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ABSTRACT

Shigella-infected bacillary dysentery or commonly known as Shigellosis is a leading
cause of morbidity and mortality worldwide. The gradual emergence of multidrug
resistant Shigella spp. has triggered the search for alternatives to conventional an-
tibiotics. Phage therapy could be one such suitable alternative, given its proven long
term safety profile as well as the rapid expansion of phage therapy research. To
be successful, phage therapy will need an adequate regulatory framework, effective
strategies, the proper selection of appropriate phages, early solutions to overcome phage
therapy limitations, the implementation of safety protocols, and finally improved public
awareness. To achieve all these criteria and successfully apply phage therapy against
multidrug resistant shigellosis, a comprehensive study is required. In fact, a variety of
phage-based approaches and products including single phages, phage cocktails, mutated
phages, genetically engineered phages, and combinations of phages with antibiotics have
already been carried out to test the applications of phage therapy against multidrug
resistant Shigella. This review provides a broad survey of phage treatments from past to
present, focusing on the history, applications, limitations and effective solutions related
to, as well as the prospects for, the use of phage therapy against multidrug resistant
Shigella spp. and other multidrug resistant bacterial pathogens.

Subjects Microbiology
Keywords Multidrug-resistant, Phage therapy, Bacillary dysentery, Shigella

INTRODUCTION

Shigella is one of the key pathogens responsible for the diarrhoeal disease generally known
as bacillary dysentery and more specifically as shigellosis. Until recently, about 55 serotypes
belonging to four species of Shigella (Shigella dysenteriae, Shigella boydii, Shigella flexneri
and Shigella sonnei) have been identified as being responsible for shigellosis and death
worldwide (The et al., 2016). Shigella is transmitted efficiently in low doses through direct
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or indirect human faecal contamination due to poor hygienic conditions (Weissiman et
al., 1975). Different food products like salads, soft cheese, vegetables and meat products
are usually associated with this type of outbreak. Other indirect routes of infections
including ingestion of Shigella-contaminated food and water, contact via fomites (such as
drinking devices, eating utensil and other inanimated objects) and certain modes of sexual
intercourse (Morgan et al., 2006; Okame et al., 2012). Different housefly-like vectors which
can physically transport infected feaces, are also known to play a vital role in spreading the
disease. Antibiotics have so far been the most common therapeutic agents against dysentery.
However, the gradual emergence of drug resistant Shigella has caused growing concern of
the long-term efficiency of antibiotics. The drug resistant characteristics of Shigella have
been reported since 1940s, and have led to the increasing emergence of multidrug resistant
strains over the past few decades. The development of new antibiotics to combat these new
strains is time consuming, laborious and costly. Moreover, no effective vaccine is available
to prevent shigellosis, which is thus a serious global medical and social problem (Arias ¢
Murray, 2009; Deris et al., 2013; Magiorakos et al., 2012; WHO, 2014).

Increasing antibiotic resistance and the lack of new agents in development make
imperative the development of alternative or complementary approaches to antibiotics
for treating common bacterial pathogens, including Shigella. Currently, phage therapy
appears to be a viable option. This therapy has already been utilized in some Eastern
European countries with good safety records without significant side effects (Kutter, 2009).
For example, phage therapy was successfully used to treat Russian soldiers during and after
the World War II (Kutter et al., 2010). Slopek et al. (1987) also reported a 91-100% success
rate for cases of phage treatment in Poland against diseases of the digestive system and
alimentary tract. In addition, a study in the USA used phages to treat typhoid patients
by intravenously injecting phages to modulate immune responses (Desranleau, 1949). No
serious side effects were reported. A clinical trial project named ‘Phagoburn’ focused on
the efficacy of phage therapy for treating burn wounds patients infected by Pseudomonas
aeruginosa and Escherichia coli. It was the first potential multi-centre, randomised, single
blind and well organized clinical trial of phage therapy in the world (Pherecydes Pharma,
2015). This clinical trial was soundly based on Good Manufacturing and Good Clinical
Practices and the results gained through the clinical trial indicated significant developments
regarding the regulatory framework of phage therapy (Pherecydes Pharma, 2015). Recently, a
novel phage therapy has successfully treated patients with multidrug-resistant Acinetobacter
baumannii infections. The treatment was jointly conducted by the University of California
San Diego, School of Medicine, the U.S. Navy Medical Research Center and the Texas
A&M University (LaFee ¢ Buschman, 2017).

Phage therapy was originally introduced a century ago, almost 10 years earlier than
antibiotic therapy. It has however never outperformed the latter due to several reasons,
including the often confusing and inconsistent results of phage therapy trials, the lack of
reproducibility, problems in ensuring the administration of appropriate doses, and the
limited availability of genetic information on phages (Wittebole, De Roock ¢ Opal, 2014).
As a result, many researchers, especially from the USA and Western Europe, gradually lost
interest in phage therapy research.

Tang et al. (2019), PeerdJ, DOI 10.7717/peerj.6225 2/31


https://peerj.com
http://dx.doi.org/10.7717/peerj.6225

Peer

Fortunately, some researchers in Eastern Europe continued to study phage therapy, and
performed a significant number of phage therapy trials and treatments (Smith ¢ Huggins,
1983). Although the issue on phage resistant bacteria is a concern, this issue should not be
a major concern especially when it is compared with the bacterial resistance to antibiotic.
The main reason is because the growth of phages are shadowing bacterial growth, thus they
mutate at the same rate as bacteria. Furthermore, with huge number of available phages,
there will be certainly another phage or phages that are able to invade the resistant, mutated
bacteria (Inal, 2003). Over the years, the advancement of knowledge and technology on
phage therapy in Eastern Europe has become the beacon of new hope for exploring the
application of phage therapy against multidrug resistant bacteria. The Eliava Institute in
Tibilissi, Georgia and the Hirsfield Institute in Wroclaw, Poland are among well-known
medical research institutes for phage-based therapeutics.

This review surveys the extent of outbreaks of shigellosis and their effects, and then
investigates the treatments of Shigella spp. using both antibiotic and phage therapy. It
contains a chronological description of the emergence of Shigella spp. as a multidrug
resistant pathogen, as well as outlining the limitations of antibiotics against multidrug
resistant bacterial strains. It goes on to discuss the problems and limitations of phage
therapy from the past to the present, together with the recent developments of this therapy
as an alternative to antibiotic treatment. It highlights some potential solutions and future
directions for the use of phage therapy against drug resistant bacterial pathogens, especially
Shigella spp. Finally, this review explains why scientists and policymakers should revisit
phage therapy, in a positive and progressive manner, in order to find effective cures for
drug resistant bacteria.

Survey methodology

In order to provide a clear picture to readers, we performed a comprehensive literature
study covering Shigella and shigellosis; multidrug-resistant bacterial pathogens and the
related emerging challenges with antibiotic treatments and the development of new
antibiotics; and finally the use of bacteriophages and phage therapy against Shigella and
Shigella-like microorganisms. “PubMed”, “Scopus” and “Google” search engines were
used to search for journal articles using specific key words: Shigella, Shigellosis and phage
therapy. Our study describes clearly why and how phage therapy can be a viable alternative
or complementary treatment to antibiotics, in particular against Shigella and Shigella-like
organisms. To ensure that our review was comprehensive, logically organized and balanced,
we reviewed in chronological order a very broad range of relevant articles published from
the time of the discovery of Shigella in 1896 up to the present (2018).

Shigella, Shigellosis and outbreaks

Shigellosis caused by Shigella is endemic, and is one of the main causes of mortality and
morbidity in all age groups in both developing and developed countries. It is particularly
prevalent in children between 0 and 5 years in developing countries (Bardhan et al., 2010;
Wen et al., 2012). Shigellae are Gram-negative, nonmotile, rod-shaped facultative anaerobic
and non-spore-forming bacteria. Shigella was first discovered by a Japanese scientist,
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Kiyoshi Shiga, in 1897 (Shiga, 1898; Trofa et al., 1999). The Shigella spp. discovered by him
was Shigella dysenteriae. The Shigella genus was soon expanded with the discovery of Shigella
flexneri in 1899 (Flexner, 1900), followed by Shigella sonnei in 1906 and Shigella boydii in
1921 (Barceloux, 2008; Shiga, 1936). These four species of Shigellae are further subdivided
into different serotypes, based on their type-specific antigens (15 for S. dysenteriae; 19 for
S. flexneri; 20 for S. boydii, and 1 serotype for S. sonnei) (The et al., 2016).

Currently, S. flexneri is the main cause of bacillary dysentery in countries with low-
income economies, particularly in sub-Saharan Africa and Asia, accounting for almost
two third of all Shigella infections in these areas. On the other hand, S. sonnei is the most
common pathogen in high-income or transitional countries, especially in North America
and Europe, accounting for up to 80% of all Shigella infections in this zone (Gu ef al.,
2012a). Previously, a multicenter study on Shigellosis conducted in six Asian countries
(Pakistan, China, Bangladesh, Vietnam, Thailand and Indonesia) reported S. flexneri as the
most frequent isolated Shigella spp. (68%), except in Thailand (Von Seidlein et al., 2006).

In contrast, shigellosis caused by the species S. dysenteriae and S. boydii has in recent
years been reported in less than 5% cases globally. Interestingly, S. dysenteriae was the main
cause of dysentery more than 100 years ago, but the incidence of this pathogen is now
quite rare (Bardhan et al., 2010; Gu et al., 2012a). In the late 19th and early 20th centuries,
S. dysenteriae caused numerous outbreaks. It then disappeared for unknown reasons,
although S. dysenteriae type 1 reappeared as an epidemic in 1968 in Central America, Asia
and Africa (Gangarosa et al., 1970; Pal, 1984; Rahaman et al., 1975; Ries et al., 1994). Later,
the prevalence of S. dysenteriae was replaced by S. flexneri, which in turn was gradually
replaced by S. sonnei (Kostrzewski, 1968; Martin, Pollard ¢ Feldman, 1983). Occurrences of
S. boydii have meanwhile been reported on the Indian subcontinent and Latin America, but
have been infrequent in other regions of the world (Fernandez-Prada et al., 2004; Niyogi,
2005; Rolfo et al., 2011).

Outbreaks of Shigella are common, and have been reported widely. For instance, a
serious outbreak occurred between 2014 and 2015 in California, with the causative agent
being Shigella sonnei (Kozyreva et al., 2016). At the same time, the frequency of occurrence
and severity of shigellosis outbreaks varied greatly between different regions and countries.
In Morobe Province on the northern coast of Papua New Guinea, approximately 1,200
cases and five deaths were reported as shigellosis caused by the S. flexneri serotype 2 (Benny
et al., 2014), while fifty-five cases of shigellosis were reported in Taiwan caused by S. flexneri
2a, S. sonnei and S. flexneri 3b (Ko et al., 2013). In Bangladesh, a total of 10,827 isolates were
identified between 2001 and 2011, with the predominant spp. detected being S. flexneri,
followed by S. sonnei, S. boydii and S. dysenteriae, respectively (Ud-Din et al., 2013). In
Sichuan Province (China), about 96 students in a rural elementary school suffered from
shigellosis after drinking untreated well water; the causal organism identified in this case
was S. flexneri 2b (He et al., 2012). In another outbreak in Parison city (Iran), 701 inmates
experienced severe diarrhea caused by S. flexneri serotype 3a (Hosseini ¢ Kaffashian, 2010).
Two outbreaks were reported in Sweden in 2009, caused by S. dysenteriae (Lofdahl et al.,
2009) and S. sonnei, that affected air travelers departing from Hawaii (Gaynor et al., 2009).
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In Austria, a foodborne outbreak of shigellosis was caused by S. sonnei (Kuo et al., 2009),
and Shigella spp. (Miiller et al., 2009) was reported in Denmark.

The above examples show that outbreaks of shigellosis caused by Shigella have been
occurring frequently all over the world, from developing to developed countries, with the
predominant causative spp. being S. flexneri and S. sonnei.

Multidrug resistant Shigella spp.

Multidrug resistant bacterial pathogens impose critical challenge for clinical and
pharmaceutical research due to their potentially severe impact on human health. The
Infectious Disease Society of America (IDSA) is extremely concerned about the worrying
growth in microbial pathogens and antibiotic resistance in the USA and elsewhere in the
world (Spellberg et al., 2008). This antibiotic resistance is caused by both bacterial and
social factors, such as high mutation frequencies coupled with the exchange of genetic
information by bacteria; the misuse or overuse of antibiotics by human beings; and
increasing population densities and global migratory movements by animals and people
(Huijbers et al., 2015; Liu et al., 2016).

The acquisition of antibiotic resistance in bacteria is due to genetic exchanges via
horizontal gene transfer involving three mechanisms (i.e., random transformation,
transduction and conjugation). Uptake of small fragments of DNA by bacteria occurs during
transformation, while transduction encompasses transfer of DNA (via bacteriophages) from
one bacterium into another, and conjugation involves transfer of DNA through sexual
pili involving cell-to-cell contact. The newly acquired recipients which were susceptible
previously can express resistance due to the resistant genes acquired from the resistant donor
(Frost et al., 2005; Oliveira et al., 2017). Moreover, the presence of R factors (plasmids) may
play a major role in developing new serotypes which can foster antibacterial resistance
(Tanaka et al., 1969). From the beginning of the antibiotic era, tetracycline, ampicillin,
chloramphenicol, nalidixic acid and trimethoprim-sulfamethoxazole were used to treat
Shigellosis. As Shigella developed increasing resistance to these agents, more recently
ciprofloxacin, ceftriaxone and azithromycin have served as the mainstays of shigellosis
treatments. However, the growing resistances of Shigella spp. against these antibiotics have
also been studied and reported (Table 1) (Klontz ¢ Singh, 2015).

There have been numerous reports of single drug resistance, cross-resistance and
multidrug resistance in Shigella worldwide, and such cases are growing in both frequency
and diversity on a daily basis. In a study, approximately 1,376 Shigella isolates were
collected from the Foodborne Diseases Active Surveillance Network (FoodNet) and
were tested in the US National Antimicrobial Resistance Monitoring System (NARMS)
between 2000 and 2010 (Shiferaw et al., 2012). Among the tested isolates, 74% proved to be
ampicillin resistant, followed by 58% that were streptomycin resistant, 36% trimethoprim-
sulfamethoxazole (TMP-SMX) resistant, 32% sulfamethoxazole-sulfisoxazole resistant,
28% tetracycline resistant, 2% nalidixic acid resistant, and 0.5% ciprofloxacin resistant.
Moreover, around 5% of these strains showed multiple resistances to ampicillin,
streptomycin, chloramphenicol, tetracycline and sulfamethoxazole-sulfisoxazole (Shiferaw
etal., 2012).
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Table 1 First use of antibiotics for Shigella treatment and initial reporting of resistance.
Name of drug Beginning period Place and initial report References
of resistance
Sulfonamide 1930s Philippine Islands (1946) Cheever (1946), Haltalin & Nelson (1965), Marberg,
Japan (1952-1957) Altmann & Eshkol-Bruck (1958), Mitsuhashi (1969),
Israel (1953-1955) Mitsuhashi (1971) and Mitsuhashi et al. (1960)
USA (1961-1964)
Ampicillin Late 1960s—1970s New Zealand (1974) Olarte, Filloy & Galindo (1976), Rahaman et al. (1974) and
Bangladesh (1974) Smith, Bremner & Datta (1974)
Mexico city (1976)
Rimethoprim— 1970s Brazil (1980) Chun, Seol & Suh (1981), Finlayson (1980), Heikkili et al.
sulfamethoxazole Canada (1980) (1990), Macaden ¢ Bhat (1985), Taylor, Keystone ¢ Devlin
Korea (1981) (1980) and Zaman et al. (1983)
India (1981)
Finland (1975-1982)
Bangladesh (1979-1983)
Furazolidone 1970s Dallas, USA (1972) Bose et al. (1984) and Lexomboon et al. (1972)
India (1984)
Nalidixic acid 1980s Zaire (1982) Bhardwaj & Panhotra (1985), Munshi et al. (1987), Ries et al.
India (1984) (1994) and Rogerie et al. (1986)
Bangladesh (1986)
Burundi (1990)
Pivmecillinam 1970s Bangladesh (2000-2012) Klontz et al. (2014)
Fluoroquinolone Late 1980s—1990s India (1984) Bose et al. (1984)
Azithromycin 1990s—-2000s India (2006-2011) Bhattacharya et al. (2014) and Hassing et al. (2014)
Netherlands (2012)
Ceftriaxone 1990s—-2000s Korea (2000) Bhattacharya et al. (2014), Pai et al. (2001) and

Vietnam (2000-2002)
India (2006-2011)
USA (2003-2012)

Vinh et al. (2009)

In 2002, S. dysenteriae type 1 isolates were identified in Eastern India that showed
resistance to all available antibiotics, including norfloxacin and ciprofloxacin but with the
exception of ofloxacin (Sur, Niyogi ¢& Sur, 2003). In the following year, similar types of
isolates were detected in Bangladesh that were resistant to all common antibiotics, including
ofloxacin (Naheed et al., 2004). In addition, about 200 S. sonnei isolates were identified
in Bangladesh that demonstrated a wide range of resistance against frequently used
antibiotics, such as ampicillin, mecillinam , ciprofloxacin, nalidixic acid and trimethoprim-
sulfamethoxazole, at ratios of 9.5, 10.5, 17, 86.5, and 89.5%, respectively (Ud-Din et
al., 2013). More recently, a study in Iran reported high frequency of resistance against
trimethoprim/sufamethoxazole, ampicillin, cefotaxime and nalidixic acid (80, 85, 63 and
47%, respectively), in 85 Shigella spp isolated from 211 positive stool cultures of children
with gastroenteritis (Mahmoudi et al., 2017).

In the annual report of the National Salmonella, Shigella & Listeria Reference Laboratory
(NSSLRL-2014, https://www.researchgate.net/publication/280804929), 93% of the 45
Shigella isolates listed were identified as multi-drug resistant (Delappe, King ¢ Cormican,
2014). The degree and prevalence of resistance to azithromycin, fluoroquinolones and
ceftriaxone do vary considerably between different regions of the world (Bhattacharya et
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al., 2014). In particular, one study demonstrated that Shigella exhibited far higher levels of
resistance to nalidixic acid and ciprofloxacin in Asia-Africa than those in Europe-America:
33.6% and 5.0% respectively, or 10.5 and 16.7 times higher (Gu et al., 2012a).

In summary, it is extremely difficult to delimit the geographic range of drug resistant
strains of Shigella or to control the disease through a single antibiotic, because of the
dissemination of resistant pathogens through multiple vectors and the continuous
emergence of new serotypes.

Medical treatments for Shigellosis

A number of treatments of bacillary dysentery are commonly used. The World Health
Organization (WHO) recommends the use of oral rehydration therapy, together

with zinc supplements, for 10-14 days. The administration of zinc during shigellosis
reduces the duration and frequency of expelling loose stools (Nichter, Acuin & Vargas,
2008; UNICEF & World Health Organization, 2006). The WHO also suggests the use of
effective antimicrobials against clinically suspected shigellosis (Christopher et al., 2009). In
practice, beta-lactams (amoxicillin, ampicillin, ceftriaxone, cefixime, and pivmecillinam),
quinolones (nalidixic acid, ciprofloxacin, norfloxacin, and ofloxacin), macrolides
(erythromycin and azithromycin) and other antibiotics (sulfonamides, tetracycline,
furazolidone, and cotrimoxazole) are commonly used to treat Shigella dysentery. This
development, together with the unavailability of the Food and Drug Administration
(FDA) approved vaccines, have led researchers to seek alternative treatments against
drug resistant bacterial pathogens (Katz et al., 2004; Wi et al., 2011). Administration of
antimicrobial peptides and antibiotic cocktails are promising replacements, however, these
alternatives may eventually suffer a similar fate as the current treatment (Worthington ¢
Melander, 2013). Conversely, bacteriophages have potentials to be used as an alternative
to antibiotics, because phages have different modes of action and they could be rapidly
‘trained’ on ancestral bacterial strains via successive passages, as well as their capability to
defeat bacterial resistance by evolving in situ mutations (Betts et al., 2013).

Hence, phage therapy could be the best option for treating shigellosis, because it
has been shown to work against Shigella spp. Phage treatment also has the additional
advantage of causing less disruption to gut flora than antibiotic treatment (Kutter et al.,
2010). Moreover, experimental anti-dysentery trials using phages have been successfully
conducted over several decades in Eastern Europe (Kutter, 2009).

Early history of phage therapy
In the beginning of the twentieth century, Twort (1915) and D’Herelle (1917) independently
discovered Bacteriophages (Nobrega et al., 2015). In addition, d’Herelle and his co-workers
isolated phages with lytic activity against pathogenic bacteria, including Shigella spp.,
and developed the idea of “phage therapy” meaning the prophylactic and/or therapeutic
use of these substances (D‘Herelle, 1923). Bacteriophages were then subsequently used in
medicine from 1919 onwards—before the invention of the first antibiotic (penicillin).
Figure 1 summarizes important milestones in the development of phage research.

In the early stages, expectations were particularly high with regard to Shiga-phages
(phages against Shigella), due to their success in treating dysentery patients safely. This
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2014: The European
Parliament proposed phage
therapy as a complement
to antibiotics.

2013: Phagoburn project,
phage therapy phage /11
Clinical trial initiated.

2006: FDA approved the use
of phage cocktail in ready-to-
eat meat.

2001: in vivo activity of phage
lysis demonstrated. N .
1990: Role of phages in microbial

turnover demonstrated.

1952: Host-induced modification of
phages.

1941: Use of phage cocktails to treat
dysentery-affected soldiers in Poland.

1940s: Commercialization of Phage
therapeutic preparation in France and
in the USA.

1940: Beginning of phage grouping
visualization by electron microscope.

1931: First intravenous use of phage

to treat cholera in India. 1927: First attempt to use bacteriophages

in surgery in Poland.

1923: International Bacteriophage
Institute established in Thilisi, Georgia.
1919: First successful trial of phage
therapy on dysentery patients, and
development of phage therapy concept.

1917: Discovery and characterization of the viral nature of phages.

1915: hypothesized phages as viruses.

Figure 1 Milestones in phage therapy research, adapted from Elbreki et al. (2014) and Salmond & Fin-
eran (2015).
Full-size & DOI: 10.7717/peer;j.6225/fig-1

success inspired the commercialization of therapeutic phages to treat bacterial infections
in humans (Eaton & Bayne-Jones, 1934; Krueger & Scribner, 1941). However, at that time,
scientists did not fully understand the mechanisms behind the treatment, and in particular
how the phages killed the bacteria. Besides, the outcomes of phage treatment were
inconsistent. Moreover, the introduction of antibiotics in the 1940s to treat a broader
range of infections led to a reduction in phage therapy research (Matsuzaki et al., 2014).
Despite the success of phage therapy in a number of Eastern European countries, it
remained largely neglected in Western Europe due to the inconsistent results, the lack
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Table 2 Main features and activities of Phage therapy centers.

Name of center

Country Main features and activities

Center for Phage Therapy

Eliava Phage Therapy Center

Novomed

Phage Therapy Center

Phage International Inc.

Poland Since 1980, specific bacteriophages have been used to treat over 1,500
patients with suppurative bacterial infections, where routine antibiotic
therapy has failed (http://www.iitd.pan.wroc.pl).

Georgia A network of eight laboratories have developed bacteriophage prepara-
tions for fighting against dangerous and antibiotic-resistant superbugs
(http://www.mrsaphages.com).

Georgia Effective treatment delivery through phage therapy in many areas of
medicine, drawing on the expertise of local physicians. Treatments are
available not only to local Georgians, but also to foreign patients, espe-
cially those with chronic wounds, osteomyelitis or other types of acute
and chronic infections (http://www.phagetherapy.com).

Georgia Provides excellent treatment for patients who have bacterial
infections and are difficult/non-healing, chronic, drug-resistant
or have not responded to conventional antibiotic therapies
(http://www.phagetherapycenter.com).

The United States Treats patients with chronic, drug-resistant or difficult to treat infec-
tions (http://www.phageinternational.com)

of a specific regulatory framework, and the complicated procedures for patenting phages
(Verbeken et al., 2014).

Current phage therapy
More recently, interest in phage therapy has increased dramatically, and the use of phages
in controlling bacterial infections has regained popularity, as well as those unanswered
questions of phage therapy are now gradually being addressed (Fischetti, 2001; Stone, 2002;
Summers, 2001). By looking back to the pre-antibiotic era, scientists aim to resurrect
phages as an antidote to antibiotic resistant pathogens, as well as to solve other medical,
agricultural, food safety and environmental problems. Nowadays, the availability of
sophisticated molecular tools, the growing understanding of phage control techniques, and
the evaluation experiences of Eastern European researchers have all widened the possibility
of phage therapy applications. In Eastern Europe, phages have been administered orally
(tablets or liquid), topically, rectally and intravenously for almost 90 years with no serious
side effects have been reported (Sulakvelidze, Alavidze ¢ Morris, 2001). As a result of these
developments, phage therapy has attracted increasing attention as a potential alternative
solution in treating antibiotic-resistant bacteria. Six clinics in five different countries (the
US, the UK, the Republic of Georgia, Poland and Belgium) are now offering phage therapy
for treating diseases (Table 2).

There are 11 US and international biotechnology companies, as well as a number
of academic investigators currently working in the field of bacteriophage technology
and products. These companies and researchers are utilising bacteriophages in the food
processing industry and for the treatment of human diseases. For example, US companies
such as Intralytix and Novolytics are using bacteriophages as biotechnology tools and as
platform technologies (http://www.dreamingrock.com/viridax/eviridax/cphage.htm). The
FDA and the United States Department of Agriculture (USDA) have marked a milestone
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in phage research by approving three phage products, each comprising a “cocktail” of
phages, to target and kill bacteria. The first FDA-approved phage product was ListShield ™
(Intralytix, Baltimore, MD, USA) which can be used as a food additive against Listeria
monocytogenes in ready-to-eat meat and poultry (Mead et al., 2006). The second product,
EcoShield™ (Intralytix, Baltimore, MD, USA), can be sprayed on red meat, in order to kill
Escherichia coli (particularly strain O157:H7) before the meat is ground into hamburgers
(Abuladze et al., 2008; Scallan et al., 2011). The third phage product, called SalmoFresh™
(Intralytix, Baltimore, MD, USA), which acts against Salmonella enterica was approved
as a food processing aid. It is used for the treatment of fresh and processed vegetables,
fruits, seafood such as shellfish and fish. Lately, another phage preparation- ShigaShield™
(Intralytix, Baltimore, MD, USA), is currently undergoing FDA and USDA reviews for the
GRAS (Generally Recognized As Safe) status (GRN672). According to the report by Soffer
et al. (2017) this Shigella phage product, ShigaShield™ is able to reduce Shigella levels in
various foods experimentally contaminated with a S. sonnei strain. Novolytics has the aim
to lead in the utilisation of bacteriophage as a treatment for bacterial infections. Currently,
the company’s most promising products NOVO12, a phage cocktail, administered as a
form of gel for topical treatment of MRSA (Methicillin-resistant Staphylococcus aureus)
infections (http://www.cobrabio.com/News/June-2013/Cobra-Biologics-and-Novolytics-
Unveil-Successful-D).

The European Union (EU) also shows support for phage therapy research. In 2013, a
project entitled ‘Phagoburn’, aimed at exploring the efficacy of phage therapy in protecting
patients of burn wounds against severe bacterial infection, was funded by European
Commission (Matsuzaki et al., 2014). In April 2014, the European Parliament passed a
resolution in favour of prioritizing the development of phage therapy as a complement to
antibiotic therapy in order to combat antibiotic resistance (Courncil of Europe, 2014). This
is an important milestone fostering phage therapy research and development, but more
time is needed to see its practical impact in future.

Phage biology and phage-host interaction

Bacteriophages exhibit four known life cycles inside the bacterial host: lysogenic, pseudo-
lysogenic, chronic and lytic infection (Drulis-Kawa et al., 2012; Weinbauer, 2004). For
phage therapy, the main interest has always been focused on lytic phages particularly the
families of Podoviridae, Myoviridae and Siphoviridae. There are also a few reports on the
applications of filamentous phages and cubic phages in phage therapy (Drulis-Kawa et al.,
2012). For any type of life cycle, the initial step of an infection is the recognition and binding
of a phage to a host receptor, which is facilitated by the phage receptor binding protein
(RBP). The host specificity of bacteriophages towards different bacterial cells depends on
different RBPs (Le et al., 2013). Three types of host receptors in Salmonella were identified
by Shin et al. (2012): flagella, BtuB (outer membrane protein up taken by vitamin B12) and
lipopolysaccharide-related O-antigen. Transmission electron microscopy analysis showed
that the phages from Podoviridae family use O-antigen of LPS as a receptor while phages
from Siphoviridae family use flagella (BtuB) as a receptor. Most frequently, mutations
of these receptors caused the host cells resistant to these phages (Shin et al., 2012). The
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recognition of phage to host cells and the subsequent binding of RBPs and host receptors
stimulate a spectrum of the probable phage-bacteria interactions (Wittebole, De Roock ¢
Opal, 2014). After binding to host receptors, phages inject its DNA into the host cell via
inducing a pore in the host cell wall and leaving behind their capsids outside the bacterial
cell. Before lysis of bacterial cell occurs, packing and assembly of phages take place. Finally,
release of phage progenies from the hosts. Different phage enzymes (murein synthesis
inhibitors, lysins and holins) are then involved for helping the release of phage progenies
into the extracellular environment (Weinbauer, 2004). In molecular aspect, when a phage
invades a susceptible bacterial cell, its nucleic acid enters the cell and induces production
cycle of the phage. The cell is converted to a phage factory. Some of the components of the
biosynthetic apparatus involved in bacterial growth and metabolisms (such as ribosomes
and ATP generators) are no longer performing their normal tasks during the phage
production cycle (Campbell, 2003). Tt is known that while bacteria can evolve to become
resistant to phages, phages can also develop new mechanisms to infect the resistant bacteria.
Hosseinidoust, Tufenkji ¢ Van De Ven (2013) demonstrated that resistance development
is linked to changes in bacterial fitness and alteration of virulence determinants that are
usually maintained in the absence of the agent to which the bacteria confer resistance. The
alteration of phenotypic characteristics is associated with changes in gene regulation levels.

Phage therapy vs antibiotic treatment
Treating multidrug resistant Shigella spp. by a new antibiotic or a new combination of
antibiotics tends to be more complicated than treating it with a phage or phage cocktail
(Khatun et al., 2011). Generally, phages are environmentally friendly. In both cases, the
clinical trial is expensive but it is usually quicker and less expensive to select, isolate and
identify phages than to develop a new antibiotic, which can take a longer period (Matsuzaki
et al., 2005; Weber-D abrowska, Mulczyk ¢ Gorski, 2001). Secondary infections may happen
but very rare and minimal in phage therapy compared to antibiotics. The term secondary
infection during phage therapy is due to the interaction between phage and bacteria, which
can cause superinfection immunity or superinfection exclusion. Alternatively, secondary
infection can also be described equivalently to superinfection or coinfection, which can
result in phage-on-phage parasitism, genetic exchange between phages as well as various
partial reductions in phage productivity that have been termed as partial/mutual exclusion,
or the depressor effect (Abedon, 2015). With respect to antibiotics, it can cause secondary
infection by attacking the normal flora of patients, in addition to the targeted pathogens
(Table 3). In addition, phage resistance is less of a concern than antibiotic resistance,
because phages can mutate and evolve naturally to counter phage-resistant bacteria (Ho,
2001; Matsuzaki et al., 2005). Moreover, the phage resistance development can be mitigated
by using phage cocktails (combinations of multiple phages) and/or by applying phages
in conjunction with antibiotics as therapy (Ho, 2001; Kutateladze & Adamia, 2010). The
differences between phage therapy and antibiotic treatments are summarized in Table 3.
One of the advantages of phages is that they have much fewer side effects. In fact, the
prolonged use of phages to treat human infections in Eastern Europe has not elicited
any allergic reactions, nor have animal trials in Western Europe revealed any unusual
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Table 3 Comparison between phage therapy and antibiotic treatment.

Feature

Phage

Antibiotic

Host specificity

Mode of action

Side effects

Time and cost for
new development

Dose administration

Application range

Very specific to their host cells: usually affect pri-
marily or exclusively the targeted bacterial species
(Chernomordik, 1989).

Bacteriophages replicate exponentially as long as
the specific bacteria they are targeting are avail-
able in abundance. They replicate at the site of
infection and are available where they are most
needed (Smith & Huggins, 1982).

Generally the side effects are less than the antibi-
otic treatment. No or very few side effects have
been described (Sulakvelidze, Alavidze ¢ Morris,
2001).

The selection of new phages against drug resis-
tant or phage resistant bacteria is a comparatively
rapid process which can be carried out in days

or weeks (Sulakvelidze, Alavidze & Morris, 2001).
Sometimes, it also takes longer period and extra
cost for safety approval and in vivo trial.

Repeated dose administration is not always essen-
tial , because the phage reproduces until the tar-
get bacterium is destroyed (Inal, 2003).

In spite of some negative effects, the range of ap-
plications of bacteriophages is broader: they can,
for example, be applied as protective materials
in food supplements, the milk industry, pharma-
cology, toothpastes, cleaning solutions and so on
(Veiga-Crespo & Villa, 2010).

Can target a wide range of pathogenic microbes.
Can therefore be used when the exact disease-
causing pathogen is unknown. However, this
can lead to the emergence of new drug resis-
tant pathogens (Sulakvelidze, Alavidze ¢ Morris,
2001).

Antibiotics are metabolized and then expelled
from the body, and do not necessarily concen-
trate at the site of infection (Sulakvelidze, Alavidze
& Morris, 2001).

Due to their non-specificity to the host, antibi-
otics destroy commensal microflora. This can
lead to several side effects, including allergies, in-
testinal disorders and secondary infections (Inal,
2003; Lehmann, 1999).

The development of a new antibiotic against
antibiotic resistant bacteria is not only time-
consuming, but can also cost millions of dollars
for clinical trials, and so may not be cost-effective
(Chopra et al., 1997; Silver & Bostian, 1993).

Most cases require repeated dose administration.

The application ranges of antibiotics are
restricted and narrower.

histological changes, mortality or morbidity when phages were administered orally,
intravenously or intramuscularly (Biswas et al., 2002; Carlton et al., 20055 Merril et al.,
1996). Indeed, intakes of the T4 phage up to 10° PFU (Plaque Forming Unit) have not caused
any secondary effect (Bruttin ¢ Briissow, 2005). The intravenous injection of purified
phages has not produced any side effect in either HIV-infected individuals (Fogelman et
al., 2000), healthy volunteers (Ochs et al., 1993), or other patients with immunodeficiency
diseases (Ochs, Davis ¢» Wedgwood, 1971). Phage therapy has been successfully used to
treat antibiotic resistant infections in the Southwest Regional Wound Care Centre in Texas
(Clark e March, 2006), while biodegradable patches impregnated with phages have also
been applied to patients with prolonged infections in Georgia (Fischetti, Nelson ¢ Schuch,
2006).

In summary, as antibacterial agents, phages have a number of properties that make
them a compelling alternative to antibiotics. Moreover, most of the concerns associated
with phage therapy should be manageable through a combination of appropriate phage
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selection, effective formulations, and clear knowledge and expertise on how to prepare and
apply phages (Loc-Carrillo ¢ Abedon, 2011).

Phage therapy for controlling Shigella

There is a historic relationship between Shigella spp. and the discovery of phages. The
first application of phage against human infections was conducted by d’'Herelle in 1919
to treat the symptoms of dysentery. He injected an anti-dysentery phage into a patient
with severe dysentery (10-12 bloody stools per day). The patient made a rapid recovery,
displaying no symptoms shortly after receiving the phage therapy (Summers, 1999). This
pioneering experiment of d’Herrelle led to many successful applications of this therapy
against dysentery, which were reported in scientific articles over the subsequent 20 years. For
instance, in the US state of Maryland, Shigella flexneri was identified in dysentery-affected
children, and phage therapy was given orally and rectally in doses ranging from 5 to 1,300 ml
(Davison, 1922). In one successful example, Spernce ¢» McKinley (1924) treated shigellosis
patients through the oral administration of 10 ml phages, which substantially reduced
their mortality rate and length of stay in the hospital (10% and 5.8 days, respectively)
when compared to a control group in another hospital (40% and 12.8 days). Another
example, Querangal des Essarts (1933) treated a bacillary dysentery patient in France with
a polyvalent Shiga-Flexner bacteriophage through the oral administration of 5-10 ml of
phages with alkaline water during an outbreak on board two ships at the port of Brest
in 1933. The results were remarkable, with blood and mucus rapidly ceased (2nd or 3rd
day) and the stools reverted to normal on the 4th day. The same physician also stopped
an outbreak of dysentery by the prophylactic administration of bacteriophages among
newborns at a holiday camp (Goodridge, 2013).

On the other hand, there have also been some failures, mainly due to the late
administration of the therapy. Vaill & Morton (1937) reported that out of 200 cases of
dysentery treated with bacteriophages in New Jersey (USA), only 22 cases were successful
(Vaill & Morton, 1937). Johnston, Ebbs ¢ Kaake (1933) treated 70 infants aged less than 2
years old using 1 ounce of bacteriophage per hour, and found that the clinical course of
dysentery was not improved as what they expected with this therapy. These lower success
rates may be due to the fact that the trials used a strain-specific bacteriophage, and the
phage only effective against 17 out of 94 bacterial strains which is approximately 20% of
bacterial strains tested in vitro (Johnston, Ebbs ¢» Kaake, 1933). The British army conducted
a phage therapy research in the Middle East and the experiment was divided into four
small scales, of which two were reported as unsatisfactory results. The unimpressive result
of the third one was published in the British Medical Journal. The last experiment was
administrated judiciously and among the 32 enrolled cases, the control cases, and phages
treatment cases were 18 and 14, respectively. The outcomes of this research did not show
any remarkable result but a marginally better improvement of the treated cluster than the
control cluster (Boyd ¢ Portnoy, 1944; Goodridge, 2013).

Nonetheless, phage therapy has been successful in most cases. In 1938, Haler reported
the phage treatment of a dysentery epidemic caused by Shigella sonnei in which the patients
were administered with bacteriophages three times daily and the epidemic ceased after
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two days and no further case was observed for a year (Haler, 1938). In Poland (1941), 10
ml of local phage mixture containing sodium bicarbonate in a half cup of tea or coffee
was found effective against Shigella infection (Kliewe ¢» Helmreich, 1941). It has also been
shown, in 1945, that the effective proportion of a phage can be diluted up to a 1:10 ratio of
phage-bacterium injection. In a bacterial challenge experiment, mortality can be prevented
with phage treatment up to 4 days before the challenge or with maximum 3 h delay after
the challenge (Morton & Engley Jr, 1945). In 1957, the Hirszfeld Institute of Immunology
and Experimental Therapy (HIIET) in Poland applied phages to treat shigellosis and
other infectious diseases caused by antibiotic resistant bacteria, which were untreatable
by conventional antibiotics (Sulakvelidze, Alavidze & Morris, 2001). In the 1960s, a clinical
trial was conducted extensively to evaluate the efficacy of phage therapy against shigellosis
(Babalova et al., 1968). This study was performed in Tbilisi, Georgia in which 30,769
children were involved. The children, aged between 6 months to 7 years old were divided
into two groups, with one group being given tablet made of dried Shigella phages and the
other group a placebo, orally once a week, for each child. These children were monitored
for 109 days and the results showed that the occurrence of dysentery was nearly a fourfold
higher in the children given placebos than those treated with phages (Babalova et al., 1968).
In another investigation reported in 1984, Anpilov & Prokudin (1984) demonstrated that
the phage-mediated preventive treatment of shigellosis produced a ten-fold reduction in the
incidence of dysentery among the phage-treated patients. Miliutina ¢ Vorotyntseva (1993)
conducted an experiment on phage therapy and a combined phage-antibiotics treatment on
shigellosis and salmonellosis in 1993. They observed that the combined phage-antibiotics
treatment was more effective in some cases as compared to the antibiotics treatment alone.

There are many articles reporting successful treatments of Shigellosis in 21st century.
The efficacy of phages against multidrug resistant Streptococi and Pseudomonas as well
as some antibiotic resistant Enterobacteriaceae family members, including the genera of
Shigella, Salmonella, Serratia, Escherichia, Klebsiella and Proteus, have been investigated
(Kumari, Harjai ¢ Chhibber, 2010). These studies have largely confirmed the viability of
phage therapy as a treatment for gastrointestinal distress, particularly for Shigella. Zhang,
Wang ¢» Bao (2013) studied the ability of Shigella-specific phages and phage cocktails
to inhibit Shigella spp in chicken products. They concluded that phages with higher
concentration (3 x 108 PFU/g) could lyse bacteria more effectively in comparison to phages
with lower concentration (1 x 10% PFU/g), and that the Shigella-specific phages were able
to significantly reduce or eliminate Shigella spp. in the edible chicken products.

In summary, from the very beginning to the present day, the success rate of phage therapy
against Shigellosis has been promising. An intensive and extensive studies of anti-Shigella
phages could therefore help to identify alternative treatments for the increasing number of
drug resistant bacteria, and hence reduce the pressure to find new antibiotics. In the longer
term, greater use of phage therapy could help to reduce the emergence of new multidrug
resistant bacterial strains.

Tang et al. (2019), PeerdJ, DOI 10.7717/peerj.6225 14/31


https://peerj.com
http://dx.doi.org/10.7717/peerj.6225

Peer

Limitations, solutions and prospects for phage therapy

Despite all the advantages of phage therapy, it is still a long way from being the “magic
bullet” for treating infections, because many parameters (e.g., frequency and duration of
treatment, route of administration and optimal dose) have yet to be determined precisely
through clinical trials (Wittebole, De Roock ¢ Opal, 2014).

The major limitations of phage therapy are summarized below based on the reports
from a few research groups (Hermoso, Garcia & Garcia, 2007; Kutter & Gowrishankar,
2001; Matsuzaki et al., 2014; Nilsson, 2014):

I. A narrow host range as well as serotype specificity (which might reduce effectiveness
and coverage).
II. A single phage is inadequate for treating illnesses caused by multiple bacteria.
III. The release of various pro-inflammatory components (endotoxins and peptidoglycans)
from bacteria lysed by phages might cause problems in the human body.
IV. There is a possibility that resistant bacteria might emerge after treating with phages,
however phages can evolve and adapt to combat resistant bacteria.
V. Complicated pharmacokinetics and pharmacodynamics of phage treatments and
interference by anti-phage antibodies.

In addition, there are other problems associated with patenting, manufacturing, and
administration which often create obstacles for development of phage therapy. The lack
of a definite regulatory outline reflecting individualized therapies, or difficulties for the
pharmaceutical companies to register intellectual properties for phage and phage products
are some of the major problems in phage therapy (Nobrega et al., 2015; Young ¢ Gill,
2015). The eventual success of phage therapy will largely depend on the development
of appropriate strategies to overcome these limitations. In addition, adequate regulatory
framework must be created, appropriate safety protocols have to be implemented and the
general acceptance of public towards phage treatment is needed (Nobrega ef al., 2015).

Several initiatives have been taken to overcome the limitations in phage therapy. Phage
cocktails have been formulated, consisting of several phages with complementary features
(different receptors) which can play a vital role to overcome the limitations of a single
phage with its narrow host range (Chan ¢ Abedon, 2012; Chan, Abedon ¢ Loc-Carrillo,
2013; Goodridge, 2010). In addition, phage cocktails containing different types of phages
potentially capable of combating the same species and strains of bacteria could reduce
the emergence of bacteria resistant to phage (Chan & Abedon, 2012; Gu et al., 2012b;
Potera, 2013). A complementary approach proposed by Friman et al. (2016), where phage
cocktails can also be modified by including not only various phages, but also in vitro
evolved phages from different evolutionary time points (Friman et al., 2016). Moreover,
the host range of phages can be broadened by engineering their genomes to express
endosialidase (Ackermann, 2001) and by substituting the gene encoding putative host
binding proteins (Yoichi et al., 2005). In addition, the challenges of phage therapy may be
overcome by producing genetically modified phages (recombined-phage genomes, site-
directed mutagenesis, selected spontaneous mutants or phage display techniques) (Chhibber
& Kumari, 2012; D abrowska et al., 2014; Moradpour & Ghasemian, 2011). Mutated phages
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could also be used to overcome bacterial resistance as well as to prevent the human immune
system against phages (Matsuzaki et al., 2014).

The efficacy of phage therapy could be enhanced by utilizing the antimicrobial synergy
between phages and antibiotics. Torres-Barcelo et al. (2016) found a strong synergistic effect
on bacterial population density by applying treatment with combination of antibiotics and
phages. Their results indicated that phages not only could contribute in managing the level
of antibiotic resistance but also limit the consequences of bacterial virulence evolution.
In another study with experimentally challenged mice, Mai et al. (2015) demonstrated
that a combination of phage cocktail (5 Shigella specific bacteriophages) and an antibiotic
(ampicillin), designated as ShigActive™, was able to decrease Shigella counts effectively.
They did not observe any deleterious side effects of phage application during this study,
and the impact of phage cocktail on the normal gut microbiota was much lesser than that
caused by the treatment with generally recommended antibiotics (Mai et al., 2015).

This synergistic effect could hasten cell lysis and allow phages to spread more quickly
(Comeau et al., 2007; Ryan et al., 2012). Thus antibiotics conjugated to phages could enable
the delivery of antibiotics to specific cells and cause an increase in local drug concentrations
(Yacoby ¢ Benhar, 2008). At the same time, the antibiotic resistance of bacteria could be
minimized by applying phages to inject sensitizing alleles of the mutated genes (e.g., rpsL
and gyrA) for restoring drug efficacy. For instance, temperate phages have been used to
reverse antibiotic resistance of pathogenic bacteria by lysogenizing the genes gyrA and rpsL
in which both conferred sensitivity in a dominant fashion to two antibiotics, nalidixic acid
and streptomycin, respectively. This made the bacterial pathogens sensitive to antibiotics
prior to host infection (Edgar et al., 2012). In addition, the incorporation of genes that
inhibit stress responses, improve drug uptake or repress biofilm production can enhance
the antibiotic sensitivity of E. coli (Lu ¢ Collins, 2009).

A number of foodborne pathogens from the family Enterobacteriaceae including Shigella,
contain prophages which encodes the Shiga-like toxin, a major virulence factor. In S.
flexneri the O-antigen modification (serotype conversion) is a key virulence determining
factor, which is introduced by temperate bacteriophages (Allison ¢ Verma, 2000). A careful
screening of the phage genome for virulence genes would help to minimize the risk of phage
engineering. Another approach for the safe use of phage therapy is to use the viral gene
products (endolysins) instead of the whole phage particles (Fischetti, 2005; Nelson et al.,
20125 Schmelcher, Donovan ¢ Loessner, 2012). The use of gene products might eliminate
the risk of phages giving toxic properties to bacteria (Hermoso, Garcia ¢ Garceia, 2007)
and thus reduce the risk of resistance developing (Borysowski, Weber-D abrowska ¢ Gorski,
2006; Nelson et al., 2012; Schmelcher, Donovan ¢ Loessner, 2012).

Another important limitation of bacteriophage therapy is the capability of phages to act
only on outside of bacterial cell and the risk of being attacked by the in vivo anti-phage
antibodies (Singla et al., 2016). To overcome these risks, Singla et al. (2016) used liposome
as a delivery vehicle for phages. This study reinforced the growing interest to apply phage
treatment as a means to target multiple drug resistant (MDR) bacterial infections, as the
encapsulation of phages has increased the efficiency to overcome most of the difficulties
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and problems related to the clinical use (both in vitro and in vivo) of phages (Singla et al.,
2016).

As things now stand, most of the drawbacks of phage therapy have been overcome to
a lesser or greater degree, and phages are now capable of being successfully incorporated
into the era of multi drug resistant treatment. As further steps, next-generation sequencing
could be employed to determine genomic DNA sequences from multiple phage products,
which could reduce further the risks of phage therapy by eliminating harmful genes
and gene products (Matsuzaki et al., 2014). Recently the whole genomes of all five lytic
bacteriophages of the cocktail ShigaShield™ have been sequenced and analysed, and no
undesirable genes have been found, including those listed in the US Code for Federal
Regulations (40 CFR Chl) (Soffer et al., 2017). In addition, the multi-route administration
of phages (intramuscular, intravenous, intraperitoneal, subcutaneous, intranasal and oral)
would broaden the use of phage therapy as a potential agent in the future. Moreover,
the prophylactic use of phages and the development of vaccines using phages or phage
products would open up a new dimension for the prevention of antibiotic resistant
pathogens (Chanishvili, 2012; Morello et al., 2011). In addition, the active participation
of dysentery patients and a large scale trial of phage therapy against multidrug resistant
shigellosis and other dysenteries would enhance the acceptance of phage therapy as a
common treatment. Finally, it is essential to build up public awareness of phage therapy as
well as expand the availability of phages and phage therapy centres in order to expand and
exploit this potentially fruitful innovation.

CONCLUSION

Phage therapies for Shigella spp. and other pathogenic bacteria have been studied and
applied for about a century, but phage therapy as an antibacterial treatment in general
has not received much attention due to lack of clinical knowledge and public awareness
of phages. However, given that the development of novel antibiotics is laborious, time-
consuming and costly, it makes eminent sense to seek alternative antimicrobial approaches
to combat drug resistant pathogens. While it inevitably has some drawbacks, phage-
based biocontrol and bacteriophage therapy are very promising approaches to combat the
challenge of pathogenic bacterial infections, particularly when the search for new antibiotics
is stagnating. The potential of phage therapy has been acknowledged and revisited by many
scientists over the last few decades, and there has been a rejuvenation of research into
phage therapy. Moreover, phages have many unexploited potentials as an alternative to
antibiotics, both due to the range of intrinsic variation in their mode of action, also due
to almost unlimited variety of phages and their ability to evolve in situ to successfully deal
with bacterial resistance. The FDA has approved bacteriophages as GRAS and allowed
the application of phages as food additives in 2006, which is a significant boost to phage
therapy research.

Nevertheless, the therapeutic application of phages still requires extensive studies,
judiciously performed clinical trials, and importantly well-defined regulatory guidelines.
Currently, phage therapy is encouraged in many parts of the world because policymakers
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consider growing MDR as a serious health problem. This awareness should further
encourage researchers to study the biological properties of phages, which eventually
increases their safety and efficacy. Furthermore, genetically modified phages could help
to solve the issues of patent filing and as a result increase the interest of pharmaceutical
and biotechnology companies to produce phage-products. Finally, cocktails of natural
phages and genetically modified phages could open new perspectives for successful phage
therapy in the future, particularly against the major challenge of Shigella and Shigella-like
multidrug resistant bacteria.
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