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ABSTRACT
Since the demand for health services is the key driver for virtually all of a health care organisation’s 
financial and operational activities, it is imperative that health care managers invest the time 
and effort to develop appropriate and accessible forecasting models for their facility’s services. 
In this article, we analyse and forecast the demand for radiology services at a large, tertiary 
hospital in Florida. We demonstrate that a comprehensive and accurate forecasting model can 
be constructed using well-known statistical techniques. We then use our model to illustrate how 
to provide decision support for radiology managers with respect to department staffing. The 
methodology we present is not limited to radiology services and we advocate for more routine 
and widespread use of demand forecasting throughout the health care delivery system.

1.  Introduction

Almost every individual involved with administration of 
a radiology business unit (either in academic or private 
practice) has puzzled over tables or graphs showing pro-
cedure volumes over time. For any number of reasons, 
viewers of such information want to know what governs 
the variability in these numbers and how to predict future 
trends. One example is that of a radiology group prac-
tice deciding to recruit new associates for the next several 
years. Likewise, residency programme directors want to 
know future clinical volume so as to plan for and justify 
class sizes. When generating capital budgets, projections 
of the volume of procedures must be made; this informa-
tion, along with cost data, informs those responsible about 
whether to buy new radiology equipment or to revamp or 
dispose of existing equipment. These are examples where 
decision-makers mostly want to know about general long-
term (i.e., months or years) trends in volume.

Other situations necessitate short-term analyses and 
predictions. For example, department administrators 
need to plan ahead for scheduling technologists, tran-
scriptionists, and front desk personnel. This is often done 
on a per shift basis for several weeks into the future. 
Similarly, with picture archiving and communications 
systems (PACS), moving and storing electronic images 
become issues for medical informatics workers (Samei 
et al., 2004). Procedures not only need to be scheduled, 
performed, and read but large amounts of data must be 
transmitted, stored, and retrieved. Capacity planning 

for acquisition processors, network infrastructure, and 
storage archives is critical to successful PACS imple-
mentation and deployment. Procedure mix and vol-
ume translates into data traffic whose time-dependent 
behaviour over periods as short as seconds may be of 
intense interest to those responsible for building and 
maintaining these systems.

Efficient and effective delivery of radiological services 
is especially critical when considering the role radiology 
plays within the overall delivery of health care. Medical 
imaging is used to examine virtually all anatomical areas 
of the body, from the brain to the toes, providing needed 
information to most medical specialties. Patients might 
receive radiological imaging at any point in their lives 
from paediatrics to gerontology. Radiological informa-
tion is needed for both acute care (e.g., emergency depart-
ments) and non-urgent care (e.g., routine screenings such 
as mammograms or bone scans) as well as for inpatient 
and outpatient services. Although mostly used in clini-
cal settings, radiological imaging also plays an important 
role in clinical trials and research (Miller, Krasnow, & 
Schwartz, 2014). Medical providers in developing coun-
tries, too, have a critical need for high-quality, timely 
radiological services (Mohd-Nor, 2011). From this per-
spective, maladroit oversight of a radiology department 
has the potential to permeate much of the health system.

Radiology departments often undergo special scru-
tiny because of their high capital equipment costs. 
Computed tomography (CT) and positron emission 
topography (PET) scanners, for example, can cost in 
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excess of two million dollars and require expensive 
long-term equipment service contracts. Especially when 
space is at a premium, projections of future growth (and 
the need for additional equipment to service it) have 
important implications for all units within a radiology 
department, since the large size of medical imaging 
devices means competition for alternative uses of floor 
space including registration and nursing desks, offices, 
examination rooms, medical records areas, and so forth. 
Hence, the need for careful consideration of future reve-
nues and costs comes down to one integral component: 
volume forecasts.

Thus, decision-makers tasked with managing radi-
ology departments benefit from understanding future 
demand. Among the many service-providing units 
in the health system, radiology presents some special 
challenges to forecasters. Historical records that demon-
strate stable patterns produce better forecasts than those 
with more noise. Yet radiology is an unusual hybrid in 
that some service requests are mostly controllable (e.g., 
routine mammogram screening) while others (e.g., 
urgent care) are not. In this sense, the success of a radi-
ology forecasting project hinges, in part, on the ratio of 
planned to unplanned service requests if the unplanned 
service requests are both highly variable and represent a 
large proportion of total radiology volume.

From a broader perspective, the last two decades have 
seen a dramatic resurgence of operations research tools 
being developed and applied to all facets of the health 
care industry. An important and ongoing debate centres 
on the utility of these applications for the “real world” 
health care managers. In particular, questions like: Do 
they understand the model? Will they use the model? 
If they use the model, will it improve the delivery of 
their health care services? are frequently posed (Reid, 
Compton, Grossman, & Fanjiang, 2005; Woolsey & 
Swanson, 1975). Pragmatic models are better for “real-
world” decision-makers such as those in the health care 
industry where training in very sophisticated quantita-
tive modelling is not consistent (or even available) across 
providers (Woolsey & Swanson, 1975). This has also 
been confirmed more recently in the National Academy 
of Engineers and Institute of Medicine report, Building a 
Better Delivery System: A New Engineering/Health Care 
Partnership (Reid et al., 2005). Despite the increased 
attention, there remains a distinct gap between the mod-
els that operations researchers can construct and their 
acceptance and use by the health care decision-makers. 
Consistent with Woolsey and Swanson (1975) and Reid 
et al.’s (2005) guiding principles, forecasting models 
ought to be both pragmatic and easily relatable to health 
care decision-makers.

In this article, we explore the question of whether reli-
able forecasts of radiological services might be obtained. 
We do so within the context of a radiology department 

at a teaching hospital in Florida. Of particular interest is 
whether volume forecasts can help guide the assignment 
of staff to three 8 h daily shifts. We begin with a literature 
review followed by a description of the study setting and 
data. We then describe the analytical approach taken to 
develop the forecasting model and produce the forecasts. 
A discussion of the results is followed by concluding 
remarks that places our work in a broader health care 
operations context.

2.  Literature review

Forecasting applications have found their ways to most 
corners of the health care industry. Examples include 
projecting the growing prevalence of diseases over time 
(Heidenreich et al., 2011) and tracking shortages of 
health care workers (O'Brien-Pallas et al., 2001; Scheffler, 
Liu, Kinfuc, & Dal Pozd, 2008). Both micro- and mac-
ro-level decision-makers have benefited from health 
care-related forecasts. Batal, Tench, McMillan, Adams, 
and Mehler (2001), for example, predict admissions to an 
urgent care centre at a Denver hospital whereas Lapierre, 
Goldsman, Cochran, and DuBow (1999) consider opti-
mal allocation of beds across hospital units. Still others 
have relied on health care trends to inform public policy; 
see, for example, the Lightwood et al. (2009) study of 
the medical, economic, and policy implications of ado-
lescent obesity.

Some projects require short-term forecasts, some 
medium-range, while others concern the long term. 
Data needs and measurement of the outcome variable are 
dictated accordingly (Getzen, 2000). Jones et al. (2009), 
for example, studied the short-term (i.e., hourly) oper-
ational and resource needs of an emergency department 
whereas another emergency department study (Jones 
& Joy, 2002) found that daily data were better suited 
for forecasting number of occupied beds. Similarly, but 
instead of volume, Cerrito and Pecoraro (2005) sought 
to forecast amount of time needed to treat individual 
emergency department patients as a function of their 
triage level and associated diagnosis and the congestion 
that may exist in the emergency department at the time 
of patient arrivals. Because 18-month projections were 
needed for budgetary purposes, Gardner (1979) used 
monthly data to forecast the demand for blood tests in 
a hospital laboratory. Myers and Green (2004), on the 
other hand, describe a situation needing 10-year annual 
forecasts of demand for capacity planning of a large 
health system in the northeastern US.

Trend and seasonality tend to capture the analytical 
focus of health care forecasting projects. For purposes of 
long-term capacity planning, trend is of primary impor-
tance (e.g., Chrysanthopoulou et al., 2007) whereas sea-
sonality dominates an analysis of day-to-day operations 
(e.g., Jones & Joy, 2002). In some settings, both trend and 
seasonality need to be considered (Côté & Tucker, 2001).
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Many different forecasting methodologies may be 
found in the health literature including extrapolation 
(e.g., Choo, 2000; Heidenreich et al., 2011), advanced 
time-series methods (e.g., Jones & Joy, 2002; Jones et 
al., 2009), econometric models (e.g., Lakdawalla et al., 
2003), regression (e.g., Côté, Smith, Eitel, & Akçali, 
2010), and simulation (e.g., Hoot et al., 2008; Lapierre 
et al., 1999). Some advocate for using a mix of qualita-
tive and quantitative procedures (e.g., Connor, Alldus, 
Ciapparelli, & Kirby, 2003). Thus, forecasting applica-
tions to health care settings run the full gamut of ana-
lytical sophistication. Increasingly, though, health care 
managers seek straightforward forecasting methodol-
ogies whose results can be easily understood by deci-
sion-makers. Given the ready availability of patient data 
in electronic form, practitioners also value forecasting 
methodologies that can be repeatedly updated in real 
time without relying on statistical expertise or advanced 
forecasting software: “Virtually all of the forecasting 
that a healthcare organisation normally requires can be 
performed on a spreadsheet without use of special soft-
ware” (Dommert & Getzen, 2005, p. 107). Goldstein and 
Gigerenzer (2009) argue that simple forecasting meth-
odologies can make better predictions than complicated 
ones in some settings, so the pursuit of workable, even if 
not optimal, solutions holds some promise. To that end, 
several tutorial-type articles seek to enlighten managers 
about data, methods, and practices pertinent to health 
care forecasting projects (Côté, Smith, Eitel, & Akçali, 
2013; Côté & Tucker, 2001; Dommert & Getzen, 2005; 
Finarelli & Johnson, 2004).

Regarding the delivery of radiology services such as 
the focus of this article, much of the published work in 
this area is retrospective. Bhargavan and Sunshine (2005), 
for example, use Medicare claims data to describe histor-
ical patterns in radiology services by US census region 
and across imaging modalities. Likewise, Lang, Huang, 
Lee, Federico, and Menzin (2013) study MRI and CT 
utilisation rates using Medical Expenditure Panel Survey 
(MEPS) data from 2000 to 2009. A few works focus on 
trends in imaging practices related to specific medical 
maladies such intestinal obstruction (Otero et al., 2008) 
and hepatocellular carcinoma (Hyder et al., 2013). Many 
investigations focus on historical trends at the national 
(e.g., Wu et al., 2013) or global (e.g., Thomas, 2011) level. 
We found only one article that, like ours, uses facili-
ty-level data to produce specific numerical forecasts of 
radiological volume: Chrysanthopoulou et al. (2007). In 
that article, 60 monthly forecasts of radiology volume are 
used to compare differences in utilisation rates across 
different imaging modalities at a teaching hospital in 
Greece with the intent to better understand how future 
demand for the modalities might increase (or decrease) 
over the next five years. They used a combination of lin-
ear and log-linear autoregressive techniques to extrap-
olate the underlying trend associated with a range of 

radiology modalities. Our work appears to be the first 
to employ a formal forecasting methodology to: (1) fore-
cast radiology volume at a stated shift level, and (2) use 
that forecast inform decision-makers about how staffing 
needs might vary in accordance with the forecast.

3.  The study setting

Our focus is the radiology department of an 800-bed ter-
tiary care teaching hospital in Florida. This department 
provides radiological studies for inpatient services, the 
emergency department, and ambulatory patients from 
outpatient clinics associated with the teaching hospital. 
It also conducts radiological studies requested by refer-
ral from the surrounding community. The full range of 
imaging modalities are available including radiography 
(i.e., X-rays), CT and PET scans, magnetic resonance 
imaging (MRI), ultrasound, nuclear imaging, and mam-
mography. The workflow that produces these images typ-
ically unfolds in this fashion. Arrivals at the radiology 
department are broadly classified as either emergent or 
nonemergent patients where emergent patients originate 
in the hospital’s emergency department and nonemergent 
patients are either existing inpatients or scheduled outpa-
tients. For outpatients, they check in at a registration desk 
and are then seen by a financial representative who col-
lects patient information, insurance information, and any 
applicable copays or self-pays. This step is bypassed for 
emergent and inpatient arrivals. Regardless, a radiologic 
technologist leads the patient to an examination room, 
performs the imaging procedure, and ensures the quality 
of the image produced. The technologist then releases the 
patient, if outpatient, or coordinates with other hospital 
staff for transport of inpatients. The scan enters a work 
queue to be read and reported on by radiologists.

Given its high capital costs, the radiology department 
undergoes monthly and yearly budget reviews. A requi-
site component of the annual review is a five-year out-
look of expected capital expenditures. Operating costs 
such as supplies (e.g., contrasts, catheters), labour, and 
non-service-contract items (e.g., CT tubes) are impor-
tant inputs to both budgetary reviews. Recent budget 
cycles have looked closely at labour costs, in part because 
labour costs are the largest piece of the operating budget. 
Local and industry-wide shortages of radiologists and 
radiologic technologists have generated an interest in 
alternative staffing schedules that might involve a mix 
of full-time, part-time, or overtime hours. To prepare 
these schedules, accurate predictions of shift-level and 
daily procedure volumes are needed and managers must 
learn how best to translate procedure volume forecasts 
into staffing needs.

This radiological department is open 24  h a day, 
7 days a week. Staff are scheduled into three 8 h shifts 
(i.e., Midnight to 8 am, 8 am to 4 pm, and 4 pm, to 
Midnight). The method used to produce the shift-level 
data are described next.
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and Christmas; approximately 2.6% of the observations 
in the data-set are holidays.

Figure 2 shows boxplots of Volume by Day and 
Shift. Holidays are indicated by the asterisk symbol, 
“*”. Several important insights arise from Figure 2. 
Seasonality exists by day and by shift. In a given week, 
weekdays (i.e., Monday through Friday) and shift 2 
typically have highest radiology volume. Despite radi-
ology services being available continually, radiology 
services are primarily delivered on weekdays during 
normal business hours. On weekends (i.e., Saturday 
and Sunday), shift 2 distributions closely resemble shifts 
1 and 3. This finding indicates a need to account for 
interactions between Day and Shift in the forecasting 
methodology.

4.  Data

The basic work unit of the radiology department is a 
single episode of care where a patient is examined with 
one of the medical imaging modalities. An inspection 
of a particular body region or organ system produces a 
set of images for interpretation by a radiologist. Each 
examination is uniquely identified with an accession 
number at the time the study is formally ordered in the 
radiology management system (RMS). It is this time that 
is recorded for each of the examinations in our data-set. 
For outpatients, order time is when the patient arrives 
in the department on the day of the examination. For 
inpatients, order time is the time at which the hospital 
information system (HIS) transmits orders for radiology 
studies to the RMS once a nursing unit clerk enters a 
physician’s order in the patient’s chart. Aggregated across 
all medical imaging modalities, the relative volume of 
inpatients and outpatients is approximately 60% and 
40%, respectively. Unfortunately, the time series data 
do not distinguish whether procedures were planned 
or unplanned.

The radiology volume data were extracted from an 
enterprise database containing the number of orders per 
hour for all imaging procedures done in the study facility 
over a two-year period from 2003–2004. The hourly data 
were then aggregated by shift per day to create 2,193 
shift-level observations (i.e., 731 days × 3 shifts per day). 
The variables in the data-set are Volume (i.e., number of 
procedures), Shift (i.e., 1 for midnight to 8 am, 2 for 8 am 
to 4 pm, and 3 for 4 pm to midnight) and Day (i.e., day of 
the week: Monday, Tuesday, etc.). Recognising potential 
concern associated with the age of the time series, we 
consulted with a range of health care decision-makers 
who confirmed that, despite its age, our time series was 
indeed representative of radiology volume both in terms 
of its currency and applicability to facilities beyond ours.

5.  Exploratory data analysis

Forecasting projects benefit from initial exploration of 
the data to guide the construction and evaluation of the 
eventual forecasting model. Figure 1 displays the fre-
quency distribution of Volume by shift. Upon inspection, 
shift 1 (Panel A) and shift 3 (Panel C) have similar dis-
tributions while shift 2 (Panel B) is distinctly bimodal. 
All shift 1 and 3 volumes are below 250 and volumes 
exceeding 250 are exclusively from shift 2. Thus, dif-
ferences in shifts are important sources of variation in 
Volume and should be captured in the forecasting model. 
Figure 1 also displays a small cluster of shift 2 volumes 
(Panel B). Further investigation reveals that most of 
those observations occur on holidays. Accordingly, the 
variable Holiday was added to the data-set for observa-
tions representing statutory United States federal hol-
idays like New Year’s Day, Labour Day, Thanksgiving, 

Figure 1. Frequency distribution of radiology volume by shift.

  M. J. CÔTÉ AND M. A. SMITH82 



75% of the median volume of shift 1. Additional vari-
ation might be captured by keeping the three shifts as 
distinct categories.

Figure 3 is used to assess the existence of long-term 
trend. For all three shifts, trend lines are mostly flat over 
the study time period as seen in Figure 3. The average 
daily volume per shift is 196.1 procedures in 2003 and 
213.7 in 2004. Trend is negligible here because of the 
relatively short time period of two years. Rather, Figure 
3 illustrates that radiology volume, regardless of shift, 
tends to be “predictably variable” within each shift 
implying that “good” forecasting models ought to be 
relatively uncomplicated. Last, long-term growth in 
radiology volume comes about via increased patient 
population, expansion of infrastructure and staff or 
replacement of capital equipment with more efficient 
imaging technologies, or the departure of competitors, 
none of which was seen over this time period.

6.  The forecasting model

Exploratory data analysis provides the starting point for 
the radiology volume forecasting model. Given that both 
day of the week and shift present considerable guidance 

Holidays reduce the volume of radiological services 
at this department, as seen by the positions of the aster-
isk symbols in Figure 2. Yet the reduction in volume 
on holidays is dependent on shift. Visually, the holiday 
asterisk symbols tend to fall between 50 and 150 across 
all weekdays and shifts, suggesting a median holiday vol-
ume of about 100 procedures. The non-holiday volumes 
are roughly approximated by the mid-box horizontal 
lines; they show non-holiday volume is more markedly 
different from holiday volume for shift 2 than for shifts 1 
and 3. Specifically, median holiday volume is 102, while 
the non-holiday shift 2 median volume is 450, and 130 
for shifts 1 and 3 non-holidays, respectively. Hence, an 
interaction between Holiday and Shift is warranted.

Figure 2 also suggests some commonalities. For 
example, the shift 1 distributions are remarkably simi-
lar across the weekdays of Monday through Friday. The 
same is true of shift 2 and shift 3. Similarly, each shift’s 
Saturday distribution coincides closely with that for 
Sunday. This suggests that a parsimonious representa-
tion might be achieved by grouping. To that end, a 
new variable is added to the data-set (named Weekday/
Weekend) in which Monday through Friday are coded 
as “weekday” and Saturday and Sunday are coded as 
“weekend”.

The overall summary measures for the three shifts 
are provided in Table 1. At first glance, one might ask 
whether shift 1 and shift 3 be combined. Shift 1 and 
shift 3 (those occurring outside of the normal working 
hours) exhibit comparable patterns during weekdays (see  
Figure 2) and summary measures (see Table 1), but, on 
weekends, the median volume for shift 3 is only about 
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Figure 2. Distributions of radiology volume by day and shift.

Table 1. Summary statistics for radiology volume by shift.

Statistic Shift 1 Shift 2 Shift 3
Minimum 81 55 30
25th percentile 116 126 93
Mean 130.47 361.19 123.02
Median 131 447 129
75th percentile 144 498 150
Maximum 209 632 226
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between Weekday/Weekend, Shift, and Holiday as inde-
pendent variables. (There are no holiday weekends, since 
holidays that fall on Saturday or Sunday are observed on 
Friday or Monday. Consequently, a model containing 
the Holiday × Weekday/Weekend interaction cannot be 
estimated.)

regarding anticipated radiology volume, it is natural that 
these factors be used as predictors of radiology volume. 
Consequently, a multiple regression model was esti-
mated with days of the week, grouped into weekdays and 
weekends, all three shifts during a given day, the exist-
ence of a holiday, and all possible two-way interactions 

Figure 3. Daily time series plot of radiology volume by shift.

  M. J. CÔTÉ AND M. A. SMITH84 



The regression model in Table 1 served as a bench-
mark against which to compare other regression models. 
As one example among several, a regression model was 
estimated in which the seven days of the week (Monday 
through Sunday) replaced the two weekday/weekend 
groupings. The usual measures of fit, both within-sam-
ple and out-of-sample, are, for all practical purposes, 
identical. For example, the difference in adjusted R2 
statistics between the two models is 0.003 and the 
holdout-sample RMSPEs differ by 1.2 procedures. The 
regression model in Table 1 demonstrates excellent sta-
tistical properties and also has the advantage of simplic-
ity of use for the end-user. It is chosen to produce the 
radiology volume forecasts as will be discussed in the 
next section.

6.2.  Forecasting radiology volumes

The primary purpose of the multiple regression pre-
diction model is to forecast average radiology volumes. 
The forecasts start with the estimated intercept in Table 
1; its value of approximately 78 represents the average 
radiology volume for a weekend (non-holiday) shift 3. 
All other parameter estimates are additive to this value. 
For example, the average radiology volume would be 
35.9 higher for a weekend shift 1, approximately 114 
procedures. Likewise, for a shift 2 holiday weekday, aver-
age radiology volume would be 77.9 + 32.3–64.8 + 65.4–
303.5 + 298.8, or about 106 procedures. Forecasts for 
average radiology volume for all other combinations are 
obtained similarly and may be found in Table 2 under 
the column labelled “Predicted Volume”.

Translating volume predictions from Table 2 into 
staffing needs requires knowledge of number of proce-
dures read per shift. We illustrate with the example of 
staffing physician radiologists. For this hospital, radiol-
ogists process between 80 and 120 images per shift, with 
80 images per shift a more realistic figure when reading 
more complex images. If we assume 100 images per shift 
then the number of radiologists required per eight-hour 
shift can be determined from Table 2 by simply mov-
ing decimal points two places to the left. For example, 
the predicted average volume for a non-holiday shift 2 
weekday is 474.4 procedures, so the estimated average 
number of radiologists is about 4.75 FTEs: perhaps four 
full-time and one part-time radiologist if that configura-
tion is possible or 5 full-time radiologists if not.

A secondary purpose of the multiple regression model 
is to generate ranges for a given forecast. Ranges indi-
cate the extent of likely errors that are associated with 
a forecast (Krajewski, Malhotra, & Ritzman, 2016), and 
managers generally view forecast ranges as useful for 
operational decision-making (Önkal & Bolger, 2004). 

The exploratory data analysis greatly guided the selec-
tion of independent variables in the regression model 
presented in Table 2. When building regression models, 
more explanatory variables reduce the unexplained vari-
ation and should (ideally) result in an improved fit to the 
data. But there is also a trade-off between the number 
of parameters and a “good” model. More independent 
variables does not necessarily imply a better model, 
especially if the percentage of unexplained variation 
changes only slightly. The model overall is statistically 
significant (F-ratio = 4846.28 with p-value <  .001), as 
are each of the individual terms in the regression equa-
tion. With R2  =  0.947, nearly 95% of the variation in 
daily shift volume is associated with the terms in this 
regression model. The root mean square error (RMSE) 
is 35.32 procedures (as a percentage of average radiology 
volume, the RMSE is 17.3%), and represents the spread 
of the distribution of radiology volume values around 
the estimated multiple regression model.

6.1.  Evaluating the forecasting model

Although the model shown in Table 1 has very good 
cohesion between the actual and forecasted values, its 
measures of fit can be deceptive since the least squares 
procedure produces estimates that optimise fit to the 
data used to estimate the regression model. When a 
regression model is intended for forecasting, it is com-
mon to undertake cross-validation to gauge how the 
model performs in a simulated forecasting environment. 
The model in Table 1 is used to forecast January 1 2005 
through April 25 2005 (the last observation available). 
Then the root mean square prediction error (RMSPE) 
is calculated for the within-sample group (2003–2004) 
and the holdout group (January 1–April 25 2005). The 
within-sample RMSPE is 35 procedures; as expected, the 
holdout RMSPE is larger at 54 procedures. Because the 
difference of 19 procedures has a negligible impact on 
the use of the model for staffing the radiology depart-
ment (as we shall see shortly), cross-validation provides 
further evidence of the worthiness of the model as a 
forecasting tool.

Table 2. Estimated regression coefficients.

Term
Parameter 
estimate

Standard 
error t-statistic p-value

Intercept 77.93 2.449 31.82 <.0001
Shift 1 35.90 3.463 10.37 <.0001
Shift 2 32.26 3.463 9.32 <.0001
Holiday −64.84 8.254 −7.86 <.0001
Weekday 65.38 2.911 22.46 <.0001
Shift 1 × holiday 41.48 11.673 3.55 0.0004
Shift 2 × holiday −303.45 11.673 −26.00 <.0001
Shift 1 × weekday −41.28 4.116 −10.03 <.0001
Shift 2 × weekday 298.82 4.116 72.59 <.0001
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these characteristics might be the 75th PI using 80 
images per shift or 515.1/80 = 6.4 FTEs.

The third scenario addresses an ongoing year-end 
anomaly at this facility. As patients are closing their 
insurance plans at year’s end and have met their deduct-
ibles, the facility sees a higher mix of requests for elec-
tive and non-urgent (but postponed) diagnostic tests. 
These typically have lower turnaround needs. That might 
prompt decision-makers to rely on the 75th PI for pur-
poses of December staffing.

In these scenarios, upper prediction limits were used 
as the forecasts; the numbers in the “Predicted Volume” 
column were not chosen. Keep in mind that these fore-
casts will be used in a services setting that relies on rea-
sonable turnaround (Boland, Guimaraes, & Mueller, 
2008). Because the values in the “Predicted Volume” 
column are averages (or expected values), using them 
would imply that the radiology department would be 
understaffed about half the time, suggesting that a better 
choice is one of the upper limit percentiles. However, 
which upper limit to use will become clearer with time 
as management monitors the difference between val-
ues predicted from the model and actual volume, and 
makes periodic adjustments in the face of ongoing over- 
or under-utilisation of labour.

While these scenarios focused on staffing radiologists, 
similar calculations can be used for other employees 
including radiologic technologists, front desk employ-
ees, and financial representatives. In all cases, the integral 
component is anticipated volume, which is produced by 
the forecasting model. Knowing that, and estimated pro-
ductivity per shift, such as procedures read, for each job 
type, implies that translating radiology procedure counts 
into FTEs could be easily accomplished with spreadsheet 
software.

7.  Conclusions and recommendations for 
further research

The process of forecasting the demand for health services 
can support the entire spectrum of decision-making 
from strategic planning though real-time adjustment of 
work schedules. For our setting, our work is best-suited 
for intermediate (e.g., workforce scheduling) and long-
term (e.g., determining workforce size and composition) 

Table 3 provides prediction intervals (PIs) for the fore-
casts at varying confidence levels (i.e., 75, 90, 95, and 
99%). Knowing when to use which value is a critical deci-
sion that managers must make when deciding how best to 
implement the forecasting model. As an important aside, 
if the PIs generated negative lower bounds, we truncated 
those estimates to 0 as negative radiology volume is prac-
tically impossible. This transformation happened for the 
99% PIs for shift 3 for holiday weekdays and weekends.

Consider again the estimates for the shift 2 non-holi-
day weekdays in Table 2, which range from 383.2 proce-
dures (the 99% lower limit) to 565.5 procedures (the 99% 
upper limit) or roughly 3.8 FTEs to 5.7 FTEs. Two things 
happen when moving from 3.8 FTEs to 5.7 FTEs: turna-
round improves while personnel costs increase. Staffing 
decisions must be made in that context by weighing the 
trade-off of service timeliness and costs. Of course, the 
choice of staffing levels (beyond what may be suggested 
by our models) remains the prerogative of the health 
care decision-makers and their tolerance for idleness of 
the employees (and their associated cost) to set their 
staff levels at the upper prediction levels. The implicit 
trade-off here is the possible consequence associated 
with demand exceeding capacity and how overtime (or 
other related costs) might be incurred to meet demand 
if staffing is below demand. We illustrate this through 
three hypothetical representative examples.

In the first scenario, consideration is given to staffing 
shift 3 on weekends. This shift sees mostly emergency 
procedures so fast turnaround is desired; it is typically 
staffed with part-time radiologists who are less expen-
sive per hour than those working full-time. This sug-
gests using one of the upper limit estimates: perhaps 
147.4 procedures from the 95th PI. Images during this 
shift tend to be routine so that 120 images per shift is 
a better estimate of productivity than 100. In this set-
ting, 147.4/120 = 1.2 FTEs might be used as a staffing 
guideline.

The second scenario addresses normal working hours 
(i.e., shift 2, non-holiday weekdays). Most non-emer-
gency readings (e.g., mammograms) are scheduled dur-
ing this shift, so turnaround needs are typically lower; 
more complex images are often presented during this 
shift. This shift is staffed with relatively high-cost, full-
time, academic radiologists. An estimate that captures 

Table 3. Predicted radiology volumes and prediction intervals.

Shift

Lower limits Predicted Upper limits

99% 95% 90% 75% Volume 75% 90% 95% 99%
Non-holiday weekdays 1 46.8 68.6 79.8 97.3 137.9 178.6 196.1 207.3 229.1

2 383.2 405.1 416.2 433.7 474.4 515.1 532.6 543.7 565.5
3 52.2 74.0 85.1 102.6 143.3 184.0 201.5 212.6 234.5

Holiday weekdays 1 21.2 43.5 54.9 72.9 114.6 156.3 174.2 185.6 208.0
2 12.7 35.0 46.5 64.4 106.1 147.8 165.7 177.2 199.5
3 0.0 7.4 18.8 36.8 78.5 120.2 138.1 149.5 171.9

Weekends 1 22.6 44.4 55.6 73.1 113.8 154.6 172.1 183.3 205.1
2 18.9 40.8 51.9 69.5 110.2 150.9 168.5 179.6 201.5
3 0.0 8.5 19.7 37.2 77.9 118.7 136.2 147.4 169.2
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Specific to our models, we recommend that health 
care managers should avoid using predictions about 
averages for their service settings. Instead, the forecast 
error, and the forecast intervals that can be produced 
from the forecast error, should be factored into the deci-
sion-making. Illustrative examples from our radiology 
application demonstrate why upper values in the fore-
cast range can be better choices for staffing decisions in 
settings in which expeditious turnaround is important.

Regression analysis has several desirable features that 
should make it especially appealing to health care man-
agers. Although we illustrate in an application of staffing 
personnel into 8 h shifts that demonstrate clear seasonal 
patterns, regression is more widely applicable to many 
other situations. For instance, although we had no trend 
in our data, trend can be modelled by adding an inte-
ger counter variable to the regression model. Regression 
readily handles long-term, medium-term, short-term, 
and even very short-term forecasting needs. Regression 
accommodates a need for variable interactions as we 
found here. Furthermore, multiple regression analysis has 
found favour with practitioners because it requires only 
a moderate level of understanding of statistical methods. 
Multiple regression methods and applications are finding 
their way into the required coursework of health care man-
agement curricula. Those not already proficient in regres-
sion methods might seek out any number of massive open 
online courses that cover the topic. Another alternative is 
to sponsor an internship of an undergraduate business 
analytics or statistics student for model construction and 
implementation. Thus, regression has the potential to gen-
erate usable forecasts without the need for advanced sta-
tistical expertise. Equally important, multiple regression 
is standard in spreadsheet software so regression analysis, 
with its versatility, accessibility, and ease of use, should 
become an important tool for all health care managers.
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