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Abstract

We present a novel automated approach for detection of standardized abdominal circumference 

(AC) planes in fetal ultrasound built in a convolutional neural network (CNN) framework, called 

SonoEyeNet, that utilizes eye movement data of a sonographer in automatic interpretation. Eye 

movement data was collected from experienced sonographers as they identified an AC plane in 

fetal ultrasound video clips. A visual heatmap was generated from the eye movements for each 

video frame. A CNN model was built using ultrasound frames and their corresponding visual 

heatmaps. Different methods of processing visual heatmaps and their fusion with image feature 

maps were investigated. We show that with the assistance of human visual fixation information, 

the precision, recall and F1-score of AC plane detection was increased to 96.5%, 99.0% and 

97.8% respectively, compared to 73.6%, 74.1% and 73.8% without using eye fixation information.

Index Terms
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1 Introduction

Ultrasound-based biometric measurements such as the estimation of the abdominal 

circumference (AC), the head circumference (HC), the bi-parietal diameter (BPD), and the 

femur length (FL) are essential to the monitoring of fetal growth and detection of Intra-

Uterine Growth Restriction (IUGR) [1]. Such measurements are only comparable if they are 

taken from standardized 2D ultrasound (US) planes. Performance of sonographers in plane 

finding suffers from inter-observer variability. This has motivated interest in automating 

standardized plane detection using for instance Random Forests [2] and most recently 

Convolutional Neural Networks (CNNs) [3].

However, training classic CNN models requires a large amount of data (possibly millions of 

images), which is typically not available in medical imaging applications. In this paper we 

investigate the question, “Is it possible to complement image data with top-down 

information, such as eye movement [4], to increase learning performance when a moderate 

amount of image data is available?” The idea is to utilize not only the image annotations 

generated by the sonographers, but also their visual perception as measured by tracking eye 

movements to infer where did the sonographer fixate, and where did they ignore information 

in an US video frame.
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Ahmed et al. made the first attempt to use visual heatmaps as interest operators for 

standardized AC plane detection [5]. This paper is inspired by that work but, to our 

knowledge, considers for the first time how eye tracking data can inform plane detection 

within a CNN framework. Specifically, this paper considers nine different models, which 

combine visual heatmaps and corresponding US video frames in different ways for AC plane 

detection.

2 Methods

2.1 Abdominal sweep US video data

33 fetal US videos (1616 frames), each lasting 1-3 seconds, were used in this study. These 

abdominal video clips were manually selected by an experienced sonographer from a larger 

dataset of 323 fetal US videos that were acquired according to a freehand US sweep 

protocol. The videos were acquired on a mid-range US machine (Philips HD9 with a V7-3 

transducer) by moving the probe from the bottom to top of the woman’s abdomen. The 

original frame size was 240×320 pixels; the fetal abdominal region was cropped out and 

resized to images of 240 × 240 pixels to avoid the influence of the fan-shaped border when 

data augmentation by rotation was performed. The dataset was separated video-wise: 1292 

abdominal ultrasound video frames from 25 videos (80% of all videos) were used for 

training. Each frame had an image-level label yi ∈ {0, 1} indicating whether it is a 

standardized AC plane (ACP) (Fig. 1(a), top row) or background (BKGD) (Fig. 1(b), top 

row), as determined by the sonographer. The remaining 20% of ultrasound videos were used 

for testing.

2.2 Eye movement acquisition and processing

Eye movements were recorded at 30 Hz by an eye tracker (The EyeTribe) placed in front of 

a sonographer and under the screen. The eye-tracker was calibrated before each video was 

viewed. The sonographer was presented with the 33 fetal abdominal US video clips and 

asked to inspect each frame and find the ACP by using a keyboard to scroll through the 

frames. Their eye movements were tracked and recorded while they did this. Eye movements 

(x,y-coordinates and time t) were processed according to the protocol in [6]. In order to 

remove high frequency noise (due to eye tremor), a moving average filter with a window 

size of 3 samples was applied. Any eye movement with angular velocity below 30 degrees 

visual angle/second was classified as a fixation, and all the other points were classified as 

saccades [5]. This angular velocity threshold was translated into a pixel per second threshold 

by assuming that the distance between the eyes of the observer and the screen was 0.5m. 

Fixations less than 7.5 ms apart in time, or 0.5 degrees visual angle in space, were merged; 

fixations shorter than 80 ms in duration were discarded. Visual heatmaps were generated for 

each image using a truncated Gaussian kernel (Fig. 1, bottom rows) for computational 

simplicity, with a kernel size corresponding to a visual angle of 1.5 degree.

2.3 Network architecture

We call the family of network architectures SonoEyeNets (SENs) as they use a human eye 

tracking visual heatmap as an additional input to an US video frame (Fig. 2). In this paper, 

the US image branch used a pre-trained network, SonoNet-16 [3], as a feature extractor 
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(FE), which utilizes 3 × 3 convolution kernels throughout its 5 convolutional blocks. Three 
models were built and compared by combining the feature maps from the image branch with 

the visual heatmap information derived in each of the following three ways of processing 

visual heatmaps, as indicated by different names and colour codes: (A) Concat, labelled 

gray: here, a visual heatmap passes through a CNN with the same architecture as 

SonoNet-16 but with randomly initialized weights and later fused with feature maps of the 

fourth convolutional block by concatenation, generating ϕc4concat
v ; (B) Late Fusion, labelled 

blue: in this case, visual heatmaps are resized to 30 × 30 pixels h4 and fused with the feature 

maps of the 4th convolutional block ϕc4 by element-wise multiplication ϕc4
v = ϕc4 ⊙ h4 (Since 

the image branch was mainly used as a fixed feature extractor, we call this model Late FE); 

and (C) Early Fusion, labelled green: similar to late fusion but heatmaps are resized to 60 × 
60 pixels h3 and fused with the feature maps of the 3rd convolutional blocks 

ϕc3: ϕc3
v = ϕc3 ⊙ h3 . We call this model Early FE. The resulting ϕc4concat

v , ϕc4
v , or ϕc3

v  is then 

passed through final convolutional block(s) and fed into two adaptation layers, each with 64 

and two 1 × 1 kernels.

2.4 Model fine-tuning

The 3 models Concat, Late FE, and Early FE all used SonoNet-16 as a feature-extractor in 

the image branch. [7] argues that fine-tuning a transferred model gives better performance, 

so we also considered fine-tuning the “Late Fusion” model by allowing the layers before 

fusion in the image branch to be updated during training. We call it Late FT. As a further 

variant, we removed convolutional layers after ϕc4
v  in both the Late FE and Late FT 

(indicated by orange dashed box in Fig. 2) to reduce the overall number of training weights. 

We call these 2 models Late FE truncate and Late FT truncate.

2.5 Training details

Models were trained using the adaptive moment estimation (Adam) [8] algorithm with a 

batch size of 256 samples, initial learning rate of 0.05, and weight decay of 0.0005. The 

number of epochs was set to 100, and learning rate drops 25% after every 10 epochs. Those 

layers that were not pre-trained were initialised from a zero-mean Gaussian distribution with 

standard deviation of 0.01. Batch normalization and dropout (rate = 0.5) were used for every 

convolutional layer before the adaptation layers. The dataset was augmented by rotating 

each image and its horizontal flip by 45, 90, 135, 180, 225, 270, and 315 degrees together 

with their corresponding visual heatmaps.

3 Results

3.1 Decision process visualization

Typical sonographer eye movements during image detection are shown in Fig. 3, where the 

x,y plane defines each single frame of the video and the z-axis defines the frame number, 

starting from the bottom to the top. The blue lines represent the sonographer’s visual tracks 

throughout the space of the video frames. The pattern of eye movements in the ACP and 

background frames are notably different: after determining the contents of the initial frames, 
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a sonographer simply skips through the majority of the background frames before they 

encounter frames of interests and start to explore key anatomical structures. Typically, they 

hesitate among several candidate ACP frames, comparing structures in them repetitively 

until finally making a decisions to label one frame as the ACP.

3.2 Comparative evaluations

The first model, SonoNet-16 FE, uses only image data and convolutional layers of 

SonoNet-16 as a feature extractor. SonoNet-16 FT also uses only image data but it allows 

the weights to be fine-tuned during training. After fine-tuning an increase of precision from 

73.6% to 85.1% was observed, indicating an increase in the model’s ability to classify 

background frames; however, there is a corresponding decrease in recall from 74.1% to 

64.7%, indicating a decrease in ability to classify an ACP, as shown in Table 1.

When training with visual heatmaps in tandem with US images, an immediate classification 

improvement was observed for background frames, as the SonoEyeNet models all achieved 

precisions above 93%. However, SEN-Concat and SEN-Early FE did not improve the ACP 

classification as recall remained at 74.4% and 76.8%, respectively. The first improvement in 

recall can be observed in SEN-Late FE where recall increased to 91.3%. Best results were 

achieved by SEN-Late FT where the branch for image feature extraction was allowed to be 

further fine tuned. As can be seen in Table 1, the model’s ability to classify background and 

ACP is the best among all models.

Receiver Operating Characteristic (ROC) curves for the models are shown in Fig. 4. 

Confirming the findings in Table 1, SEN-Late FT (red) performs best and is followed by 

SEN-Late FE (orange) and SEN-Early FE (green), with Area Under the Curve (AUC) of 

their ROC curves of 0.97, 0.95 and 0.91 respectively. The image feature branch in the early 

fusion model was further fine-tuned in SEN-Early FT (blue), but a dramatic decrease in 

performance was observed, as the AUC of the ROC dropped to 0.86. In addition, SEN-Late 
FE truncate (orange dash) and SEN-Late FT truncate (red dash) were further trained to see 

whether smaller models with fewer parameters to train perform better than larger ones. 

However, they were found to be inferior to their close variants SEN-Late FT and SEN-Late 
FE, as their corresponding AUC drops to 0.89 and 0.88, respectively.

4 Discussions and Conclusions

As demonstrated in Fig. 3, the eye movement experiment results agree with the finding of 

[5]. Namely, two distinctive phases can be observed in the sonographers’ visual search 

strategy: a rapid phase where sonographers quickly skipped through the background frames 

followed by a slower phase where they extensively explored the abdominal area in candidate 

ACPs for key structures, i.e. stomach bubble, umbilical vein and spine.

Four trends are observed from Table 1 and ROC curves in Fig. 4. First, models that use both 

eye movement data and US image data (SonoEyeNets) achieve higher classification 

accuracy than models trained purely on US image data. Second, element-wise multiplication 

of a resized visual heatmap and image feature maps performs better (as measured by recall 

and precision) than concatenation of the feature maps from both image and heatmap 
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branches. Third, fusion of image feature maps and visual heatmaps at later stages (after the 

4th convolutional block) achieves better results (as measured by recall and precision) than 

that at an earlier stage (after the 3rd convolutional block), indicating higher level image 

features are more useful. Finally, fine-tuning the image feature branch during training further 

improves model performance.

The truncated models in the experiments over-fitted to the training set, which is mainly 

caused by the removal of the convolutional block immediately before the classification layer. 

The remaining 2 convolutional layers in the classification layer lacked descriptive power to 

classify fusion feature map ϕc4
v , indicating that the fusion of US image data and eye 

movement data needs to find a balance: a model that can sufficiently describe image data 

(higher level features) but at the same time allows more flexibility to handle fused feature 

maps, even if it means one additional convolutional block.

The results presented in this paper demonstrate a novel way to train a classification CNN for 

fetal US video plane finding using US video and sonographer eye movements on datasets of 

modest size. Note that precision, recall and F1-score results are data dependent. It would be 

interesting to see whether these very promising results can extend to other standardized fetal 

ultrasound plane definitions, and indeed other ultrasound plane finding tasks more generally.
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Fig. 1. 
(a) Top row shows examples of standardized AC planes and the bottom row shows 

corresponding eye tracking based visual heatmaps (b) examples of background frames and 

corresponding visual heatmaps.
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Fig. 2. 
Architecture of SonoEyeNet (SEN) where three types of data fusion were investigated. The 

branch at the bottom takes images as input and passes it through SonoNet-16, a pre-trained 

model with 5 convolutional blocks. The cubes indicate the shape of feature maps after each 

convolutional layer. The top branch uses three different methods to process eye tracking 

heatmap data, as indicated by A, B, and C with corresponding color codes, each represents a 

distinct model named “Concat”, “Early Fusion”, and “Late Fusion”. The dotted circle ⊙ 
indicates element-wise multiplication.

Cai et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 3. 
Examples of visual tracks through 2 different video clips by the same sonographer
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Fig. 4. 
ROC curves of selected SEN models. SEN-Late FT with AUC=0.97 is the best-performing 

model.
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Table 1

Comparative Evaluation of Classification Performance. Column “Eye” indicates whether eye movement data 

was used. Values in bold correspond to the best results.

Models Eye Precision Recall F1-score

SonoNet-16 FE No 73.6 74.1 73.8

SonoNet-16 FT No 85.1 64.7 73.5

SEN-Concat Yes 95.3 74.4 85.4

SEN-Early FE Yes 93.8 76.8 84.5

SEN-Late FE Yes 96.1 91.3 93.6

SEN-Late FT Yes 96.5 99.0 97.8
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