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Abstract

Building on the substantial progress that has been made in using free energy perturbation (FEP) methods to
predict the relative binding affinities of small molecule ligands to proteins, we have previously shown that
results of similar quality can be obtained in predicting the effect of mutations on the binding affinity of protein–
protein complexes. However, these results were restricted to mutations which did not change the net charge
of the side chains due to known difficulties with modeling perturbations involving a change in charge in
FEP. Various methods have been proposed to address this problem. Here we apply the co-alchemical water
approach to study the efficacy of FEP calculations of charge changing mutations at the protein–protein
interface for the antibody–gp120 system investigated previously and three additional complexes. We achieve
an overall root mean square error of 1.2 kcal/mol on a set of 106 cases involving a change in net charge
selected by a simple suitability filter using side-chain predictions and solvent accessible surface area to be
relevant to a biologic optimization project. Reasonable, although less precise, results are also obtained for the
44 more challenging mutations that involve buried residues, which may in some cases require substantial
reorganization of the local protein structure, which can extend beyond the scope of a typical FEP simulation.
We believe that the proposed prediction protocol will be of sufficient efficiency and accuracy to guide protein
engineering projects for which optimization and/or maintenance of a high degree of binding affinity is a key
objective.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The prediction of the impact of residue mutations
on protein–protein binding affinities is a major
challenge for biomolecular simulation methodology.
Protein–protein binding plays a critical role in a wide
variety of biological processes, including antibody–
antigen binding [1], gamma protein coupled receptor
signaling [2], assembly of key molecular machines
[3], and cell–cell recognition events (e.g., as medi-
ated by cadherins) [4]. Computational assessment
of bindingaffinity asa functionofmutationwould enable
the specificity of these processes to be understood
at an atomic level of detail. Furthermore, a robust
and sufficiently accurate methodology could have a
significant impact on the design of pharmaceutically
thors. Published by Elsevier Ltd. This is a
g/licenses/by/4.0/).
useful biologics, such as monoclonal antibodies and
vaccines.
A number of approaches have been taken for

prediction of relative protein–protein binding affinities.
Tools such as FoldX use empirically trained energy
functions based on experimentally measured protein
and protein complex stability data [5]. Methods such
as molecular mechanics generalized Born surface
area (mm-GB/SA) and molecular mechanics (MM)
Poisson–Boltzmann surface area use MM models
with implicit (continuum) solvent molecular models to
provide a more physics based approach at somewhat
more computational cost [6]. Other semi-empirical
approaches have been developed that combine
MM methods and additional energy terms optimized
from experimental data [7]. Examples of available
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packages of this type include MutaBind [8], which
combines terms from implicit solvent MMmodels with
empirical energy functions and machine learning to
train to experimental data, and BeatMusic, which is a
statistics-based energy function derived from solved
protein structures [9]. Free energy perturbation (FEP)
is a fully physics-based model that uses explicitly
representedwater, with a series of separatemolecular
dynamics (MD) simulations (“lambda windows”) over
which the weighting of the energy of a mutating
residue is varied through intermediate alchemical
states between wild and mutant type, where the free
energy differences between each adjacent lambda
window are calculated using a perturbative expansion
and are summed to estimate the total free energy
change [10]. In recent years,modern implementations
have become valuable tools in small-molecule drug
discovery projects [11,12].
In a recent publication, we have carried out a

large-scale test of the ability of (FEP) methodology
to predict the change in binding free energy upon
mutation for a series of mutants in antibodies binding
to gp120, the viral spike protein of HIV-1 [11].
Optimization of the binding affinity of antibodies to a
wide range of gp120 proteins, resulting in a broadly
neutralizing antibody (bNAb) of high potency, is a
major objective in developing antibody therapeutics
as an alternative to small molecule treatment of
HIV infection. Carrying out physically realistic FEP
calculations required building homology models for a
number of antibody–gp120 complexes and incorpo-
rating the effects of surface glycans upon antibody
binding into the calculations. Despite these challenges,
a root mean square error (RMSE) of 0.84 kcal/mol
in comparison with experiment was achieved across
a data set of 55 mutations, demonstrating that, with
minormodifications of the sampling protocol, the FEP+
methodology that we developed previously for small-
molecule binding affinity calculations can successfully
predict the effects of protein mutations upon protein–
protein binding affinity to near chemical accuracy.
However, the test set examined in Ref. [11]

consisted exclusively of mutations that did not change
the net charge on the system; that is, charge changing
mutations such as Ala to Glu were excluded from
the data set. Although some attempts at applying
explicit solvent free energy calculations to problems
such as protein folding exist [13], we deliberately set
aside mutations in the latter category due to the well-
known technical difficulties in performing alchemical
simulations in which the net charge on the system
is altered [14–19]. We apply a variant of the co-
alchemical water FEP approach first proposed by
Wallace and Shen [15] and Chen et al. [16]. The
methodology is briefly summarized below; a more
detailed description along with a comparison with
other available methodologies for charge correction
can be found in Ref. [20], which is focused on small-
molecule/protein FEP calculations.
We have applied the alchemical ion FEP approach
to a set of point mutations involving a normally
charged residue (aspartate, glutamate, arginine,
or lysine) and a residue normally neutral under
physiological conditions for the antibody/gp120 sys-
tem studied previously. We exclude cases involving
proline, as its nonstandard backbone causes addition-
al technical challenges, and cases where the mutant
type side chain is HIS, as determination of the correct
protonation state is particularly challenging without
crystallographic evidence. We also include test cases
from a number of additional interacting protein–protein
complexes, using data taken from the Structural
database of Kinetics and Energetics of Mutant Protein
Interactions (SKEMPI) [21], in order to increase the
size of the data set to a size from which preliminary
statistical conclusions can be drawn. A total of 162
point mutations are considered in all, including 19 from
the binding of VRC class antibodies to gp-120.
Small-molecule FEP calculations are generally

restricted to predictions for which a significant change
in protein conformation (e.g., DFG-in to DFG-out loop
motion in a kinase) is not expected. Such motions
are unlikely to take place on a typical FEP simulation
timescale. In the case of charge changing residue
mutations, substantial protein rearrangement can
readily be induced if the mutation is performed on a
residue that is buried in an environment that is
inhospitable to the new target residue. Such situations
would in many cases require much longer simulations
to yield fully converged results; fortunately, they are
also typically not of interest in a project aimed at
optimizing binding affinity, as the great majority of
such mutations will make binding more unfavorable.
In what follows, we present a simple approach to
classifying buried residues and show that for the
remaining cases, the RMSE of the FEP calculations
is in a satisfactory range (~1.2 kcal/mol). First, an
implicit solvent side-chain re-prediction is used to
eliminate 12 cases where a reasonable side-chain
conformation cannot be achieved in the wild-type
input structure. Second, mutations to residues of
different expected charge state from buried wild-type
residues are classified by their fractional solvent
accessible surface area (fSASA), SASA normalized
to the maximum SASA in a tripeptide configuration
[22]. Using a cutoff of 10% fSASA, below which
residue side chains are considered fully buried, does
not eliminate any significantly favorable mutations
experimentally and leaves 106 cases, which are at
least partially solvent exposed.
The paper is organized as follows. The Data Sets

section discusses the various data sets used to
evaluate the FEP calculations. In the Results and
Discussion section, results of FEP simulations are
presented for all of the test cases and analyzed via
comparison with experiment. We use an mm-GB/SA
protocol that samples side-chain conformations
in the input structure [14] to provide a comparison



1483Charge-Changing Sequence Mutations with FEP
with a simpler (and computationally less expensive)
approach, and discuss the results obtained with
the empirical foldX method [5]; this enables us to ask
whether FEP is adding value commensurate with
the substantial computational cost. In the Models
and Methods section, we discuss the computational
methodology used in the paper, including the co-
alchemical water approach, characterization of poorly
fitting andburied residues, and somedetails of theFEP
simulation methodology including the use of extended
sampling to handle cases in which hydrogen bonds
and/or salt bridges need to be broken or formed.
Finally, in the Conclusion section, we summarize our
results and discuss future directions.
Data Sets

HIV gp120/antibody data set

Some infected patients develop bNAbs against
human immunodeficiency virus [1,24–26]. These
antibodies are not suitable themselves as therapeu-
tics, but they provide a potential starting point for
developing more potent antibodies and eventually
for gaining insight into the evolutionary development
of bNAbs against HIV-1, which could be used toward
vaccine development. Reliable computational tools
to predict affinity changes under protein residue
sequence modifications could be of great use in
driving the design of more potent antibodies, and
being able to predict the effect of mutations between
charged and neutral side chains is an essential part
of such tools.
In Ref. [11], we reported experimental binding

affinity measurements, for both neutral and charge
changingmutations, for three VRC01 class antibodies:
VRC01, VRC03, and VRC-PG04. A description of the
experimental protocols and results, utilizing surface
plasmon resonance measurements, can be found in
Ref. [11], with the experimental free energy values for
all of these mutations in the Supplementary Material
(Table S1).
The structures of the antibody/gp120 complexes

on which the experimental binding affinity measure-
ments were made are not available in the Protein
Data Bank. However, related structures, with variants
of the gp120 sequence, have been crystallized. In
Ref. [11], we used these structures as templates to
build homology models. The details of the homology
model building protocols, the sequence alignments
used to build the homology models, and results of MD
simulations to validate the stability of the models are
reported in Ref. [11]. We also built glycan fragments
as necessary based on the template structures, an
essential task because the glycans can have a very
significant effect on mutational binding free energy
changes if they are in close proximity to the residue in
question, and these are retained here for all cases
considered.

Additional test cases drawn from the SKEMPI
database

There are fewer charged than neutral residues in
the interface of the VRC01–class bNAbs with gp120;
only 19 total cases of potentially charge changing
mutations are contained in the alanine scanning set
reported previously [11]. To build a more extensive
validation data set for testing the FEP charge
changing methodology, we consider also protein
residue mutation examples from three protein–
protein complexes taken from the public SKEMPI
database [9]. For the purposes of selecting cases for
analysis, a putative charge changingmutation is taken
to be anymutationwhere one end state is one of the 4-
amino-acid side chains (ASP, GLU, LYS, and ARG),
which are generally expected to be charged at
physiological pH, and any other amino acid side
chain not in this set.
In selecting cases for FEP consideration, we aim

to assemble a set of point mutations, most of which
represent the type of mutations we hope to pursue
that are most similar to that which might be pursued
in a practical biologic optimization project, and we
select systems where the types of structural issues
in the gp120 study (need for homology models,
important glycosylation) are not present to give the
best test of the specific FEP charge correction
methodology being tested. In an analogy to the
successful application of FEP to small-molecule drug
discovery projects [27,28], we assume that the FEP
calculations will be used prospectively to either
increase affinity or maintain the maximum possible
affinity while other properties are optimized, so
predictions of mutations that cause favorable or no
change in binding affinity will be the only ones made
experimentally. Therefore, we require each system
chosen to have at least one unambiguously favorable
mutation (ΔΔG ≤ -0.5 kcal/mol), and where there
are multiple similar systems that could be used, the
one with the most experimentally favorable mutations
is chosen. Second, a real optimization project seeking
favorable or neutral mutations will likely not be
dominated by mutations to alanine, as the data set
is, so we require that each system chosen be at least
25% mutations to amino acid side chains other than
alanine, Finally, sincewehave the opportunitywith the
larger data set, we eliminate systems with complicat-
ing issues (e.g., missing loops, glycosylation, small
molecules bound) in order to best isolate the effects of
the new FEP protocol from these other challenges.
The systemswith 15 ormore putative charge changing
mutations that were considered for inclusion are
summarized in the SI in Table S1.
The systems chosen are the complex of barnase

with barstar (PDB ID 1BRS), turkey ovomucoid third
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domain (OMTKY3) with subtilisin Carlsberg (PDB ID
1R0R), and OMTKY3 with Streptomyces griseus
proteinase B (SGPB) (PDB ID 3SGB). We exclude
from these only mutations where the mutant amino
acid side chain does not physically fit into the ref-
erence wild-type structure (see Models and Methods
for more details). The remaining set is split into 106
solvent accessible mutations and 44 buried muta-
tions by fSASA, only the former of which we claim
would be likely to be of practical interest in optimizing
binding affinity of the complex.

Overview of the final data set

The resulting experimental data set is summarized
in Table 1. In total, it includes 150 point mutations
for which the mutant side chain can be reasonably
placed in the wild-type crystal/model structure. The
dynamic range of affinity changes measured is very
large and includes mutations measured to strongly
stabilize binding (down to −2.55 kcal/mol in the
OMTKY–/SGPB complex) to those that strongly
destabilize binding (up to 7.66 kcal/mol in the very
tight binding barnase–barstar complex).
Results and Discussion

Using the protocol outlined in the Models and
Methods section, we obtain estimates for the relative
change in binding free energy from each of the set of
150 point mutations via FEP simulation. The results
are summarized in Fig. 1, and RMSEs and coeffi-
cients of determination are given in Table 2. Figure 1
and Table 1 also provide the results of mm-GB/SA
calculations for comparison. Figure 3 shows the
location and wild-type charge of all positions where
mutations were considered. In order for FEP to be
a useful methodology, it must substantially out-
perform fast approximate methods like mm-GB/SA
(or empirical alternatives such as Fold-X [29], with
which comparisons were made in Ref. [11]) with
regard to prediction accuracy.
As anticipated, the “buried” residue mutations

contain no cases significantly favorable to binding,
and all but four decrease binding affinity significantly
(by more than 0.5 kcal/mol); the magnitude of the
Table 1. Full data set: summary of the protein–protein complexe
each, and the range of experimental ΔΔG values (Min:Max) in

Protein 1 Protein 2

VRC01 gp120-RSC3
VRC03 gp120-RSC3
VRCPG-04 gp120
Barnase Barstar
Subtilisin Carlsberg Turkey ovomucoid third domain
S. griseus proteinase B Turkey ovomucoid third domain
Overall –
free energy change is predicted with a coefficient of
determination of 0.52 by FEP. The RMSE of these
cases, however, is large, 1.79 kcal/mol. We believe
that this is due to the inability to simulate significant
conformational changes of the protein or protein–
protein binding mode in the relatively short FEP
trajectories. However, as was suggested above, it
is not important in a practical project where the aim is
to produce stronger binding proteins to determine
whether a mutation will induce a free energy change
of +2 or + 5 kcal/mol; the mutation is not worth
testing experimentally regardless of which is correct.
Therefore, simply classifying a proposed mutation
site as buried appears (at least based on this data
set) to be sufficient to rule out a charge changing
mutation at that site. We note that mm-GB/SA
performs very poorly for test cases in this regime,
with a coefficient of determination less than 0.1 and a
very large RMSE (2.8 kcal/mol).
For the “solvent exposed” sites, FEP displays a

muchmore reasonable RMSE of 1.22 kcal/mol, and a
correlation of 0.53. mm-GB/SA also shows apparent
improvement as compared to its performance on
the buried residues. However, the improvement in
the coefficient of determination is almost entirely due
to some ability to discriminate highly unfavorable
mutations from the remainder of the data set (a much
easier problem than rank ordering favorable or nearly
favorable mutations). To illustrate this observation,
we present in Table 3 the coefficients of determination
for the unburied data set with the relative experimental
binding affinity truncated beyond +1 kcal/mol. For
this data set, FEP produces a coefficient of determi-
nation of 0.39, whilemm-GB/SAdisplays close to zero
correlation. These results imply that mm-GB/SA (and
likely other related methods) would be useful in
practice only as crude filters to eliminate very poorly
scoring mutations, whereas FEP will preferentially
generate a highly enriched set of candidates, includ-
ing those leading to significant improvement in binding
affinity.
We have additionally compared the results to

those found using foldX [5] and found the overall
results to be very similar to those given by mm-GB/
SA. FoldX performs similarly to mm-GB/SA, giving
RMSEs of 1.8 and 1.5 kcal/mol for all mutations,
and only non-buried mutations respectively, versus
s used, the number of experimental mutations contained in
kcal/mol

No. of mutations Non-buried Min:Max

6 5 −0.27:1.63
8 6 −0.38:2.65
5 4 −0.74:2.69
15 4 −0.89:7.66
59 36 −1.09:5.69
57 50 −2.55:5.90
150 106 −2.55:7.66



Fig. 1. Summary results using FEP and the single-point mm-GB/SA protocol described in Models and Methods are
shown. Coefficients of determination are given for all cases buried and unburied.
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mm-GB/SA values of 1.9 and 1.5 kcal/mol. Further-
more, on cases with experimental value b1 kcal/mol,
FoldX gives a coefficient of determination of b0.01
(p = 0.46). A plot is provided in the SI (Fig. S1).
Results for the various individual systems are

shown in Fig. 2.
Challenges of FEP modeling of mutations at
totally buried sites

When considering the effect on binding of a point
mutation to a buried side chain with a different
preferred charge state under neutral conditions, one



Table 2. Summary of performance metrics for FEP and mm-GB/SA

Category Methodology RMSE (kcal/mol) R2 p

Non-buried FEP 1.23 [1.07–1.38] (1.22) 0.50 [0.36–0.62] (0.53) b0.001
Non-buried mm-GB/SA 1.50 [1.22–1.76] (1.50) 0.18 [0.06–0.33] (0.23) b0.001
Buried FEP 1.79 [1.41–2.11] (1.95) 0.52 [0.31–0.71] (0.40) b0.001
Buried mm-GB/SA 2.80 [2.33–3.28] (2.44) 0.14 [0.0–0.41] (0.05) 0.014
All FEP 1.41 [1.26–1.59] (1.40) 0.61 [0.5–0.71] (0.58) b0.001
All mm-GB/SA 1.97 [1.71–2.21] (1.74) 0.17 [0.06–0.31] (0.23) b0.001

Error ranges for metrics (square brackets) are estimated based on a bootstrapping analysis using a 95% confidence interval. Values in
parentheses show the result if the cases where acids are modeled entirely or partially, as protonated are excluded.
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of two scenarios is likely if the complex still binds
at all: (1) the conformation of the complex changes
to accommodate bulk solvent into the interface or
(2) the protonation state of side-chain changes. An
example of this is provided by the mutation of ASP39
on barstar, which disrupts a very stable salt-bridge
network. Despite the complex binding with around
7 kcal/mol less affinity than the wild type, this mutant
has been crystallized (PDB ID 2ZA4) [19], and the
result shows a subtle change to the protein–protein
binding mode that allows a column of water to
penetrate the interface and solvate the residues that
engage in the salt-bridge network in the wild-type
structure. In this case, we under-predict the binding
of the mutant complex in FEP, but the simulation is
clearly not converged, with the relative binding free
energy estimate still trending toward the experimen-
tal value after 100 ns.
In at least some cases, the complex may actually

form in the same conformation, but with a neutral
state of the relevant acid side chain. This is par-
ticularly plausible for protonated forms of carboxyl-
ate side chains (ASP and GLU), which are
geometrically smaller than the basic side chains
(ARG and LYS) and so are more likely to be able to
fit without steric clashes in the space occupied by the
surrounding protein structure in the wild-type config-
uration. Indeed, the test set contains a number of
buried wild-type acid residues [see the summary
results table in the supporting information (SI)]. In
such cases, we model both states explicitly in FEP,
incorporating an approximate state penalty in the
case that the side chain is believed to be deprotonated
in the unbound state and protonates on binding, and
the state with the lower implied free energy of binding
is used for comparison with experiment. As described
in Ref. [16], a pKa correction must be applied in cases
where the state changes between the unbound and
bound state. Due to the extreme challenges of
accurately calculating the pKa shift experienced by a
Table 3. Correlation of FEP and mm-GB/SA predictions
with experimental binding affinity changes b1 kcal/mol

80 cases ΔΔG_exp b 1 R2 p

FEP 0.39 b0.001
mm-GB/SA 0.06 0.016
buried residue due to the local protein environment,
we have approximated the correction by assuming
that the pKa shift is very large and the population in
the bound state is entirely protonated. Table 2
includes values for all metrics without these cases in
the data set; in all cases, the RMSE and coefficient
of determination are within the uncertainty range of
the full set with these cases included, and so their
inclusion does not affect our overall conclusions. All
cases where a mutant acid side chain is believed to
be protonated are very unfavorable to binding, but
several cases with wild-type acid side chains that are
believed to protonated would result in false-positive
predictions of binding affinity improvement if naively
modeled as charged, making incorporating this
analysis of buried residues important for performance
in anoptimization effort. All caseswhere non-standard
protonation states are used are listed in Table 4.
One scenario where the protonated form of a

buried acid residue may be particularly favored is
when it is in close proximity to another acid side
chain and a hydrogen bond network involving the
protonated carboxylate forms with the neighboring
group. A well-studied canonical example of this
scenario is the aspartate proteases, particularly HIV
protease, a protein homodimer where one of the two
proximal catalytic aspartates is believed to be
protonated [30–33]. The prominent example of this
effect we believe is occurring in the data set here is
glutamic acid at position 73 on wild-type barnase,
where the protonated form is found in FEP trajecto-
ries to form a stabilizing hydrogen bond with an
adjacent carboxylate side chain (ASP-75 or ASP-39,
see Fig. 4). Previous experimental work using double
mutant cycles found a strong implied coupling
between this residue andASP39, which they describe
as “…surprising, sinceGlu73 does not interact directly
with barstar and there is an electrostatic repulsion
between Glu73 on barnase and the negatively
charged binding surface of barstar” [24]. This config-
uration is not found in the crystal structure model
1BRS, but reliably forms and persists in MD. FEP
calculations for the mutation using both the charged
and neutral forms of the GLU side chain and
perturbing to the same neutral side chain suggest
that the neutral form is preferred by a significant factor.
Starting from the charged form, FEP predicts an



Fig. 2. FEP results by system considered; results for the three VRC-01 class antibodies are combined.
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increase in the binding affinity of themutant compared
to the wild-type complex by N2 kcal/mol for all cases.
Starting from the neutral form, FEP recovers the
correct classification of all these mutants (unfavor-
able). Asp75, also on barnase, is believed to be
partially responsible for the effect, Glu73 is also
modeled as neutral in the unbound form, and no
state penalty is incurred upon binding.
While these specific cases are not likely of

relevance for biologic affinity optimization, the use
of FEP simulations to assess the protonation states
of ionizable residues (as discussed above) may
have potential applications. Assignment of proton-
ation states in buried parts of protein interfaces is a
very difficult problem, and this approach could be
used in combination with a small amount of
experimental mutagenesis data to determine the
likely preferred protonation state assignment.

Models and Methods

FEP protocol for charge perturbations

Accurate calculation of the change in the binding
free energy for mutations that change the net charge
of the residues is difficult for multiple reasons. First,
the great majority of MD simulations employ periodic
boundary condition for approximating the behavior
of macro-system by using a finite sized simulation
box, and the periodic boundary condition introduces
artifacts for electrostatic potential energy calcula-
tions for charged solutes. The artifacts can be
decomposed into the net charge interaction between
the solute and its periodic images, the under-solvation
of the solute due to the finite size of the simulation
box, and the inconsistency of zero electrostatic
potential in simulations of different systems [14].
Second, the experimental binding affinity assays are
usually conducted in a buffer solution with salts, and
the binding affinity between the charged solutes are
critically dependent on the ionic strength of the buffer
solution, which is very difficult to model accurately.
Third, mutations changing the net charge of the
residue often have very different interactions with
their protein binding partner and the surroundingwater
molecules, and can be very difficult to converge free
energy calculations when these differential interac-
tions lead to substantial conformational changes.
In this paper, we have tested a variant of the co-

alchemical particle approach first introduced in Refs.
[15, 16] and studied extensively for small molecules
in Ref. [16] to calculate the effect of charge changing
residue mutation to the protein–protein binding free



Fig. 3. Surface map of protein binding sites showing the location of mutation sites for (A) barnase (B), barstar (C),
OMTKY3, (D) VRC01, (E) VRC03, and (F) VRCPG-04.
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energy. The protocol used is the same as described
in Ref. [11], using FEP+ with the OPLS3 force field,
except for the following modifications to adapt to the
co-alchemical water approach:

(1) The charge conserving protocol through the
introduction of a co-alchemical particle. In
particular, for a mutation from a neutral residue
to a charged residue, a particle is co-mutated
with the residuemutation, fromaneutral particle
into a sodium ion (mutated residue has −1
charge) or chloride ion (mutated residue has
+1 charge). The ion is chosen randomly from
the ions placed in the box and mutates to a
neutral particle. No additional restraints are put
on the ion to prevent it from entering the protein.
In this way, the net charge change between
the two physical end states is zero, and the
simulation box size-dependent artifacts in the
electrostatic potential energy calculations are
eliminated to within the uncertainty of the free
energy calculation [20], which we estimate
based on repeated trials of the same perturba-
tion with different randomized initial velocity



Table 4. Table of nonstandard protonation states for carboxylate side chains

PDB ID/template PDB ID Chain Position WT
residue
code

MT
residue
code

WT
fSASA
(%)

Complex
state

Unbound state Comments FEP
result

(kcal/mol)

FEP if modeled
as charged
(kcal/mol)

1BRS (barnase–barstar) A 73 E Q 1 Wild type: GLH Wild type: GLH Hydrogen bond with ASP75 on same chain 1.27 −8.45
1BRS A 73 E C 1 Wild type: GLH Wild type: GLH Hydrogen bond with ASP75 on same chain 0.96 −3.23
1BRS A 73 E S 1 Wild type: GLH Wild type: GLH Hydrogen bond with ASP75 on same chain 2.92 −2.86
1BRS A 73 E A 1 Wild type: GLH Wild type: GLH Hydrogen bond with ASP75 on same chain 0.60 −10.02
1BRS A 102 H D 0 Mutant type: ASH Mutant type: ASH Mutant in close proximity to ASP39 on

same chain; stabilizing hydrogen bond
3.23 28.89

1BRS D 35 D A 1 Wild type: ASH Wild type: ASH Fully buried 2.24 0.73
1R0R (OMTKY3–
subtilisin Carlsberg)

I 15 A D 0 Mutant type: ASH Mutant type: ASP Buried in mostly hydrophobic pocket of
receptor in bound state

5.66 18.03

1R0R I 15 A E 0 Mutant type: GLH Mutant type: GLU Buried in mostly hydrophobic pocket of
receptor in bound state

6.35 13.34

1R0R I 18 L D 5 Mutant type: ASH Mutant type: ASP Buried in mostly hydrophobic pocket of
receptor in bound state

4.89 11.36

1R0R I 18 L E 5 Mutant type: GLH Mutant type: GLU Buried in mostly hydrophobic pocket of
receptor in bound state

1.49 5.58

3SGB (OMTKY–SGPB) I 17 T D 12 Mutant type: ASH Mutant type: ASP Buried in mostly hydrophobic pocket of
receptor in bound state

3.88 7.81

3SGB I 17 T E 12 Mutant type: GLH Mutant type: GLU Buried in mostly hydrophobic pocket of
receptor in bound state

4.39 5.38

3SGB I 18 L D 1 Mutant type: ASH Mutant type: ASP Buried in mostly hydrophobic pocket of
receptor in bound state

6.70 15.13

3SGB I 18 L E 1 Mutant type: GLH Mutant type: GLU Buried in mostly hydrophobic pocket of
receptor in bound state

3.70 11.4

VRC01 [3NGB
Template]

L 96 E A 2 Wild type: GLH Wild type: GLH Caged by aromatics on antibody light chain 1.11 −0.49

VRC03 [3SE8 template] L 96 E A 1 Wild type: GLH Wild type: GLH Caged by aromatics on antibody light chain 1.77 −1.13
VRCPG-04
[3SE9 template]

L 96 E A 3 Wild type: GLH Wild type: GLH Caged by aromatics on antibody light chain −0.84 −0.74

GLH and ASH refer to the protonated form of the carboxylate in glutamic and aspartic acid respectively, while GLU and ASP refer to the deprotonated (charged) forms of the same.
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Fig. 4. The protonated GLU-73 side chain (bottom) is observed to form stabilizing hydrogen bond with deprotonated
ASP-75 side chain to stabilize a key buried salt-bridge network in the complex of barnase and barstar.
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conditions to be approximately 0.5 kcal/mol
[11].

(2) To model the effect of the ionic strength in the
buffer solution on the protein–protein binding
free energy, sodium and chloride ions with
concentrations matching the ionic strength of
the assay condition are explicitly added in the
simulations. These ions are placed by ran-
domly replacing waters in the initial solvent
buffer generated.

(3) To enhance the convergenceof the freeenergy
calculations, the number of lambda windows in
FEP+ simulations is increased from 12 for
charge conserving mutations to 24 for the
charge changing residue mutations, with the
weights for the electrostatic term of the energy
further optimized in order to maximizing the
configurational space overlap between neigh-
boring lambda windows (see the SI section
LambdaWeights for this non-uniform schedule
of weights). In addition, a larger solvent buffer,
8.5 Å rather than 5 Å, is used for the simulation
box. Together, these modifications have been
found to consistently produce good energy
overlap between adjacent lambda windows
and good convergence with increasing simu-
lation time for a large number of cases.
Furthermore, perturbations involving residues
in multipart salt bridges in the wild type are
run with much longer simulation time (100 ns
per window), as well as the residues on the
glycosylated gp120 antibodies, where a glycan
fragment is retained in the simulated system
[11].
Through these technological improvements, the
difficulties preventing the accuratemodeling of charge
charging residue mutations are effectively addressed.

Assessment of the suitability of charge
changing mutation test cases for FEP

Two of the data sets used herein are examples
of systematic scanning of all possible amino acid
residues at each position in the binding interface
that is considered. In this approach, a subset of
attempted mutations will involve placing side chains
into positions where significant structure rearrange-
ments will likely be necessary in order for the
proteins to bind. Such cases will generally be highly
destabilizing to the binding of the complex, and
finding a reasonable starting geometry to use for
the alchemical FEP simulation may not be possible.
Furthermore, in such cases, it is very unlikely that
FEP will be able to sample sufficiently to predict the
correct change in binding affinity.
To identify cases where a reasonable side-chain

placement is not possible, we performed implicit
solvent side-chain predictions for the mutant residue
in the wild-type structure and any potentially clashing
neighbor side chains. The internal energy of the side
chain conformation predicted is calculated using the
OPLS3 force field and compared to the same energy
of an optimized rotamer from a rotamer library. If the
resulting intra-side chain strain energy in the system
(deviation from the energy of the optimized rotamer)
exceeded a 5-kcal/mol increase from the wild-type
system, it was concluded that a reasonable starting
geometry for the side chain was not possible and the
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point mutation was not taken forward for FEP. This
threshold is chosen to as a fixed value, which is
a significant fraction of the total binding affinity of
the systems considered here (which are in the range
of −10 to −20 kcal/mol). The exact threshold that
should be used will likely require further optimization.
This affected only 11 cases out of an initial 161
initially considered. The specific cases are noted in
the summary results table in the SI.

Categorization of mutations involving buried
residues

For the remaining cases, fSASA was used to
categorize the mutation site in the input structure
as buried (fSASA b10%; 44 total cases) and solvent
exposed (fSASA ≥10%; 106 total cases). The
definition of fSASA is taken to be the fraction of
the maximum possible solvent accessible surface
area in a tripeptide configuration experienced by
the residue in the interface [13]. We note here that
all mutations with a significant favorable effect on
binding are contained in the latter set, and FEP
performance is good (RMSE 1.23) on the set of non-
buried positions. For the purposes of a practical
optimization project where increased affinity is a
goal, we therefore propose that fSASA can be used
as a second easily automatable filter to determine
which potentially charge changing mutations to send
to FEP predictions. For scientific interest, we also
examine here the 44 buried cases and attempt to
understand their behavior in FEP.

mm-GB/SA protocol

For this work, we used the mm-GB/SA approach
implemented in BioLuminate (version 3.0.011,
Schrödinger, LLC, New York, NY, 2018) to predict
relative changes in binding affinity at protein–protein
interfaces upon an amino acid mutation [34]. This
method integrates the OPLS force field [35], with the
implicit solvent model VSGB [36], and the rotamer
library and search method of Prime [37]. Conforma-
tional sampling is limited to side chains only; the
protein backbone remains fixed, and no MD sam-
pling is used in this protocol. Input structures for all
complexes and a spreadsheet of all FEP results are
available as supplementary so that the reader may
compare with mm-GB/SA methodologies with addi-
tional sampling employed. The integration of OPLS
with the VSGB model combines the OPLS modeling
of bonded and non-bonded terms with the solvation
and desolvation energies of the VSGB model, which
additionally contains physics-based correction
terms. It should be noted that there is no term for
changes in side-chain configurational entropy, but
despite this limitation, the method has performed
just as well as other mm-GB/SA implementations
[38]. Crystallographic waters were deleted from the
mm-GB/SA input structures as they degraded per-
formance slightly (the RMSE is increased from
1.95 to 2.09 kcal/mol and reducing r2 from 0.22 to
0.13) for the systems explored in this study. Results
including crystallographic waters can be found in the
SI in Table S3.
Previous work by Beard et al. [34] observed that the

optimal slope for converting Prime energies to exper-
imental energies was system dependent. Thus, the
rescaled Prime energies were determined in the
following manner to get the optimal performance from
Prime. The data set was divided into four subsets.
Three of those subsets correspond to the three subsets
of experimental data derived from the SKEMPI
database (i.e., Barnase:Barstar, Subtilisin Carlsberg:
OMTKY3, and S. griseus proteinase B:OMTKY3). The
last subset of data corresponds to all experimental
measurements involving VRC antibodies. The VRC
antibody data were pulled together into a single subset
in order to create a subset of data of reasonable size
and spread in energy (19 mutations). The best fit line
was then calculated for each subset of the data be-
tween the Prime predicted changes in relative binding
affinity and the experimentally measured changes in
relative binding affinity. The best-fit slopes ranged from
0.07 to 0.14. The slopes of those lines were used to
rescale the Prime predicted energies for each subset.
Those rescaled energies were then used to calculate
the final RMSE and r2 values reported in this work.

Sampling of salt-bridge networks

A relatively frequently occurring sampling challenge
for FEP in charge changing mutations at a protein–
protein interface is that the change in charge may
disrupt salt-bridge networks that extend across
several residues. Therefore, when mutations are
made to residues identified as participating in multiple
salt bridges (including bidentate motifs) where large
energetic barriers to sampling out of the initial
conformation are expected due to the strong electro-
static forces involved, simulation time is extended
out to 100 ns. For the HIV bNAb cases, which use
homology models where there is additional uncertain-
ty in the placement of charged residues at the surface
where they have been modeled in in place of neutral
side chains, we extend all simulation times to 100 ns
to allow more complete sampling. In addition, if a new
salt bridge is observed to form in the simulation
trajectory, the simulation is re-runwith themutant-type
salt-bridge partner side chains in the REST region, to
allow sampling out of the initially formed salt bridge.
Conclusion

The FEP calculations shown here are relatively
inexpensive, costing approximately $10–15 per
simulation given a price point for GPU time around
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$0.40 per GPU hour, and most can be completed
within ~8 h. Consequently, it is feasible to run
thousands or tens of thousands of calculations in
order to explore potential improvements to a biological
therapeutic such as an antibody or vaccine. The issue
of what kind of impact such calculations can have
on a project, given the availability of methods like
phage display to combinatorically explore sequence
space experimentally, remains to be seen. The ability
to target particular mutations of interest, and to at
least estimate the effects on other properties which
have to be optimized in order to create a development
candidate, will be important in achieving significant
impact in practical applications.
A second type of application of protein residue

FEP would be to gain insight into selectivity of
important biological recognition events such as
cadherin binding. Minor sequence changes in
cadherins are critical to different types of cells
recognizing one another (and rejecting alternative
cell types). In principle, FEP can provide an accurate
atomic level basis for such recognition, given
sufficiently good starting structures. Explorations
along these lines using FEP have yet to be
attempted at a large scale.
In conjunction with recently obtained results for

small-molecule ligand binding, the present work
provides solid evidence that the co-alchemical
water approach is a satisfactory solution to the
problem of applying FEP to transformations involv-
ing a change in net charge. The RMSE for charge
changing mutations is somewhat larger than that for
neutral mutations, even for solvent exposed sites.
We suspect that this is due to the greater possibility
of nontrivial protein reorganization, even if the site
does not fall into the “buried” category as we have
defined it here. Improved sampling protocols and
simple brute force increases in simulation length
should address these issues over time.
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