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Abstract

Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history 

of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long 

disabilities that not only affect their livelihood, but also have an enormous societal economic 

impact. The rapid development of a neuroprotective or cytoprotective compound would allow 

future stroke victims to receive a treatment to reduce disabilities and further promote recovery of 

function. This opinion article reviews in detail the enormous costs associated with developing a 

small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course 

and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular 

unit components provide opportunities to intervene and optimize new cytoprotective strategies. 

However, adequate research funding is mandatory to allow stroke researchers to develop and test 

their novel therapeutic approach to treat stroke victims.
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Introduction

Stroke, in particular acute ischemic stroke is a major problem worldwide that is escalating as 

the worldwide population dramatically shifts to an aged state. With a global stroke incidence 

of 10.3–16.9 million annually, at least 5.9 million stroke-related deaths, and 25.7–33 million 

survivors that require some form of therapy or novel treatment, the former has still not been 

achieved and may not be achieved for decades if the current pace of research and level of 

funding are maintained.
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There are two ways to address the societal problem related to stroke, either prevent the 

occurrence of stroke, or design practical efficacious therapies to treat stroke. The discovery 

and development of the elusive neuroprotective therapy, which will herein be called 

“cytoprotective” for stroke is a time intensive process that is high cost and it can be high 

reward when a therapy is translated into the target patient population. There are no short 

cuts, no inexpensive drug screens, and no inexpensive model efficacy testing if the 

development process is to be transparent and adheres to current elevated research standards 

required for publication in Translational stroke research, stroke, Journal of Cerebral Blood 

Flow and Metabolism, and other high impact stroke-related journals.

The recent success of endovascular procedures with an extended therapeutic window has re-

energized stroke cytoprotection research and increased optimism that we can now make 

advances, consolidate efforts, and develop an effective cytoprotective therapy to be used in 

combination with endovascular procedures, or with recombinant tissue plasminogen 

activator (rt-PA), the only Food and Drug administration (FDA)-approved drug, a biologic 

for stroke. If we can demonstrate additional and significant clinical improvement with a 

cytoprotective compound in standardized translational embolic stroke models, in patients 

undergoing thrombolytic/endovascular procedures, then it should also be proposed to 

determine the clinical efficacy of the therapy. Another scenario is that the cytoprotective 

compound may reduce the side-effects of thrombolysis and make the treatment safer, thus 

reducing complications in stroke victims.

Stroke Is a High Cost Burden to Society

Stroke, cerebral infarction, and hemorrhagic stroke, have been recognized as a disease in 

man throughout the ages; various descriptions can be found in Hippocratic transcripts [1], 

and through the ages [2–8], most recently in the form of American Heart Association (AHA) 

updates [9–16]. Stroke is the fifth leading cause of mortality and leading cause of adult 

morbidity in the United States, and it is estimated that annually 800,000 people suffer a 

stroke in the USA [16], an incidence rate of 146–228 per 100,000. In Canada, there is an 

annual estimate of 62,000 strokes, an incidence rate of 92–197 per 100,000. The cost of 

stroke in North America range from $3.6 billion (Canada) to $34 billion (US) [17]. Table 1 

is populated with stroke incidence and estimated cost data for selected locations worldwide. 

Throughout the world, stroke is still a leading cause of mortality and morbidity. In the 

United Kingdom (UK), stroke incidence is similar to both Canada and the USA, an 

incidence of 115–150 per 100,000, with 152,000 reported strokes in 2016. In two major 

Asian countries, stroke is more prevalent than in the USA, UK, or Canada with an incidence 

rate of 301–517 per 100,000 in China and an annual incidence as high as 3200 per 100,000 

in Japan [18, 19].

The most recent Global Burden of Disease (GBD Stroke) Atlas and Demographic and 

Epidemiologic Drivers documents from Roth, Mensah and colleagues [20] conclude that the 

burden of stroke continues to increase, and this is threatening worldwide sustainability. 

While 10.3 million strokes occur annually, the GBD estimated that there were 25.7 million 

stroke survivors in 2013 [18]; 67% ischemic/33% hemorrhagic. The document clearly 
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demonstrates a significant increase in ischemic-stroke related deaths measured between 

1990 and 2013; a 50.2% increase globally [18].

Endovascular Procedures

Efficacy

The 2015–2016 endovascular trials, Multicenter Randomized Clinical Trial of Endovascular 

Treatment for Acute Ischemic Stroke in the Netherlands (MR. CLEAN) [21], Endovascular 

Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE) [22], 

Endovascular Revascularization With Solitaire Device Versus Best Medical Therapy in 

Anterior Circulation Stroke Within 8 Hours (REVASCAT) [23], Solitaire With the Intention 

For Thrombectomy as PRIMary Endovascular Treatment (SWIFT PRIME) Trial [24], and 

Extending the Time for Thrombolysis in Emergency Neurological Deficits-Intra-Arterial 

(EXTEND-IA) [25] demonstrated that a well-defined, but heterogeneous population of acute 

ischemic stroke patient with an NIHSS score range of 13–21 upon admission, can be 

successfully treated by thrombectomy in combination with the application of a thrombolytic.

In the five endovascular procedure trials, rt-PA (Alteplase) or urokinase were administered 

IVat least 120 min before the thrombectomy procedure. In the trials, thrombolytic 

administration was 85–145 min after enrollment, and endovascualr procedures were 

conducted in the embolectomy arm and within 87–145 min in the thrombolysis arm, both 

well within current FDA-approved guidelines. Moreover, in the embolectomy arm, the 

initiation of “thrombolysis” occurred well before the procedure. The studies used a range of 

endovascular times from 190 to 340 min and thrombolytic administration times of 65–180 

min. Efficacy was demonstrated by increased functional independence at 90 days, and a 

corresponding shift in modified Rankin Scale score (mRS) 0–2 (common odds ratio range of 

1.7–3.1) in 13.5–31% of patients undergoing the endovascular procedure. Assess the 

Penumbra System in the Treatment of Acute Stroke (THERAPY) [26] is an unpublished 

endovascular trial, and Trial and Cost Effectiveness Evaluation of Intra-arterial 

Thrombectomy in Acute Ischemic Stroke (THRACE) [27], which was positive, is pending 

final publication of the study results. Thrombectomy in patients ineligible for IV rt-PA 

(THRILL) was terminated early, in November of 2014, after other clinical trials 

demonstrated efficacy of thrombectomy [28]. Moreover, and Medical Management Versus 

Medical Management Alone in Wake Up and Late Presenting Strokes (DAWN) is an 

ongoing trial [29] as is POSITIVE, a trial to include patients ineligible for or refractory to 

treatment with IV rt-PA [30]. The trial is designed to include appropriate image selection 

(ASPECTS of >7) and patient treatment with mechanical thrombectomy within 6–12 h of 

symptom onset.

In summary, thrombectomy has now been shown to be safe in patients with large vessel 

occlusions, salvageable brain tissue (i.e., large penumbra) with small infarct areas Alberta 

stroke program early CT score (ASPECTS) score 7–10, and median National Institute of 

Neurological Disorders and Stroke (NINDS) score of 16–17. Moreover, meta-analysis 

published by the Highly Effective Reperfusion evaluated in Multiple Endovascular Stroke 

Trials (HERMES) collaboration (Goyal et al. 31) also reveals that optimal reperfusion 

outcome is achieved when ASPECTS was 6–8 or 9–10 indicating a significant amount of 
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penumbra, when the embolus was located in either the internal carotid artery (ICA) or M1 

segment of the middle cerebral artery (MCA), and when intervention was initiated ≤5 h. 

There were no significant gender differences, but age-dependent improvement was observed. 

There was benefit in patients 50–80 years of age, but less benefit between 18 and 49 years of 

age. In Table 2, mRS shift analysis for each of the published embolectomy trials is 

presented.

There is now important and compelling evidence resulting from retrospective analysis of the 

embolectomy trial database [32–36], demonstrating that embolectomy alone in patients 

ineligible for rt-PA is beneficial [37] based upon mRS scores, and reperfusion measures (See 

Table 2). Notably, benefit was observed in patients with ASPECTS scores of 8–9 [37] 

indicative of large penumbral areas as a physical “substrate” for therapy. In rt-PA ineligible 

patients, 43.5% of the patients were mRS 0–2 in the intervention arm compared to 22.3% in 

the control arm.

Cost-Effectiveness

The recent AHA/ASA guidelines now state that patients eligible for IV rt.-PA should receive 

the thrombolytic whether or not endovascular procedures can be performed because of 

demonstrated efficacy [38]. The cost-effectiveness of thrombectomy procedures in the 

United Kingdom, United States and Canada has been documented in a series of recent 

articles. Xie et al. Canadian-based authors reported that there was a calculated incremental 

cost-effectiveness ratio (ICER) of $11,990 per quality-adjusted life-years (QALYs) for 

thrombectomy plus IV thrombolytic [39]. Likewise, Aronsson and colleagues [40] used a 

Markov model to conclude that thrombectomy with thrombolysis increased QALY by 0.99 

years and with a cost saving of $221 per patient, benefiting the health care payer as well as 

the patient. The third cost-analysis study, using a real world dollar analysis found that 

endovascular procedures over IV rt.-PA alone was more than $163,000 amounting to more 

than $8 billion for every 50,000 patients treated [41].

The report by Lobotesis et al. [42], which is written from the healthcare provider perspective 

suggests that the high cost of endovascular procedures with thrombolysis (SWIFT PRIME 

patients) can be offset because the stroke patient has improved quality of life and health 

status. Numerically, the benefit per patient is £79,402 (appx. $103,530 USD). In the Canada 

assessment using a Markov model, the cost effectiveness of thrombectomy was compared to 

IV thrombolysis. The analysis showed that thrombectomy was more expensive than 

thrombolysis by $2520, and thrombectomy was associated with a cost-effective ratio of 

$11,990 per QALY gained by the patient. Thrombectomy was cost-effective since it 

significantly improved independence [43]. The same conclusion was reached by 

Ganesalingam et al. [44] in an earlier study.

Thrombolysis

Efficacy

The thrombolytic, rt.-PA (Activase) was first approved by the FDA in 1996 and is now 

widely accepted, yet underutilized as a standard-of-care treatment for ischemic stroke. rt.-PA 
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use remains controversial according to a recent publication [45]. Over the last 20 years, the 

cost of a single use vial of rt.-PA has escalated from $2000 (per dose/100 mg vial) in 1995 

[46], reported cost of $2746 CDN ($2470 USD) in 2006 [47] to the current list price market 

value of $9954.22 for a 100 mg vial of drug, which is to be administered IV at a dose of 0.6–

0.9 mg/kg [48–51]. Activase has been shown to be effective up to 4.5 h after a stroke [ 52, 

53], is beneficial with thrombectomy up to 6 h after a stroke [31], but it is currently FDA-

approved for use within a 3-h therapeutic window. It has been difficult to estimate the actual 

use and application of rt.-PA in eligible stroke victims, but it has been suggested that less 

than 7–10% of stroke patients are being treated with rt.-PA in the United States [54–56] 

despite the fact that rt.-PA may be beneficial in up to 50% of patients provided the drug as a 

treatment option [51]. A recent hospital census showed that rt.-PA use is between 6.5 and 

7.2% in the 18–64 and ≥90 year old population, respectively [57, 58].

Cost-Effectiveness

Early articles by Taylor et al. [59, 60] indicated that an ischemic stroke has a financial 

burden of $90,981 (unadjusted 1990 value) and the lifetime cost associated with all stroke 

occurring in 1990 (i.e., estimated 392,344 stroke patients) was $29.0 billion. By 2010, 

Boudreau et al. [61] estimated that the financial burden due to stroke escalated to $74 billion 

in the USA. Importantly, cost analysis from the ECASSIII trial showed an age-dependent, 

incremental cost benefit of $6255 per QALY for victims less than 65 years old and $35,813 

per QALY for victims above 65 years old. The cost benefit was also dependent upon NIHSS 

scores, in patients with NIHSS 0 to 9; the benefit was $16,322 per QALY; NIHSS 10 to 19 

increased to $37,462 per QALY, and high NIHSS scores ≥20 corresponded to a very low 

cost benefit ($2432 per QALY). In a subsequent analysis by Boudreau et al. [62], they 

reported that rt-PA use is associated with a lifetime cost-saving of $25,000.

In summary, as reviewed in sections 2.0 and 3.0, reperfusion therapy procedures 

(thrombolysis and endovascular procedures), when provided as a monotherapy or when a 

thrombolytic was provided prior to an endovascular procedure, improved the health and 

well-being of stroke patients. However, as indicated above, there is substantial room for 

additional improvement over either reperfusion technique, and there may be an opportunity 

to expand the therapeutic window to enroll additional patients. This can all be achieved with 

a cytoprotective agent add-on to achieve increased clinical improvement, enhance the safety 

profile of thrombolysis, or extend the therapeutic window for current treatments [63–67]. 

The goal of the next section is to develop the path forward for the development of 

neuroprotective therapies.

The Rigorous Path to Demonstrate Neuroprotection: Animal Models

To develop new neuroprotective stroke therapies, high quality translational studies that 

incorporate STAIR [68], RIGOR [69–71] and CAMARADES [72, 73] guidelines are 

mandatory. The limited “therapeutic window” for thrombolytic and embolectomy efficacy 

described herein should be recognized as critical to the success of future therapies. 

Arguments have been made for rapid administration of therapy [74–76], and the 

recommended DTNT for thrombolytic therapy administration is less than 1 h [75, 77–79], 
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within the golden hour window. Nevertheless, all embolectomy trials described in section 2 

used a treatment window 5 or more fold in excess of that recommendation, and efficacy was 

still demonstrated, either with or without rt-PA. The fact that enhanced efficacy and safety 

were measured when a thrombolytic was pre-administered to patients may be an important 

factor, but it is not a critical component to demonstrate significant clinical efficacy as 

reviewed above and in HERMES [37] and by Mokin et al. [80].

Caveats

The progression of an ischemic stroke occurs over a non-linear timeline, affecting as many 

as seven different cell types in brain [81], with neurons being the most vulnerable. The 

spatial and temporal profile of cell damage and cell death following a stroke is highly 

dependent upon location (i.e., stroke core, penumbra, vascular); core cells cannot be saved, 

but penumbral cells can be saved. The temporal profile of differential cell death of 

neurovascular unit components should be viewed as an opportunity to intervene at different 

targets using pharmacological therapeutics directed toward specific pathways and processes, 

with the possibility of intervention being initiated at different time post-stroke. For instance, 

based upon in vitro cell profiling, it appears that neurons are most sensitive to insult, and 

that neuronal death is an irreversible process, thus rapid intervention for “neuroprotection” is 

required. Let us recall the hypothesis of Saver regarding the “golden hour” [74] and propose 

that the window should be no longer than 1 h in order to target neurons. Thereafter, targeting 

endothelial cells, pericytes, microglia, and neuroglia with a cytoprotective will be most 

important since they are the next cells recruited by death pathways.

Because of the differential sensitivity of brain cells to ischemia, it may be feasible to 

intervene at multiple stages post-stroke to provide optimal cellular protection and survival, if 

the tacit assumption, that there is a similar time-line in vitro in lissencephalic and 

gyrencephalic animals and then in humans. Taken together, collectively or individually 

(second phase, third phase, and so forth), each cell type may represent additional therapeutic 

targets. While this hypothesis is highly sensible, the approach to multiple targets may be 

problematic from a drug development efficacy and safety point of view, as well as regulatory 

standpoint.

Translational Stroke Research

There are still no guidelines documenting the “optimized” drug development path to achieve 

success with a cytoprotective therapy, whether the therapy be a small molecule or protein. 

This is evidenced by the diversity of studies published in the literature, and extreme diversity 

of critiques from special emphasis panels at National Institutes of Health (NIH), National 

Institute of Neurological Disorders and Stroke (NINDS), American Heart Association 

(AHA), and a variety of international funding agencies and foundations. As an effective first 

approach to aid stroke researchers with therapy development challenges, this section will 

deal with proposed guidelines that should be considered when designing translational 

studies.
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Drug Development Considerations

Standard industry drug development guidelines should be considered by researchers 

interested in applying their research to developing a drug through to fruition, a clinical trial 

end-point. The development of a CNS-active drug to treat stroke requires special attention 

since they must be able to cross the blood-brain barrier (BBB) to penetrate into the 

penumbra. This can be taken into consideration when developing molecules using the 

Lipinski rules as well as utilizing BBB penetration assays (in vitro) for primary candidate 

selection and then in vivo for drug development [82–84]. Moreover, during the initial stages 

of drug development, rapid and cost-effective toxicity screens (CeeTox and micronucleus 

assays) can help eliminate compounds with excessive unwanted “side effects”.

Table 3 provides a guide and references for many useful drug-development profiling tools 

alongside current market costs for the assays from North American and international sources 

cited in the table legend. This information is provided so that the reader of this article will 

understand standard costs associated with the drug development process; the authors do not 

endorse any specific contract research organization (CRO) to conduct the assays.

As can be gleaned from Table 3, the cost per compound for basic profiling (Steps 1–8) can 

be in the range of $52,000–135,000 excluding in vivo PK, BBB penetration, and blood 

chemistry analysis (Steps 9–10), which should only be performed after a comprehensive in 

vitro chemistry profile is documented. For screening of libraries of just a few small 

molecules, profiling costs can easily amount to $1–5 million during the compound selection 

process. Nevertheless, the funnel approach at initial stages is cost-effective and highly 

recommended.

Steps subsequent to molecule characterization, include animal-based testing and 

development for both efficacy and safety in appropriate stroke models [69, 71, 102–105]. It 

is essential to include multiple species in a drug development plan, and incorporate gender 

[106], aging, and comorbidities normally associated with the aged stroke patient [32–37, 

107–110]. With two current standards-of-care therapy for ischemic stroke, both of which 

target the blood clot, which is causal for ischemic stroke, it would be pragmatic to use 

embolic stroke models during the drug development process to accurately model the target 

population [see [111–115]], and not rely solely upon similarities between ischemia and 

embolism-induced stroke [111].

• Moreover, although not commonly utilized in stroke research, in vivo analysis of 

blood chemistry, CBC, PK, and BBB penetration profiles should be conducted 

using animal models of embolic or ischemic stroke where there is known BBB 

breakdown [116–120]. This would better reflect drug administration in the stroke 

patient population, and accumulation in the penumbral target.

Table 4 presents FDA-recommended [121–123] drug-development and testing scheme 

inclusive of standardized efficacy and toxicity testing in two species with partial or full dose-

response analysis, which would allow for selection of a maximum recommended starting 

dose (MRSD) in patients. The information in this Table pertains to a single drug 

development scheme, with a fixed administration time following a stroke.
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However, there are now caveats that must be considered when developing a cytoprotective 

agent.

1. First, the term “neuroprotective” or “neuroprotectant” has the inherent 

implication that only nerves or neurons are being saved. We now have a better 

understanding that neurons are not the only target of importance. For example, as 

early as 2004, a series of articles dedicated to the neurovascular unit were seeded 

in the literature [129–137]. Over time, our understanding of the neurovascular 

unit has evolved to a point where we now believe that the unit is integrated, and 

that cytoprotection of all components may be necessary to achieve significant 

and optimal improvement following a stroke.

2. Secondly, recent published information suggests that a variety of cell types 

within the neurovascular unit are affected by ischemia on very different time-

courses. For example, it appears that neurons are most vulnerable to ischemia, 

followed by brain endothelial cells, pericytes, microglia, and then astrocytes 

[138, 139]. In rodent models of ischemia, it has also been established that 

oligodendrocytes survive the insult longer than neurons, and astrocytes are least 

sensitive to ischemia [81]. The damage and death time-course of different 

cellular populations should not be overlooked, and in fact, should be used as an 

advantage (See Fig. 1).

In Fig. 1, we present the time-course for cell death extrapolated from in vitro cell culture 

models and directly compare cell death with our current understanding of the ischemic 

cascade. There are many opportunities for pharmacological intervention to attenuate the 

evolution of the cell death cascade.

2.1. If the sequence of cell vulnerability and death in vivo in man and animals is the 

same as described for cells in vitro in a culture dish, then we can attempt to 

target different cell types using specific molecules after the initial stroke insult 

and prior to or following intervention with thrombolysis and/or endovascular 

procedures. Of course, this innovative treatment schedule proposal comes with 

its own caveats.

2.1.1. The development process for multiple drugs used in sequential 

combination is unknown and has not been established.

2.1.2. In stroke patients, it is often difficult to ascertain the exact time of 

the stroke event. Thus, the therapeutic window will not be well-

defined for each individual.

2.1.3. Success will depend upon administration of drugs during critical 

therapeutic windows for each cellular component.

2.1.4. Initial demonstration of success may depend on the presence of the 

physical substrate utilized in endovascular procedure trials 

(ASPECTS >8).

2.1.5. Efficacy testing in multiple species will require extensive funding.
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2.1.6. Animal testing for toxicity profiles and tolerated doses will require 

extensive funding.

Conclusion

rt-PA is cost-effective. Endovascular procedures are cost-effective. Can efficacious and cost-

effective cytoprotection for stroke be achieved within the next 5 or 10 years? There are many 

promising therapeutic intervention opportunities available that should be tested in stroke 

victims in combination with thrombolysis and endovascular procedures, since both 

interventions provide significant reperfusion benefit in patients. Randomized, blinded, 

controlled clinical trials should not be initiated for any compound or device until the 

cytoprotective strategies are thoroughly investigated in multiple species, including a rodent, 

and one or more thoroughly validated large animal models representative of the target stroke 

population. This will provide the heightened level of de-risking of the development process, 

to reduce the unending trend for failure in stroke victims.

Funding agencies worldwide should be cognizant of the inherent costs to develop 

cytoprotectives, in particular small molecules that must undergo a lengthy series of profiling 

and screening assays for efficacy and toxicity.
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Fig. 1. 
Sequence of cell death following ischemic stroke. This figure is a comprehensive composite 

constructed from literature data [81, 111, 138, 140–142] mined from various primary and 

secondary sources. It shows the apparent time-course of cell death for neurons, endothelial 

cells, pericytes, microglia, and astrocytes (in order) derived from in vitro oxygen-glucose 

deprivation studies detailed by Redzic et al. [138] and discussed by Carmichael [81]. 

Moreover, the cell-death time-course is compared to our current understanding of the 

ischemic stroke cascade constructed from data described in the literature [81, 140–145]. 

Since cells die with different time-courses, there may be multiple opportunities for 

cytoprotective strategies to be administered to promote cell survival and improve clinical 

function, but the rapid death of neurons will limit neuroprotective strategies
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