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Abstract

Introduction: Step counting can be used to estimate the activity level of people in daily life; however, commercially avail-

able accelerometer-based step counters have shown inaccuracies in detection of low-speed walking steps (<2.2 km/h),

and thus are not suitable for older adults who usually walk at low speeds. This proof-of-concept study explores the

feasibility of using force myography recorded at the ankle to detect low-speed steps.

Methods: Eight young healthy participants walked on a treadmill at three speeds (1, 1.5, and 2.0 km/h) while their force

myography signals were recorded at the ankle using a customized strap embedded with an array of eight force-sensing

resistors. A K-nearest neighbour model was trained and tested with the recorded data. Additional three mainstream

machine learning algorithms were also employed to evaluate the performance of force myography band as a pedometer.

Results: Results showed a low error rate of the step detection (<1.5%) at all three walking speeds.

Conclusions: This study demonstrates not only the feasibility of the proposed approach but also the potential of the

investigated technology to reliably monitor low-speed step counting.
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Introduction

Regularly performing physical activities is important
for people to keep a healthy condition, especially for
older adults with mobility limitations.1,2 The beneficial
effects include reducing health risks associated, for
instance, with diabetes, cardiovascular diseases, depres-
sion and anxiety.1,2 Walking is one of the most
common lower extremity physical activities that is con-
ducted by the majority of the population including
seniors. Step detection and counting provide a basic
but robust measurement of individual’s physical activ-
ity level.3 Objective and accurate monitoring and feed-
back of step counts would provide an assessment of
physical activity level that might further motivate
people to exercise more.

A number of wearable step-count devices, such as
pedometers based on accelerometers, have been devel-
oped to monitor walking and other activities, and many
are currently commercially available.4,5 Most of these
devices are based on accelerometers and inertial meas-
urement units, which separate the gait cycles according
to the changes of acceleration signals to count steps.6

These inertial-based step-count devices are accurate for

detecting moderate and fast walking steps.4–6 However,
when the walking speed is low, as in the case of the
older adults, their accuracy can be unsatisfactory.7–9

Specifically, the step-count accuracy drops significantly
from >97% at speeds between 2.9 and 3.2 km/h to
about 56% at a speed of 1.4 km/h using a pedometer
attached to healthy volunteers’ hips.5 Melanson et al.
also found that the pedometer accuracy decreased with
increasing age, which is possibly due to decreased walk-
ing speed. Foster et al.4 examined the accuracy of the
commercially available pedometers Omron (Kyoto,
Japan) and Accusplit (Pleasanton, USA) worn on the
ankle and found a similar result, that is pedometers are
accurate at high walking speed (>98% at 4.7 km/h) but
inaccurate at low speed (<65% at 1.4 km/h). Lisa et al.8
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investigated the effect on the accuracy of wearing a
commercially available step-count device (Fitbit, San
Francisco, California, United States) in two different
body positions in older adults. Forty-two senior par-
ticipants (average of 73 years) walked at seven different
speeds (1.0–3.0 km/h) following a pacesetter, wearing
the device on their ankle and waist. The authors
found that accuracies of the step counter on both
ankle and waist positions decreased from high speed
to slow speed. Interestingly, the step counter on the
ankle achieved significantly higher accuracy than that
on the waist.

In this exploratory work, the use of force myography
(FMG) is investigated as an alternative solution to
accelerometry for step counting. FMG is a muscle
activity-sensing technology that has recently been
investigated primarily for upper extremity gesture rec-
ognition and prosthesis control.10–14 FMG is often rec-
orded by using force-sensing resistors (FSRs)
surrounding a limb to register the volumetric changes
of the underlying musculotendinous complex during
muscle activities. FSRs are thin and inexpensive poly-
mer film devices which exhibit a decrease in resistance
when an increase in force is applied to its sensing
region.15 FSRs have been used in shoes and insoles to
monitor gait activities through the estimation of foot
pressure distribution on the ground.16,17 Steps can be
robustly derived from gait gestures recorded by shoes
and insoles, with each step starting from heel-stride and
ending by toe-off. Although these step counters are
accurate, their use is often impractical for seniors to
use at home as insoles must be adjusted to each differ-
ent pair of shoes (e.g. not suitable for most slippers)
and shoes must be instrumented. Additionally, this
approach cannot be used for counting steps when indi-
viduals walk with bare feet, which is often the case of
seniors walking at home (e.g. in North America).

Inspired by the successes of detecting upper extrem-
ity activities using FSR bands on the forearm or the
wrist,10,11,14,18 we intend to examine whether the FMG
worn on the ankle is able to detect steps accurately,
especially for low-speed walking. During a stance,
such as a foot-flat stance, the extensors of the lower
extremity muscle group contract to maintain the
stance to counter the weight of the body exerted on
the foot; whereas during a swing phase, flexors of the
lower extremity are mostly involved.19,20 The contrac-
tion and relaxation of the extensors during the flat-foot
stance and flexors during swing phases would exert dif-
ferent force distributions on the FSR band resulting in
distinctive FMG patterns. We hypothesize that the
FSR band on the ankle will be able to detect slow
steps accurately.

This research explores the feasibility of using an
FSR band, worn on the distal end of the leg, to
detect steps. Eight participants walked on a treadmill
at three different speeds (1.0, 1.5, and 2.0 km/h) with
the FMG signals recorded using a custom-made wire-
less band containing eight FSRs. Two external FSRs
were attached to the heel and toe to record the move-
ments of heel-stride and toe-off for true step data.
The signals were then used to train and test K-nearest
neighbour (KNN), support vector machine (SVM),
neural network (NN), and linear discriminant analysis
(LDA) classifiers.21–23 The results demonstrate a feasi-
bility of using FMG on the ankle for low-speed step
counting.

Experiment set-up

The FSR band, shown in Figure 1(a), is the main device
in the experiment, which contains an array of eight
FSRs. A FSR is composed of a conductive polymer
that undergoes a change in resistance when a force is

Figure 1. Experiment set-up. (a) The FSR band composed of a Bluetooth module, Arduino pro mini, 3.5 V battery and eight FSRs, (b)

the FSR band mounted firmly at the ankle position, and (c) two FSRs attached on the bottom of heel and toe for labelling when the

foot is in the air or the ground. FSR: force-sensing resistor.
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applied to it. When applying no pressure on the sensor,
the voltage reading will be zero because of high resist-
ance; if a force is applied, then the sensor’s resistance
decreases, causing an increased voltage reading. The
InterLink 402 FSRs (InterLink Electronics Inc.,
Camarillo, California, United States), with a diameter
of 18.3mm and force sensitivity range from 0.1
to 10N,15 was chosen for the study. As shown in
Figure 1(b), the FSRs were placed approximately
3.2 cm apart on a thin layer of plastic sheet, with a
total length of 32 cm, to provide a firm back support.
A Velcro tape was attached to the end of the band
allowing it to be easily and firmly tied around the sub-
ject’s lower limb. The FSR band used a microcontrol-
ler, Arduino pro mini (Arduino, Somerville, MA,
United States), to measure the pressure and send the
raw data back to the host computer using a Bluetooth
module. The system was powered by a 3.2V battery. As
shown in Figure 1(c), a labelling system, which consists
of two FSRs, was built for sensing foot pressures
against the ground to determine the stance and swing
periods as true class labels. A LabVIEW (National
Instruments Inc., Austin, Texas, United States) inter-
face was programmed to record the raw data from both
the band and the two labelling FSRs.

Participants

Eight healthy adult participants (seven males and one
female, age 23–45) were recruited for the data collec-
tion. All the participants were able-bodied and self-
reported to be 100% functional with their feet. All
the participants read and signed the consent form
before entering the study. The ethics form for the
study had been previously approved by the Office of
Research Ethics of Simon Fraser University (Study
Number 2014s0590).

Protocol and procedure

The participants walked in their usual gait style on the
treadmill while wearing the FSR band on their left leg,
2 in. above the ankle. Two labelling FSRs (FSRheel and
FSRtoe) were attached on the heel and toe of the same
foot, respectively, using an electrical tap. The strap was
tightened comfortably around the ankle position ensur-
ing that the pressure of the strap would not restrict the
subject’s movement during the experiment; but at the
same time, all sensors on the band were able to cover as
much the skin of the ankle as possible. For consistency
across subjects, the band was kept in a constant pos-
ition (�2 in. above the ankle) by keeping the circuit
board at the inner side of the leg. Subjects were asked
to walk for five trials; in each trial, participants walked
at three different speeds, which were 1.0 km/h (speed 1),

1.5 km/h (speed 2), and 2.0 km/h (speed 3), respectively,
for 42 s each. The three speeds were selected from the
interface of the treadmill because the literature indi-
cated that the extremely slow human walking speed is
about 1 km/h24 and the preferred human walking speed
at treadmill is about 4 km/h.25 The 42 s data collection
was selected as it was noticed that this would allow
collecting about 20–30 steps at all three speeds. The
sampling frequency of the FSR band was 10Hz. The
FSR band was not removed throughout the experi-
ment. The execution order of the speed of each trial
was arranged in a counterbalance measure design
between subjects.

The detailed data collection procedure is described
as follows. The subjects took their shoes off, and the
FSR band was donned on the left leg. The other two
sensors were positioned and taped on the down side of
subject’s heel and toe, respectively, for labelling pur-
pose. Before data collection, the participant was
asked to walk on the treadmill for about 1min to famil-
iarize with the treadmill; none of them reported that the
wearing of the band affected their walking on the tread-
mill. Before each trial’s data collection, the treadmill
was turned on and set to one of the three target
speeds and the participant started walking on the tread-
mill for a few seconds to ensure the data were not
affected by the acceleration of the treadmill. Then the
experimenter hit the ‘Record’ button on the LabVIEW
interface to initialize the data recording. Each trial with
one speed lasted for 42 s and the experimenter termi-
nated the speed trial’s recording and saved the data
(420 samples) into a speed-trial file for offline analysis.
A total of 15 speed-trial files (three speeds each for five
trials) data for each subject were collected. Between
each trial, the subject could choose to rest if they
needed, and the experimenter checked the band to
make sure it was not loose nor significantly slipped
out of position.

Data analysis

The collected data were stored and analysed offline
using MATLAB. Figure 2(a) shows the raw data
obtained from the FSR band for one subject during
one trial at one speed.

KNN algorithm was used to determine the perform-
ance of the system with the collected data. This simple
yet very effective machine learning technique has been
used in different gait analysis research, such as
classifying patients with respect to balance disorders,26

predicting falls,27 and recognizing human gait events.21

In addition, when compared to more complex
machine learning algorithms, such as SVM and NN,
KNN is able to be trained faster and achieve high
accuracies.22
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KNN is a non-parametric method in which the pre-
dicted label is determined by the majority votes of the
class of its neighbours within a determined distance,28

which is computed by Euclidean distance. It is
defined as29

d ðx,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ
2

s
ð1Þ

where x and y are two points. Inside the boundary of
the distance, k closest neighbours from the target data
point are chosen to predict the output label. To inves-
tigate the best performance of the KNN classifier, the
optimal value of k was investigated by assessing the
effect of the number of nearest neighbours that varied
from 1 to 50 on the performance of step counting. The
KNN classifier used for the study was from MATLAB
Statistic and Machine Learning Toolbox.

Before applying KNN, the raw data were labelled
into stance or swing phases according to the signals
recorded from the underfoot labelling FSRs. The start
of a stance phase was defined when the heel strode the
ground, and the end of a stance phase (the start of
swing phase) was when the toe left the ground. The
start of a stance phase was determined when the
value of the FSR on the heel increased to a threshold,
and the end of the stance phase was identified when the
value of the toe FSR increased to its maximum and the

value of the FSR on the heel decreased to under a
threshold. The threshold in this study was empirically
set to 30% of the maximum label FSR signal ampli-
tude. Figure 3 shows the raw data from the two label-
ling FSRs and the labels after applying the threshold.
The labelled FSR data were then used for training and
testing the machine learning model.

To evaluate the performance of the proposed FSR
band, a five-fold cross-trial validation method was
implemented. Data were divided into testing data and
training data. The testing data used one trial out of the
five trials and the rest of the four trials were used as
training data. This process was repeated until all five
trials were used as testing data. The data, both training
data set and testing data set, were normalized using
maximum and minimum values from the training
data set.

All data points from FSR signals were normalized
using the maximum and minimum values of the signals
according to the following equation

data0x ¼
datax �minðxÞ

maxðxÞ �minðxÞ
ð2Þ

where datax is the original signal, data0x is the normal-
ized signal, minðxÞ and maxðxÞ are the minimum and
maximum values in the training signal, respectively.
The normalized data from FSR band is shown in
Figure 2(b).

Figure 2. Examples of raw and normalized FSR signals. (a) A segment of four-step raw FSR signal from subject 1, trial 4, speed 2 and

(b) the normalized FSR signal from the same segment signal of panel A, where each trial was normalized using the maximum and

minimum values of signals of the trial. FSR: force-sensing resistor.
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The KNN model was trained using the normalized
training data and testing data. To evaluate the device’s
performance, we compared each of the predicted
sample labels (stance and swing) to the true sample
labels derived from the underfoot FSR signal. The
sample-based error for each speed trial was determined
by the percentage of the incorrectly predicted labels
compared to true labels. The sample-based accuracy
of each speed for a subject was the average of the
sample accuracies of the five trials.

As the performance of FSR band as a pedometer is the
main interest of this paper, we further evaluated the step-
count error based on the sample-based classification. The
step-count error is calculated by comparing the number
of steps counted from the true sample labels of the testing
data set with the number of steps counted from the
sample labels predicted by the classifier. A step includes
a stance phase and a swing phase in a continuous
sequence, which are defined in the ‘Data analysis’ section,
and are measured from the signals from the underfoot
labelling FSRs, as shown in Figure 4.

Before calculating step-count error rate, filtering was
applied to the predicted steps to remove small steps that
were generated by the incorrectly predicted samples. As
shown in Figure 5(a) there are seven small ‘Swing’
spikes and 1 small ‘Stance’ spike, which should not be
considered as steps. The method used applied a simple
threshold filtering on the stance phase and swing phase.
If the width of the current phase had a smaller value

than the threshold, then it would become the opposite
phase. The threshold value for the stance phase was
four samples, and the value for swing phase was two
samples. The stance phase used a higher threshold
value because, in a step, the duration of stance phase
took longer than the swing phase. Swing phase was
filtered after the filtering of the stance phase. As
shown in Figure 5(c), the small steps were smoothed
after applying the filtering. The first and last steps
were also removed because the first and last step poten-
tially could be counted as uncompleted steps.

The following equation was used to calculate the
step-count error by calculating the percentage differ-
ence of the true step number and the predicted step
number

Step-Count Error ð%Þ

¼
StepNTrue � StepNpredicted

StepNTrue
� 100

����
���� ð3Þ

where StepNTrue is the number of true steps calculated
from the labelling system and StepNpredicted is the
number of predicted steps calculated from the KNN
classifier.

The step-count error rate calculated by equation (3)
might not reflect the real accuracy of the step counter
since it is possible for a step counter to predict both
false positive and false negative steps in a trial resulting
in a higher accuracy compared to the actual accuracy.

Figure 3. The FSR signal from the two labelling FSRs (FSRheel and FSRtoe) and the labels (orange) (subject 1, trial 4, speed 2) after

applying threshold. FSR: force-sensing resistor.
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Figure 4. Definition of the start and end of swing/stance phase (step). A step includes a stance phase and a swing phase. The light-

blue circles are the threshold labels indicating the data in swing or stance phases, which are measured from the signals from the

underfoot labelling FSRs.

Figure 5. Step filtering process to remove noisy steps. (a) Predicted label – without filtering (subject 8, trial 1, speed 2) shows the

unfiltered steps, (b) Predicted label – with stance filtering shows the result using a four-sample threshold, and (c) Predicted label – with

swing filtering shows the result using a two-sample threshold.
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Thus, the true positive rate of the step count was fur-
ther verified by only using the calculated percentage of
true positive steps over all true steps (equation (4)). In
Figure 6, the blue circle shows the predicted steps are
false positive, while the red one shows the predicted
step is correctly predicted. To determine the correct
predicted steps (true positives), the start and end of
each predicted step were used for assigning the pre-
dicted step to the closest labelled true step. For ana-
lysis, the number of each true step, which was assigned
by the predicted step, was counted. The predicted step
was truly positive only if one predicted step was
assigned to one true step. If there were two predicted
steps assigned to a true step, then it would not be
counted as true positive. After finding all the correctly
predicted step counts, the following equation was used
to compute the corrected step-count accuracy

True Positive Rate ð%Þ

¼
Number of True Positive from Predicted Steps

Number of True Steps
� 100

ð4Þ

To further explore whether the FMG band was valid
using general machine learning algorithms, three add-
itional mainstream supervised learning algorithms
including SVM, NN, and LDA were employed to
evaluate the performance of the step counting in a
way similar as KNN. A performance comparison of

KNN, SVM, NN, and LDA is summarized in
Table 1, according to MathWorks.30 For the detailed
description for these learning algorithms, see Chen and
Wang.23 The SVM, NN, and LDA were implemented
using the corresponding functions from MATLAB
Statistics and Machine Learning Toolbox. The param-
eters (gamma and alpha) for SVM were optimized
based on the training data,12 and the number of
layers of NN and the number of neurons in each
hidden layer were set to default of 1 and 10, respect-
ively. The discriminant type of LDA was pseudolinear
and the linear coefficient threshold was set to a
default of 0.

A two-way analysis of variance (ANOVA) was
employed to examine whether there were significant
differences of step-counting accuracies between differ-
ent algorithms and the walking speeds, in terms of
sample-based and step-based error rates, respectively.

Figure 6. Example of true and predicted step labels (subject 7, trial 3, speed 2). The blue circle shows one true step is predicted as

two steps (false positive) and the red circle shows a true positive step.

Table 1. Performance comparison of KNN, SVM, NN, and

LDA.

Learning

method

Prediction

speed

Memory

usage Interpretability

KNN Medium Medium Hard

SVM Slow Large Hard

NN Slow Medium Hard

LDA Fast Small Easy

KNN: K-nearest neighbour; LDA: linear discriminant analysis; NN: neural

network; SVM: support vector machine.

Chu et al. 7



Post Hoc pair comparison (Tukey HSD) was further
conducted if there was any significant effect of the vari-
ables on the accuracy. The significance level was set to
p-value¼ .05.

Results

A total of 40 trials from eight subjects (each subject
performed five trials at three different speeds) were col-
lected. Three trials have been removed (two trials had
unsynchronized data and one uncompleted trial), leav-
ing only 37 trials used for analysis.

(1) Classification errors using KNN

The sample-based accuracy was calculated from the
correctly predicted number of samples in stances and
swing states over the number of total samples in each
speed trial for each subject, by comparing to the ground
truth samples labelled by the two FSRs on the heel and
toe. The mean sample-based error over three speeds for
all eight subjects was 9.9� 0.1%a using KNN, with
very similar error rates among the three speeds of
9.8� 1.1, 10.0� 1.7, and 9.8� 0.5%, as shown in
Figure 7(a), respectively.

The system achieved a very low mean step-count
error of 1.4� 2.6, 1.4� 3.5, and 1.2� 0.4% at the walk-
ing speeds 1.0, 1.5, and 2.0 km/h, respectively, as shown
in Figure 7(b). The mean step-count error rates were
calculated according to equation (3). By further looking
into the error rate of individual subjects, the device
captured less steps than the actual step number at all
three speeds for most of the subjects, except subject 1
captured 3% more steps at speed 1 and subject 7 cap-
tured 4% more steps at speed 2.

Figure 8 shows the confusion matrix of the sample-
based accuracy for all three speeds across the eight par-
ticipants using KNN. The figure shows that the stance

phase samples are better classified than swing samples
(accuracy of 92% versus 86%).

(2) Verification of the step-count error

As mentioned in the ‘Data analysis’ section, the step-
count rates calculated by equation (3) do not necessar-
ily show the step counts were correct; therefore, we
verified the step-count error by calculating the true
positive rate. The mean true positive step-count accura-
cies across the eight subjects are of 98.5� 2.6,
98.6� 3.5, and 98.8� 0.4% at the three walking
speeds 1.0, 1.5, and 2.0 km/h, respectively, using
KNN. The very high true positive rates validate the
step-count rates calculated by equation (3) were
correct.

(3) Optimal value for KNNs

Figure 9 shows that the averaged sample-based error
corresponds to the number of nearest neighbours
across all eight subjects when the number of nearest
neighbours (k) changed from 1 to 50. From the plot,
the sample-based error decreased and a stable situation
was achieved when the value of k reached near 20.

(4) Classification errors using SVM, NN, and LDA

SVM and NN achieved similar sample-based errors
as those of KNN for three speeds but lower than that of
LDA (Figure 7(a)). For the step-based error rates
(Figure 7(b)), KNN achieved the lowest error rates
among the four algorithms in speed 1 and 3, but
SVM performed the best at speed 2. The main

Figure 8. The confusion matrix of all 15 trials showing the

sample-based error using the KNN classifier. The darkness

of each cell in the matrix is the percentage of true samples

(in y-axis) that had been predicted as the class in x-axis.

Figure 7. (a) Sample-based error and (b) step-count error

rates for all three speeds across eight subjects. The error bars

are 1 standard deviation. KNN: K-nearest neighbour; LDA: linear

discriminant analysis; NN: neural network; SVM: support vector

machine.
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classification results of the machine learning algorithms
are summarized in Table 2.

The results of two-way ANOVA showed that there
was a significant effect of classification algorithm
to the sample-based error rates (F3,84¼ 3.23,
p< .05), but there was no significant effect of
speed. There was no significant interaction effect
between the classification algorithm and speed to
the sample-based error rates. The Post Hoc test
(Tukey HSD) showed that the error rate of LDA
was significantly higher (p< .05) than that of SVM,
but there was no significant difference between any
other pairs of algorithms. There was neither signifi-
cant effect of speed nor algorithm to the step-based
error rates.

Discussion

Two groups of muscles, namely flexor and extensor
muscles, are involved in the gait movements at the
ankle position: the extensors of the lower extremity
muscle group (tibialis anterior and extensor digitorum
longus) contract to maintain the stance gestures to
counter the weight of the body exerted on the foot,
and the flexors of the lower extremity (gastrocnemius
and soleus) act to maintain a swing.19,20 The contrac-
tion and relaxation of the extensors and flexors during
gait phases alters the pressure distribution resulting in
distinctive FMG patterns sensed by the FSR strap. In
this study, four machine learning algorithms were
employed to evaluate the performance of FMG band

Figure 9. The averaged sample-based error corresponds to the number of nearest neighbours across all eight subjects. KNN:

K-nearest neighbour.

Table 2. Classification error of KNN, SVM, NN, and LDA.

Learning method

Speed 1 Speed 2 Speed 3

Sample based (%) Step based (%) Sample based (%) Step based (%) Sample based (%) Step based (%)

KNN 9.4� 2.8 �0.3� 2.7 9.5� 3.8 2.4� 4.5 10.3� 4.7 1.3� 1.5

SVM 9.2� 3.0 2.8� 3.5 9.3� 3.9 1.7� 3.2 9.5� 4.2 1.9� 1.7

NN 9.5� 2.9 4.7� 7.3 9.8� 3.5 3.0� 4.8 10.3� 4.0 2.3� 2.0

LDA 11.4� 3.6 3.7� 8.8 11.8� 4.1 0.7� 3.3 13.9� 4.2 3.0� 3.1

KNN: K-nearest neighbour; LDA: linear discriminant analysis; NN: neural network; SVM: support vector machine.
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as a pedometer. The results prove our hypothesis that a
low error rate of the predicted steps compared to the
true step numbers derived from the underfoot FSR sen-
sors, with less than 1.5% error across three speeds
could be achieved by using the FSR band. The high
true positive rates validate the step-count error rates.

Accelerometer-based step counters are severely
affected by low walking speed, showing step-count
accuracy <65%4,5,8 at lower speeds. This is because
they rely on the thresholds of acceleration changes
between swings and stances for the steps detection;
whereas, the acceleration is usually not sufficient for
distinguishing a step when the walking speed is very
low. In contrast, the present FSR-based step detection
system is not affected by the low walking speed, instead
achieving a low error rate of 1.4% at 1.0 km/h. This
exceptional high performance of step detection at low
walking speed is the result of the distinctive FMG pat-
terns sensed by the FSR strap. In other words, during a
stance of slow walking including freezing steps, the sus-
tained contraction of the flexor muscles results in a very
distinguishable FMG pattern to that of swing step.

Limitation and future work

This preliminary study explores the feasibility of employ-
ing the FSR strap on the ankle to specifically determine
the accuracy for low-speed step detection at the speed
range of 1.0 to 2.0 km/h on a treadmill. In the future, it is
planned to test the device at a wider ranges of walking
speeds and walking styles including walking in free daily
activities. In the present study, a small sample of healthy
volunteers participated. In the future, it would be rec-
ommended to increase the sample size for computing the
mean and standard deviation of errors, which may be
more revealing with regards to the overall performance
of the FSR strap; this to be improved sample set should
be with balanced age and gender and also include older
adults and individuals with mobility deficit. Future
research should also improve the usability of the FSR
band, including improving the machine learning model
to tolerate band displacement, inter-wearing (taking off
and reattaching), and intersubject variations without
retraining the band.

Conclusion

This paper presents a new wearable step detection
system using FMG. An array of eight FSRs was
embedded into a strap, which was designed to be
worn on the ankle position. Eight participants walked
on a treadmill at three different walking speeds of 1.0,
1.5, and 2.0 km/h, respectively. At the same time, two
extra FSRs were attached to the heel and toe to record
true step labels. A supervised learning technique

(KNN) as well as SVM and NN and LDA were
employed to test the performance of the strap. The
system achieved a low error rate of <1.5% at all
three speeds using KNN. The results suggest that it is
feasible to use the FSR strap on the ankle to detect
steps taken at low speeds.
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