯̀− `0| and σ` cannot both simultaneously vanish, creating ten-
sions 2(`i − `0), which are sufficient to rigidify the network. The
transition point `∗0 corresponds to the smallest possible preferred
spring length `0 for which the system can still be floppy. In other
words, it corresponds to a local minimum in the average rescaled
spring length `∗0 = min ¯̀ of the network under the constraint
of no fluctuations of the rescaled lengths, σ` = 0. Because this
minimization is with respect to all node positions and includes
all springs, it defines the distribution of transition points `∗0
as a collective property of the rescaled geometry of 2D spring
networks.

For the cellular models with kA> 0, we analogously find that
the transition point is given by the minimal cell perimeter ¯̀(sur-
face in 3D) under the constraint of no cell perimeter and area
fluctuations σ` =σa = 0, which now additionally appear in the
energy Eq. 5 (46). Again, this is a geometric criterion, which
also explains why the transition point `∗0 is independent of kA
for kA> 0 (Fig. 1 D and F). Moreover, we can understand why
the transition point is smaller for kA = 0: In this case the energy
does not constrain the area fluctuations, and the transition point
is given by the minimal perimeter under the weaker constraint of
having no perimeter fluctuations. Thus, the transition point will
generally be smaller for the kA = 0 case than for the kA> 0 case.

The Minimal Length Scales Linearly with Fluctuations. We next
study the scaling of the minimal length in the rigid vicinity
of the transition. In the rigid regime, the system must com-
promise between minimizing |¯̀− `0| and σ` (and if applicable
σa in cellular models). To understand how, we must account
for geometric constraints, which we express in terms of how
the minimal length ¯̀

min = min ¯̀ depends on the fluctuations
¯̀
min = ¯̀

min(σ`,σa). In the rigid regime the observed average
length is always greater than the preferred length, ¯̀>`0, and so
the average length instead takes on its locally minimal possible
value ¯̀= ¯̀

min(σ`,σa). Therefore, knowing the functional form
of ¯̀

min(σ`,σa) will allow us to predict how the system energy e
(and thus also the bulk and shear moduli) depends on the control
parameter `0 (SI Appendix, sections IC–IE).

In SI Appendix, section IB, we show analytically that in the
absence of prestresses in the floppy regime, the minimal length
¯̀
min depends linearly on the standard deviations σ` and σa . This

is directly related to the state of self-stress that is created at the
onset of geometric incompatibility at `0 = `∗0 ≡ ¯̀

min(0, 0) (3).
To check this prediction, we numerically simulate these mod-

els and observe indeed a linear scaling of the ¯̀
min(σ`) functions

close to the transition point (Fig. 2). In particular, for 2D spring
networks and the kA = 0 cases of the cellular models, we find

¯̀
min(σ`) = `∗0 − a`σ` [6]

with scaling coefficient a`. We list its value in Table 1 for the
different models. Interestingly, we find that the coefficient a` is
largely independent of the random realization of the system, in
particular for cellular models with kA = 0.

For 2D spring networks, a` depends on the coordination
number z and approximately scales as a`∼∆z−1/2 (Fig. 2A,
Inset). This scaling behavior of a` can be rationalized using a
scaling argument based on the density of states (SI Appendix,
section IF).

For cellular models where area plays a role, Eq. 6 is extended
(Fig. 2 B and C):

¯̀
min(σ`,σa) = `∗0 − a`σ`− aaσa . [7]

Again the coefficients a` and aa are listed in Table 1 for 2D
vertex and 3D Voronoi models. The coefficients a` differ signif-
icantly between the kA> 0 and kA = 0 cases of the same model,
which makes sense because Eqs. 6 and 7 are linear expansions of
the function ¯̀

min(σ`,σa) at different points (σ`,σa).

Prediction of the Bulk Modulus Discontinuity. Knowing the behav-
ior of the minimal-length function ¯̀

min(σ`,σa) in the rigid phase
near the transition point provides us with an explicit expression
for the energy in terms of the control parameter `0 (SI Appendix,
section IC),

e(`0) =
N

Z
(`∗0 − `0)2 [8]

with Z = 1 + a2
` + a2

a/kA, where for models without an area term
the a2

a/kA term is dropped. Because changes in `0 correspond to
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A B C

Fig. 2. Verification of the geometric linearity near the transition point. The difference between average length and transition point, `0*− ¯̀, scales linearly
with the SDs of lengths σ` and areas σa. Shown here for (A) 2D spring networks, (B) 2D Voronoi and vertex models, and (C) the 3D Voronoi model.
The values of z, kA and kV are respectively as in Fig. 1. (A, Inset) For the 2D spring networks, the coefficient a` in Eq. 6 scales with the distance to
isostaticity approximately as a`∼∆z−1/2. In A–C, deviations from linearity exist for large `0*− ¯̀ because Eqs. 6 and 7 describe the behavior close to the
transition point, and deviations for small `0*− ¯̀ are due the finite cutoff on the shear modulus used to obtain the transition point value `0* (SI Appendix,
section IV).

changes in system size, we can predict the exact value of the bulk
modulus discontinuity, ∆B , at the transition in all models (Fig. 1
A–C and SI Appendix, section IE):

∆B =
2d2(`∗0)2

D2Z
. [9]

This equation is for a model withd -dimensional “lengths” embed-
ded in a D-dimensional space (Table 1). For the special case of a
hexagonal lattice in the 2D vertex model, this result is consistent
with ref. 56. More generally, for disordered networks the geomet-
ric coefficients a` and aa appear in the denominator, because they
describe nonaffinities that occur in response to global isotropic
deformations (SI Appendix, section IE). A comparison of the
predicted ∆B to simulation results is shown in Fig. 3.

Nonlinear Elastic Behavior Under Shear. As shown before (8–10,
12, 14–16, 18–21), underconstrained systems can also be rigid-
ified by applying finite shear strain. We now incorporate shear
strain γ into our formalism and test our predictions on the 2D
spring networks. However, we expect our findings to equally
apply to the cell-based models (SI Appendix, sections IC and ID).
We also numerically verified that our analytical predictions also
apply to 2D fiber networks without bending rigidity (SI Appendix,
section IIC) (57).

To extend our approach, we take into account that the
minimal-length function ¯̀

min(σ`) can in principle also depend
on the shear strain γ. We thus Taylor expand in γ,

¯̀
min(σ`, γ) = `∗0 − a`σ` + bγ2, [10]

where the linear term in γ is dropped due to symmetry when
expanding about an isotropic state (in practice, for our finite-
sized systems we drop the linear term in γ by defining the γ= 0
point using shear stabilization; SI Appendix, sections ID and
IV). While at the moment we have no formal proof that ¯̀

min

is analytic, and the ultimate justification for Eq. 10 comes from
a numerical check (next paragraph), we hypothesize that for
most systems ¯̀

min will be analytic in γ, up to randomly scattered
points γ where singularities in the form of plastic rearrangements
occur.

For a fixed value of γ, the interface between the floppy and
the rigid regime is again given by ¯̀

min(σ` = 0, γ), and the cor-
responding phase diagram in terms of both control parameters
γ and `0 is illustrated in Fig. 4A. Indeed, we also numerically
find a quadratic scaling for the transition line, `0− `∗0 = b(γ∗)2,
extending up to shear strains of γ∼ 0.1 (Fig. 4C and SI Appendix,
section IIB). We find that for spring networks the coefficient
b depends on ∆z approximately as b∼∆z−1 (Fig. 4C, Inset),
which can be understood from properties of the density of states
(SI Appendix, section IF). To optimize precision, values of b have
been extracted from the relation G = 4b(¯̀− `0) in this plot (see
below and compare with Fig. 4F).

Knowing the functional form of ¯̀
min(σ`, γ) close to the tran-

sition line allows us to explicitly express the energy in the
rigid regime in terms of both control parameters (SI Appendix,
section IC):

A B C

Fig. 3. (A–C) Predicted and observed behavior of the bulk modulus discontinuity ∆B for (A) 2D spring networks for different values of the coordination
number z, (B) the 2D vertex model for different values of the area rigidity kA, and (C) the 3D Voronoi model for different values of the volume rigidity kV .
Blue circles indicate simulations and the red curves indicate predictions without fit parameters based on Eq. 9. In A, the black dashed curve is computed
using values for transition point `0* and geometric scaling coefficient a` directly measured for each value of z, while for the red line we used the scaling
relations from Table 1.
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Fig. 4. Nonlinear elastic behavior of subisostatic spring networks under shear. (A) Schematic phase diagram illustrating the parabolic boundary between the
rigid (gray shading) and the floppy (no shading) regime, depending on preferred spring length `0 and shear strain γ. (B) Schematic showing the dependence
of the shear modulus G on the shear strain γ for different values of `0 (compare with A). Note that for `0 >`0* (red curve), Eq. 12 predicts a discontinuity
∆G* in the shear modulus at the onset of rigidity. (C) We numerically find a quadratic dependence between `0− `0* and the critical shear γ* where the
network rigidifies for given `0 >`0*. This is consistent with our Taylor expansion in Eq. 10, and the quadratic regime extends to shear strains of up to
γ∼ 0.1. Deviations for very small `0− `0* are attributed to the finite shear modulus cutoff of 10−10 used to probe the phase boundary (SI Appendix, section
IVB). (C, Inset) The prefactor b associated with the quadratic relation in C scales approximately as b∼ 1/∆z. (D) Scaling of the shear modulus beyond the
shear modulus discontinuity, (G−∆G*)/∆G* over (γ− γ*)/γ* with `0− `0* = 10−4. The dashed black line indicates the prediction from Eq. 12 without fit
parameters. (D, Inset) Scaling of the shear modulus discontinuity ∆G* with `0− `0*. (E and F) Scaling of the shear modulus with γ and `0*− `0, respectively.
In C–F the coordination number is z = 3.2.

e(`0, γ) =
N

1 + a2
`

(
`∗0 − `0 + bγ2)2. [11]

This allows us to explicitly compute the shear modulus G =
(d2e/dγ2)/N . We obtain for both the floppy and the rigid
regime

G(`0, γ) = Θ
(
`∗0 − `0 + bγ2) 4b

1 + a2
`

(
`∗0 − `0 + 3bγ2), [12]

where Θ is the Heaviside function. We now discuss several
consequences of this expression for the shear modulus (Fig. 4B).

When shearing the system starting in the floppy regime
(i.e., for `0>`∗0), Eq. 12 predicts a discontinuous change in
the shear modulus of ∆G∗= 8b(`0− `∗0)/(1 + a2

` ) at the onset
of rigidity at γ∗= [(`0− `∗0)/b]1/2. We verify the linear scal-
ing ∆G∗∼ (`0− `∗0) in Fig. 4D, Inset and the value of the
scaling coefficient in SI Appendix, section IIB. Moreover, Eq.
12 also correctly predicts the behavior beyond γ∗, as shown
in Fig. 4D.

Eq. 12 also correctly predicts the shear modulus behavior for
`0≤ `∗0. For `0 = `∗0, the shear modulus scales quadratically with
γ (Fig. 4E), while for γ= 0, the shear modulus scales linearly with
(`∗0 − `0)> 0 (Fig. 4F; see SI Appendix, section ID for the cellu-
lar models), as reported before for many of the cellular models
(37, 46, 56). In both cases, we verified that the respective coeffi-
cients coincide with their expected values based on the values of
a` and b.

In particular for γ= 0, because (`∗0 − `0) = (1 + a2
` )(¯̀− `0),

we obtain the simple relation G = 4b(¯̀− `0), which explains the
collapse in the shear modulus scaling for different kV in the 3D
Voronoi model that some of us reported earlier (46).

We also obtain explicit expressions for both shear stress σ̃=
(de/dγ)/N and isotropic stress, i.e., negative pressure −p (SI
Appendix, sections ID and IE). For the latter, we find a negative
Poynting effect with coefficient χ≡ p/γ2 =−2db`∗0/D(1 + a2

` )
at `0 = `∗0. Moreover, we find the following relations for the shear
modulus:

G = ∆G∗+
3

γ
σ̃ G = ∆G∗− 6Db

d`∗0
p. [13]

Indeed, we observe a collapse of our simulation data for the 2D
spring networks in both cases (Fig. 5 and Fig. 5, Inset), where we
use that close to the onset of rigidity, γ' γ∗.

Discussion
In this article, we propose a unifying perspective on undercon-
strained materials that are stiffened by geometric incompatibil-
ity. This is relevant for a broad class of materials (6) and has
more recently been discussed in the context of biopolymer gels
(8, 12–14, 21) and biological tissues (31, 37, 42, 46). Just as
with a guitar string, we are able to predict many features of the
mechanical response of these systems by quantifying geometric
incompatibility—we develop a generic geometric rule ¯̀

min for
how generalized springs in a disordered network deviate from
their rest length. Using this minimal average length function ¯̀

min,
we then derive the macroscopic elastic properties of a very broad
class of underconstrained, prestress-rigidified materials from first
principles. We numerically verify our findings using models for
biopolymer networks (9, 14) and biological tissues (34, 38, 46).

Our work is relevant for experimentalists and may explain
the reproducibility of a number of generic mechanical features
found in particular for biopolymer networks (12, 17, 21, 25).
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Fig. 5. The excess shear modulus G−∆G* scales linearly with the shear
stress σ̃ in 2D spring networks. We find a collapse when rescaling G−∆G*
by the critical shear strain γ*. The black dashed line corresponds to the
prefactor of 3, as predicted by Eq. 13. (Inset) The excess shear modu-
lus G−∆G* scales linearly with the isotropic stress −p, and we obtain a
collapse when rescaling the latter by b/`0*. The black dashed line is the
prediction according to Eq. 13.

While we neglect here a fiber-bending rigidity that is included in
many biopolymer network models (12–15, 21), future work that
includes such a term will further refine our theoretical results
(discussion below) and the following comparison with experi-
ments. For shear deformations with `0 sufficiently close to `∗0
and close to the onset of rigidity γ' γ∗, we predict a linear scal-
ing of the differential shear modulus G with the shear stress σ̃,
where (G −∆G∗)/σ̃∼ 1/γ∗, which has been reported before for
biopolymer networks (12, 13, 21). However, here we addition-
ally predict from first principles that the value of the prefactor is
exactly 3, a factor consistent with previous experimental results
(12, 21). Moreover, our work strongly suggests that the relation
(G −∆G∗)/σ̃= 3/γ is a general hallmark of prestress-induced
rigidity in underconstrained materials. We thus propose it as
a general experimental criterion to test whether an observed
strain-stiffening behavior can be understood in terms of geo-
metrically induced rigidity. If applicable to biopolymer gels, this
could help to discern whether strain stiffening of a gel is due to
the nonlinear mechanics of single filaments or is dominated by
the geometric effects discussed here, a long-standing question in
the field (8, 58).

We can also apply these predictions to typical rheometer
geometries (SI Appendix, section IG). We predict that an atyp-
ical tensile normal stress σzz develops under simple shear, which
corresponds to a negative Poynting effect, and that σzz scales lin-
early with shear stress and shear modulus: σzz ∼ σ̃∼ (G −∆G∗)
(Eq. 13 and SI Appendix, section IG). This is precisely what has
been found for many biopolymer gels like collagen, fibrin, or
matrigel (12, 21, 25, 26). However, in contrast to ref. 21, our work
suggests that the scaling factor between σzz and (G −∆G∗)
should be largely independent of γ∗. While these effects can also
be explained by nonlinearities (25, 58–60) and have already been
discussed in the context of prestress-induced rigidity (13, 19, 21),
we show here that they represent a very generic feature of rigidity
in underconstrained materials.

Our work also highlights the importance of isotropic deforma-
tions when studying prestress-induced rigidity, as demonstrated
experimentally in ref. 17. While previous work (8, 9, 12, 14, 15,
18, 20, 21) focused almost (10) entirely on shear deformations,
we additionally study the effect of isotropic deformations rep-
resented by the control parameter `0. First, due to the bulk
modulus discontinuity, our work predicts zero normal stress
under compression and linearly increasing normal stress under
expansion, consistent with experimental findings on biopolymer

networks (17) (assuming the uniaxial response is dominated by
the isotropic part of the stress tensor; SI Appendix, section IG).
Second, we also correctly predict that the critical shear strain γ∗

increases upon compression, which corresponds to an increase in
`0 (17) (compare with Fig. 4A). While we also predict an increase
of the shear modulus G under extension, which was observed
as well (17), additional effects arising from the superposition of
pure shear and simple shear very likely play an important role in
this case. While we consider this outside the scope of this article,
it will be straightforward to extend our work by this aspect.

In summary, we have developed an approach to understand
how many underconstrained disordered materials rigidify in a
manner similar to that of a guitar string. While it is clear that
the 1D string becomes rigid precisely when it is stretched past
its rest length, we show that in 2D and 3D models, rigidity is gov-
erned by a geometrical minimal-length function ¯̀

min with generic
features (e.g., linear scaling with intrinsic fluctuations, quadratic
scaling with shear strain). This insight allows us to make accu-
rate predictions for many of the scaling functions and prefactors
that describe the linear response of these materials. In addition,
by performing numerical measurements of the geometry in the
rigid phase to extract the coefficients of the ¯̀

min function, we
can even predict the precise magnitudes of several macroscopic
mechanical properties.

In addition, these predictions help unify or clarify several
scaling collapses that have been identified previously in the lit-
erature. For 2D spring networks derived from jammed packings,
we studied the dependence of our geometric coefficients on the
coordination number z and find that approximately a`∼∆z−1/2

and b∼∆z−1. Combined with our finding that the value of `0
right after initialization depends linearly on z , such that (`0−
`∗0)∼∆z (SI Appendix, Fig. S5A, Inset), we obtain that the crit-
ical shear strain γ∗ scales as γ∗∼∆zβ with β= 1. Similarly, we
find for the associated shear modulus discontinuity ∆G∗∼∆z θ

with θ= 1. While both exponents are consistent with earlier find-
ings by Wyart et al. (9) and related to recent work by Cui and
Zaccone (61), our approach highlights the importance of the ini-
tial value of `0 for the elastic properties under shear. In other
work, bond-diluted regular networks yielded different exponents
β and θ (16), which is not surprising because the scaling expo-
nents of a` and b with ∆z are likely dependent on the way the
network is generated. More generally, while we observed that
the values of `∗0, a`, aa , and b depended somewhat on the pro-
tocol of system preparation and energy minimization, they were
relatively reproducible among different random realizations of a
given protocol (55).

Moreover, we analytically predict and numerically confirm the
existence and precise value of a shear modulus discontinuity
∆G∗ with respect to shear deformation, whose existence for
fiber networks without bending rigidity has been controversially
discussed more recently (14, 15, 18, 20, 24). We also predict
a generic scaling of the shear modulus beyond this discontinu-
ity: (G −∆G∗)∼ (γ− γ∗)f with f = 1. Smaller values for f that
have been reported before for different kinds of spring and fiber
networks (14, 15, 18, 20) are likely due to higher-order terms in
¯̀
min. Given the very generic nature of our approach, we expect to

find a value of f = 1 in these systems as well, if probed sufficiently
close to `0 = `∗0.

One major obstacle in determining elastic properties of disor-
dered materials is the appearance of nonaffinities, which can lead
to a breakdown of approaches like effective medium theory close
to the transition (10). In our case, effects by nonaffinities are by
construction fully included in the geometric coefficients a`, aa ,
and b. However, while measures for nonaffinity have been dis-
cussed before (9, 15, 20, 28, 62), these are usually quite distinct
from our coefficients a`, aa , and b. For example for spring net-
works, such earlier definitions typically include spring rotations,
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while our coefficients represent changes in spring length only.
Hence, while earlier definitions reflect much of the actual motion
of the microscopic elements, our coefficients retain only the part
directly relevant for the system energy and thus the mechanics.
In other words, the coefficients a`, aa , and b (and `∗0) can be
regarded as a minimal set of parameters required to characterize
the elastic system properties close to the transition.

There are a number of possible future extensions of this work.
First, we have focused here on transitions created by a minimal
length, where the system is floppy for large `0 and rigid for small
`0. However, there is in principle also the possibility of a transi-
tion created by, e.g., a maximal length, which is for example the
case in classical sphere jamming. Although we have occasionally
seen something like this in our spring networks close to isostatic-
ity, we generally expect this to be less typical in underconstrained
systems due to buckling.

Second, while we studied here the vicinity of one local min-
imum of ¯̀

min depending, e.g., on γ, it would be interesting
to study the behavior of the system beyond that, by including
higher-order terms in ¯̀

min and by also explicitly taking plastic
events into account (63). In the case of biological tissues, plastic
events typically correspond to so-called T1 transitions (64), which
in our approach would correspond to changing to a different ¯̀

min

“branch.”
Third, it will be important to study what determines the exact

values of the geometric coefficients a`, aa , and b; how they
depend on the network statistics; and why they are relatively
reproducible. For the cellular models with an area term, pre-
liminary results suggest that the ratio of both “a” coefficients
can be estimated by aa/a`≈ d`∗0/D , because the self-stress that
appears at the onset of rigidity seems to be dominated by a
force balance between cell perimeter tension and pressure within
each cell.

Fourth, because we separated geometry from energetics, it
is in principle possible to generalize our work to other inter-
action potentials, e.g., the correct expression for semiflexible
filaments (58, 60), and to include the effect of active stresses
(54, 65–67). Note that our work directly generalizes to any ana-
lytic interaction potential with a local minimum at a finite length.
Although in this more general case Eq. 5 would include higher-
order cumulants of `i , these higher-order terms will be irrelevant
in the floppy regime and we expect them to be negligible in
the rigid vicinity of the transition, where we make most of our
predictions.

Fifth, this work may also provide foundations to systemati-
cally connect macroscopic mechanical material properties to the
underlying local geometric structure. For example for biopoly-
mer networks, properties of the local geometric structure can be
extracted using light scattering, scanning electron microscopy,
or confocal reflectance microscopy (21, 68, 69). In particular,
our simulations indicate that in models without an area term
the ¯̀

min function does not change much when increasing sys-
tem size by nearly an order of magnitude (SI Appendix, section
IID), which suggests that local geometry may indeed be sufficient
to characterize the large-scale mechanical properties of such

systems. Remaining future challenges here include the devel-
opment of an easy way to compute our geometric coefficients
from simple properties characterizing local geometric structure
without the need to simulate and to find ways to detect possi-
ble residual stresses that may have been built into the gel during
polymerization.

Finally, our approach can likely be extended to also include
isostatic and overconstrained materials. For example, it is gen-
erally assumed that the mechanics of biopolymer networks are
dominated by a stretching rigidity of fibers that form a subiso-
static network, but that an additional fiber-bending rigidity turns
the network into an overconstrained system (12–15, 21, 22). The
predictions we make here focus on the stretching-dominated
limit where fiber-bending rigidity can be neglected, which is
attained by a weak fiber-bending modulus and/or in the more
rigid parts of the phase space. A generalization of our formalism
toward overconstrained systems will allow us to extend our pre-
dictions beyond this regime and thus refine our comparison with
experimental data.

Materials and Methods
The 2D spring networks were initialized as packing-derived, randomly cut
networks (9, 27). To improve the precision compared with the cellular mod-
els, we created our own implementation of the Polak–Ribière version of the
conjugate gradient minimization method (70), where for the line searches
we use a self-developed Newton method based only on energy derivatives.
All states were minimized until the average force per degree of freedom
was less than 10−12. For the `0 sweep in Fig. 1 A and B and to find the
(γ, `0) = (0, `0*) point, we used shear stabilization. Details are given in SI
Appendix, section IVB.

For the 2D vertex model simulations, we always started from Voronoi
tessellations of random point patterns, generated using the Computa-
tional Geometry Algorithms Library (CGAL) (https://www.cgal.org/), and
we used the BFGS2 implementation of the GNU Scientific Library (GSL)
(https://gnu.org/software/gsl/) to minimize the energy. We enforced three-
way vertices and the length cutoff for T1 transitions was set to 10−5, and
there is a maximum possible number of T1 transitions on a single cell-cell
interface of 104. All 2D vertex model configurations studied were shear
stabilized.

For the 2D Voronoi model simulations, we started from random
point patterns and minimized the system energy using the BFGS2 rou-
tine of the GSL, each time using CGAL to compute the Voronoi tes-
sellations. Due to limitations of CGAL, configurations were not shear
stabilized.

For the 3D Voronoi model simulations, we used the shear-stabilized,
energy-minimized states generated in ref. 46 using the BFGS2 multidimen-
sional minimization routine of the GSL.

Details on the different simulation protocols (`0 sweeps and bisection
to obtain the transition point) are discussed in detail in SI Appendix,
section IV.
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53. Düring G, Lerner E, Wyart M (2014) Length scales and self-organization in dense
suspension flows. Phys Rev E 89:022305.

54. Woodhouse FG, Ronellenfitsch H, Dunkel J (2018) Autonomous actuation of zero
modes in mechanical networks far from equilibrium. Phys Rev Lett 121:178001.

55. Chaudhuri P, Berthier L, Sastry S (2010) Jamming transitions in amorphous packings
of frictionless spheres occur over a continuous range of volume fractions. Phys Rev
Lett 104:165701.

56. Murisic N, Hakim V, Kevrekidis IG, Shvartsman SY, Audoly B (2015) From discrete to
continuum models of three-dimensional deformations in epithelial sheets. Biophys J
109:154–163.

57. Arzash S, Shivers J, Licup AJ, Sharma A, MacKintosh FC (2019) Stress-stabilized
sub-isostatic fiber networks in a rope-like limit. arXiv:1812.08907. Preprint, posted
January 3, 2019.

58. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear
elasticity in biological gels. Nature 435:191–194.

59. Kang H, et al. (2009) Nonlinear elasticity of stiff filament networks: Strain stiffening,
negative normal stress, and filament alignment in fibrin gels. J Phys Chem B 113:3799–
3805.

60. Cioroianu AR, Storm C (2013) Normal stresses in elastic networks. Phys Rev E
88:052601.

61. Cui B, Zaccone A (2019) Theory of elastic constants of athermal amorphous solids with
internal stresses. arXiv:1901.09582. Preprint, posted January 28, 2019.

62. Broedersz CP, Sheinman M, MacKintosh FC (2012) Filament-length-controlled
elasticity in 3D fiber networks. Phys Rev Lett 108:3–7.

63. Amuasi H, Fischer A, Zippelius A, Heussinger C (2018) Linear rheology of reversibly
cross-linked biopolymer networks. J Chem Phys 149:84902.

64. Kim S, Wang Y, Hilgenfeldt S (2018) Universal features of metastable state energies
in cellular matter. Phys Rev Lett 120:248001.

65. Ronceray P, Broedersz CP, Lenz M (2016) Fiber networks amplify active stress. Proc
Natl Acad Sci USA 113:2827–2832.

66. Stam S, et al. (2017) Filament rigidity and connectivity tune the deformation modes
of active biopolymer networks. Proc Natl Acad Sci USA 114:E10037–E10045.

67. Fischer-Friedrich E (2018) Active prestress leads to an apparent stiffening of cells
through geometrical effects. Biophys J 114:419–424.

68. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechan-
ical properties of three-dimensional type I collagen extracellular matrices with varied
microstructure. J Biomech Eng 124:214.

69. Lindström SB, Vader DA, Kulachenko A, Weitz DA (2010) Biopolymer network
geometries: Characterization, regeneration, and elastic properties. Phys Rev E
82:051905.

70. Nash SG, Sofer A (1995) Linear and Nonlinear Programming (McGraw-Hill, New York).

6568 | www.pnas.org/cgi/doi/10.1073/pnas.1815436116 Merkel et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1815436116

