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Abstract

Cognitive ability is an important predictor of mental health outcomes that is influenced by 

neurodevelopment. Evidence suggests that the foundational wiring of the human brain is in place 

by birth, and that the white matter (WM) connectome supports developing brain function. It is 

unknown, however, how the WM connectome at birth supports emergent cognition. In this study, a 

deep learning model was trained using cross-validation to classify full-term infants (n = 75) as 

scoring above or below the median at age 2 using WM connectomes generated from diffusion 

weighted magnetic resonance images at birth. Results from this model were used to predict 

individual cognitive scores. We additionally identified WM connections important for 

classification. The model was also evaluated in a separate set of preterm infants (n = 37) scanned 

at term-age equivalent. Findings revealed that WM connectomes at birth predicted 2-year 

cognitive score group with high accuracy in both full-term (89.5%) and preterm (83.8%) infants. 

Scores predicted by the model were strongly correlated with actual scores (r = 0.98 for full-term 

and r = 0.96 for preterm). Connections within frontal lobe, and between the frontal lobe and other 

brain areas were found to be important for classification. This work suggests that WM 

connectomes at birth can accurately predict a child’s 2-year cognitive group and individual score 

in full-term and preterm infants. The WM connectome at birth appears to be a useful 

neuroimaging biomarker of subsequent cognitive development that deserves further study.
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1. INTRODUCTION

Individual differences in cognitive ability in youth has been associated with risk for poor 

mental health outcomes in adulthood, with lower performing children at increased risk for 

developing disorders including schizophrenia (Dickson et al., 2012; Gunnell et al., 2002), 

post-traumatic stress disorder (Gale et al., 2008; Koenen et al., 2007), and depression (Gale 

et al., 2008; Zammit et al., 2004). Cognitive scores in toddlerhood are correlated with 

school-age ability (Bayley, 1949; Bishop et al., 2003; Girault et al., 2018b; McCall et al., 

1972; Stumm et al., 2009), which is a fairly stable marker of intelligence in adulthood 

(Bradway and C. W. Thompson, 1962; Deary et al., 2013; 2004; McCall, 1977), suggesting 

the foundations of individual differences in ability are likely determined in the first years of 

life. However, relatively little is known about how the brain develops to support emergent 

cognition, or how useful neuroimaging biomarkers of early brain organization may be for 

predicting future cognitive abilities.

WM connections play an important role in cognition (Zatorre et al., 2012) by optimizing 

rapid information transfer between brain areas (Mabbott et al., 2006; Nagy et al., 2004). At 

birth, white matter (WM) in the human brain is a highly connected network of largely 

unmyelinated axons that will serve as the foundation upon which future fine-tuning of 

cortical circuitry takes place via processes that include synaptogenesis, dendritic 

arborization, and myelination (Dubois et al., 2014). By week 30 of gestation, major 

pathways underlying the rich-club organization of the brain are established (Ball et al., 

2014), and by birth WM networks exhibit a small world architecture (Yap et al., 2011). This 

suggests that the foundational wiring of brain circuitry is established in utero and is largely 

in place by the time of term birth, a finding which has been supported by tractography 

studies (Dubois et al., 2008; Huang et al., 2006). The WM connectome, as a physical 

network, has important implications for both cortical structural development (Essen, 1997) 

and functional brain connectivity (Hagmann et al., 2010; Park and Friston, 2013; Sporns, 

2013).

The WM connectome is more adult-like at birth than the functional connectome, with 

widespread structural hubs already present in medial frontal, parietal, and hippocampal areas 

(Huang et al., 2015; van den Heuvel et al., 2015) along with regions in the posterior 

cingulate and insula (Ball et al., 2014). In contrast, functional networks at birth are 

comprised of a relatively immature network of hubs in primary sensory, auditory, and 

sensorimotor areas (Cao et al., 2017a; Fransson et al., 2010). Interestingly, cross-sectional 

developmental studies have shown that coupling between WM and functional networks 

increases from 30 weeks gestation into adulthood (Hagmann et al., 2010; van den Heuvel et 

al., 2015). This body of work highlights the possibility that early-maturing WM 

connectomes serve as the initial foundation upon which diverse functional networks are built 

(Cao et al., 2017b).

Importantly, the WM connectome must provide enough flexibility to support dynamic large-

scale functional reorganization that has been shown to occur during cognitive tasks (Cohen 

and D’Esposito, 2016). Recent studies have begun to reveal interesting links between 

individual differences in WM connectomic features in pediatric populations and future 
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cognition and behavior. WM connections between the thalamus and cortex have been related 

to cognitive abilities at age 2 in preterm infants (Ball et al., 2015), and WM connectomes at 

birth have been used to derive subject communities that were related to maternal reports of 

child behaviors at ages 2 and 4 in infants born full-term (Wee et al., 2016). A recently 

developed methodological approach outlined the utility of deep convolutional neural 

networks in predicting cognitive and motor scores at age 2 from WM connectomes at birth 

in very preterm infants (Kawahara et al., 2017). This recent work suggests that WM 

connectivity at birth is important for future cognitive and behavioral outcomes in 

toddlerhood, though to date, predictive relationships have been poor to modest and have 

been conducted in full-term or preterm-only samples.

In the present study, we extend our previous work investigating the associations between 

WM tractography and cognition, which found that heritable components of white matter are 

associated with cognition in early life (S. J. Lee et al., 2017) and that these brain-cognition 

associations are of a global, non-specific nature and detectable as early as birth (Girault et 

al., 2018a). Together, these studies found that WM integrity from any single fiber tract, or 

white matter component, at birth carried relatively little information about future cognitive 

abilities, though based on the global nature of the findings we hypothesized that WM may be 

a useful biomarker if it were considered as a global system, using a higher-dimensional 

analytic approach. Further, using machine learning to predict future cognitive outcomes 

from neuroimaging markers taken shortly after birth is highly clinically-relevant, and part of 

an emerging body of work predicting outcomes in high-risk infant populations (Emerson et 

al., 2017; Hazlett et al., 2017a; Kawahara et al., 2017). Here we extend this framework to 

determine if WM connectomes at birth can be used to predict individual differences in 

cognitive abilities at age 2, across a period of rapid, dynamic brain development (Geng et al., 

2012; Gilmore et al., 2018; Knickmeyer et al., 2008; Lyall et al., 2015), in a heterogeneous 

sample of infants followed longitudinally.

We used a deep learning approach to determine the predictive ability of WM connectomes at 

birth for subsequent cognition and identify features of the WM connectome at birth 

important for classification accuracy. Importantly, we tested the robustness of our prediction 

approach by training with full-term born infants and applying the resulting model to an 

independent set of preterm infants scanned at approximate term-age-equivalent. If our model 

trained on data from full-term infants could be applied to a sample of infants born 

prematurely and achieve similar accuracy, it would suggest that there exists an underlying 

set of WM connectomic features that lay the foundation for emergent cognition across late 

gestation into the neonatal period.

2. METHODS AND MATERIALS

2.1 Sample

Participants were part of the UNC Early Brain Development Study (Gilmore et al., 2010; 

Knickmeyer et al., 2008; 2016). We retrospectively identified 115 infants (twins and 

singletons) with high-quality diffusion and structural MRIs at birth and cognitive 

assessments at age 2. This dataset contained infants born between 212 and 295 days (30.28 

to 42.14 weeks) gestation, as mothers were recruited prenatally and the gestational age of 
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the infant was not exclusionary. To avoid introducing age variability in the training and 

testing datasets, primary model building and classification were performed using full-term 

(FT) infants (≥ 37 weeks gestation; n = 75) and models were then applied to preterm (PT) 

infants (< 37 weeks; n = 37). Applying the model trained on FT data to the unique PT 

infants allowed us to achieve our goals of (1) validating this model in an independent dataset 

and (2) testing its robustness to classifying unseen connectome datasets with features that 

may vary based on gestational age, and thus are potentially more heterogeneous than those 

used for training. However, it is important to note that all infants were scanned shortly after 

birth, or as close to term-age-equivalent as possible; the youngest infant was scanned at a 

gestational age of 37.4 weeks, which was 50 days following their preterm birth at 30.28 

gestational weeks.

Demographics are presented in Table 1; gestational age distributions are presented in Figure 

1A. Informed written consent was obtained from a parent/legal guardian of each participant. 

This study was approved by the Institutional Review Board of the University of North 

Carolina at Chapel Hill. The PT subject sample included infants with perinatal 

complications including stay in the neonatal intensive care unit (PT: n = 23) and failure to 

thrive (PT: n = 1). Additionally, one preterm infant was identified as having a potential 

developmental delay due to scoring ≤70 on the 2-year cognitive assessment. FT subjects 

used for training the algorithm scored within a normal range of developmental assessments 

at age 2 and had no documented perinatal complications.

2.2 Cognitive Assessment

Cognitive ability was assessed at age 2 using the Mullen Scales of Early Learning (Mullen, 

1995). Measures of fine motor, visual reception, expressive and receptive language were 

collected by experienced testers. Age-standardized T-scores from these scales were 

combined into an Early Learning Composite (ELC) standardized score (range: 49–155, 

mean =100, SD =15). The ELC has high internal consistency (median = 0.91) and reliability 

(median = 0.84 for the cognitive scales during this age window), and principal factor 

loadings of the scales lend support for the construct validity of the ELC as a general measure 

of cognitive ability (Mullen, 1995). The range of ELC scores for FT and PT infants is shown 

in Figure 1B.

2.3 Image Acquisition

All images were acquired between 2009 and 2012 using a Siemens Allegra head-only 3T 

scanner (FT: n = 55, PT: n = 27) or a TIM Trio 3T scanner (FT: n = 20, PT: n = 10), which 

replaced the Allegra in 2011 (Siemens Medical System, Inc., Erlangen, Germany). There is 

no significant difference in the distribution of participants across scanners between the FT 

and PT group (X2 (1, N = 112) = 3.10e−31, p > 0.99). Infants were scanned during natural 

sleep, fitted with earplugs and secured using a vacuum-fixed immobilization device. 

Diffusion weighted images (DWIs) were acquired using a single-shot echo-planar imaging 

spin-echo sequence with an acquisition time of 6 minutes and 14 seconds. For all DWI data, 

42 directions of diffusion sensitization were acquired with a b value of 1,000 s/mm2 in 

addition to seven baseline (b value = 0) images (generating a total of 49 DWIs). Acquisition 
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parameters: TR/TR/Flip angle = 7,680/82/90°, slice thickness = 2mm, and in-plane 

resolution = 2 × 2 mm2, with a total of 60 to 72 slices.

T1 and T2 weighted images were additionally acquired for the white matter surface 

generation and its propagation to DWI space. The T2-weighted images were acquired on the 

Allegra using a turbo-spin echo sequence (TSE, TR = 6200ms, TE1 = 20ms, TE2 = 119ms, 

flip angle = 150°, spatial resolution = 1.25mm × 1.25mm × 1.95mm; Type1: FT: n = 5, PT: n 
= 1) or a “fast” turbo-spin echo sequence was collected on the Allegra using a decreased TR, 

a smaller image matrix, and fewer slices (TSE, TR range = 5270ms-5690ms, TE1 range = 

20ms-21ms, TE2 range = 119ms-124ms, flip angle = 150°, spatial resolution = 1.25mm × 

1.25mm × 1.95mm; Type2: FT: n = 50, PT: n = 26). For the Trio, participants were initially 

scanned using a TSE protocol (TR = 6200ms, TE1 = 17, TE2 = 116ms, flip angle = 150°, 

spatial resolution = 1.25mm × 1.25mm × 1.95 mm; Type3: FT: n = 2, PT: n = 2) while the 

rest were scanned using a 3DT2 SPACE protocol (TR = 3200ms, TE = 406, flip angle = 

120°, spatial resolution= 1mm × 1mm × 1mm; Type 4: FT: n = 18, PT: n = 8). There is no 

significant difference in the distribution of FT and PT participants across T2 scan types used 

to generate WM surfaces (X2 (3, N = 112) = 1.35, p = 0.716).

The T1-weighted images were acquired on the Allegra using a 3D magnetization prepared 

rapid gradient echo sequence (MP-RAGE TR = 1820ms, TE = 4.38ms, flip angle = 7°, 

spatial resolution = 1mm × 1mm × 1mm, with matrix dimensions of 256 × 192 or 256 × 

144). T1 images on the Trio were collected using a lower echo time (MP-RAGE TR = 

1820ms, TE = 3.75ms, flip angle = 7°, spatial resolution = 1mm × 1mm × 1mm).

While there was no significant difference between the distribution of FT and PT participants 

across the two scanners, we conducted a series of tests to ensure that using DWI data from 

two scanners (Allegra vs. Trio) did not influence our results. We tested whether ELC scores, 

or the mean absolute error (MAE) between the actual and predicted ELC scores differed 

between subjects scanned on either scanner (“scanner groups”) and they did not (ELC 

scores, full sample: t = 1.44, df = 59.66, p = 0.155). Scanner groups also did not 

significantly differ in terms gestational age (t = −0.361, df = 59.98, p = 0.720), birth weight 

(t = 0.285, df = 63.04, p = 0.778), duration in the NICU (t = 0.640, df = 57.24, p = 0.524), 

gestational age at scan (t = 0.658, df = 50.90, p = 0.514), age at ELC testing (t = −1.71, df = 

44.53, p = 0.094), parental age (maternal: t = 0.134, df = 46.02, p = 0.892; paternal: t = 

−0.033, df = 50.83, p = 0.973), or parental education level (maternal: t = −0.426, df = 46.12, 

p = 0.672; paternal: t = −0.482, df = 54,06, p = 0.632), nor in the distribution gestation 

number (singleton vs. twin, (X2 (1, N = 112) = 0.857, p = 0.354). There was a marginally 

significant difference in the distribution of males and females across the scanners (X2 (1, N 

= 112) = 3.96, p = 0.047); where the ratio of males to females is equal on the Allegra (41 

males, 41 females), but more males were scanned on the Trio (22 males, 8 females). 

Additionally, we tested whether there were differences in the WM connectomes generated 

from the two scanners by testing for a group effect of scanner across the connectome. After 

adjusting for sex, no significant effect of scanner was present (See Supplement Section I).
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2.4 WM Surface Generation and Propagation

Cortical surfaces were generated from the neonatal T2-weighted images as previously 

described (Jha et al., 2018; Li et al., 2016). An infant-specific pipeline (Li et al., 2013) was 

used to perform tissue segmentation and a deformable surface method (Li et al., 2014; 2012) 

was applied to reconstruct WM surfaces that were parcellated into 78 regions corresponding 

to those in the automated anatomical labeling (AAL) atlas adapted for the infant brain 

(Gilmore et al., 2012; Tzourio-Mazoyer et al., 2002). All surfaces were examined for 

accurate mapping. T1-weighted images were then rigidly co-aligned with the processed T2-

weighted images. T2 and T1-weighted images were then jointly used to propagate the WM 

surfaces into DWI space via deformable symmetric diffeomorphic co-registration to the 

average baseline (b=0) image and the axial diffusivity map via ANTS (Avants et al., 2011).

2.5 WM Connectome Generation

A study-specific quality control protocol was applied to all DWI data as outlined in 

Supplement Section I. Probabilistic tractography was performed with CIVILITY 

(Puechmaille et al., 2017), which utilizes FSL tools bedpost and probtrackx2 (Behrens et al., 

2007) to determine the diffusion connectome. Prior to tractography, Bayesian estimation of 

diffusion parameters was computed to allow for data-driven selection of the number of 

supported fiber orientations at each voxel, accounting for multiple orientations and crossing 

fibers (Behrens et al., 2007). For our analyses, we used two fiber orientations for voxel 

fitting. Each region from the WM surface was used as a seed region, and probabilistic 

tractography was performed using probtrackx2 (Behrens et al., 2007), with the number of 

streamlines per voxel set to 3000, a step-length of 0.75mm, and seed sphere sampling size of 

0.5mm.

A 78 × 78 connectivity matrix (or connectome) was calculated using the probabilistic 

tractography data. Connectivity is defined as the number of probabilistic WM fiber tract 

streamlines arriving at region j when region i was seeded, averaged with the number of 

probabilistic WM fiber tract streamlines arriving at region i where region j was seeded. This 

step is iteratively repeated to ensure all 78 regions are treated as seed regions producing a 

connectivity matrix that is symmetric with respect to the main diagonal. Lastly, connectivity 

matrices were then normalized using a maximum scaling technique by dividing the entire 

matrix by its largest connectivity value. These symmetric, normalized matrices were used in 

the deep learning approach described below.

2.6 Deep Learning Pipeline Overview

As illustrated in Figure 2, our approach begins with preprocessing the infant WM 

connectomes to reshape them into connectivity feature vectors and generating classification 

labels to determine ELC 2-year score groups (above the median (AM) and below the median 

(BM)). There are two main steps in the prediction pipeline that follows: (1) connectivity 

feature vectors are input into the ELC classification model to identify median group 

membership (AM or BM) and then (2) the AM or BM classification probability value is 

directed to the corresponding 2-year ELC AM or BM prediction model and a 2-year ELC 

score is found. The rationale for this two-step approach and methodological details for the 
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classification, score prediction, application to the preterm dataset, and generation of a 

connectivity fingerprint are outlined below.

2.7 Rationale for the 2-Step Approach

As illustrated in Figure 2, our two-step approach includes the construction of two models: 

classification followed by prediction. In general, the two-step approach has been 

successfully incorporated in to several machine learning designs (Choi and Jin, 2016; 

Hazlett et al., 2017b; Kim and B. Lee, 2018; Kooi et al., 2017; Suk et al., 2015) to mitigate 

overfitting and improve model generalization performance. Furthermore, we chose to use 

this two-step approach because preliminary experimentation showed that a single neural 

network to predict ELC scores directly produces very poor results (see Supplement Section 

VI for details). Due to the small sample size and the large complexity of a direct prediction 

of the continuous ELC score, the results of the single neural network model were 

consistently and strongly biased towards a singular value. Based on such evidence of 

overfitting, a two-step pipeline was implemented to improve prediction performance.

The two-step pipeline design starts with an easier discrete two-group classification problem 

(AM or BM) that is then followed by a much more difficult continuous score prediction 

problem in which the classification accuracy associated with the probability that an infant 

will belong to the AM or BM group is directed to a linear regression model predicting the 

continuous ELC score. To better understand this design decision, the box plots in Figure 3A 

show the distribution of classification probability values for infants assigned by the model to 

the correct median score group. The standard deviation of the classification probability is 

within +/− 0.013 of the AM or BM group mean, suggesting the variability of the underlying 

data distribution is very small, and thus may not provide adequate information resolution to 

train a single prediction model. To resolve this, we take the classification probabilities 

shown by the red line in Figure 3B from the first step in the pipeline and normalize them to a 

value in [0 1], shown by the green line in Figure 3B before the ELC 2-year score linear 

regression prediction model is trained in the second step, thus transforming a large learning 

step to a smaller learning step.

2.8 ELC 2-year Median Score Group Classification Model

The upper triangular portion of the 78 × 78 FT infant WM connectivity matrices were 

reshaped into one dimensional connectivity feature vectors each containing 3,003 WM 

connections. The connectivity feature vectors, along with their associated median score 

group ELC classification labels, were then used to train a dense neural network. Training 

was performed using a 10-fold cross-validation approach where the 78 FT infants were 

randomly divided into 10 folds (where the number of subjects assigned to each fold ranged 

from 6 to 9), maintaining the same ratio of outcomes (AM and BM). In an iterative fashion, 

nine folds are used to train the model and the one left-out fold is used test the model, this is 

continued until all combinations of folds have been used for training and testing, yielding 10 

different prediction models (see Supplement Section III for further details).

Each neural network defines one input layer, five hidden layers, five activation layers, three 

dropout layers, and one output layer (see Supplemental Figure 2). The input layer has 3,003 
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neural network nodes, one for each WM connection in the connectivity feature vector, and 

the output layer has two neural network nodes, one for each ELC median score group. One 

additional supervised learning layer with two neural network nodes was added for the model 

training. Once the supervised training step was completed, the supervised training layer was 

removed, and the response value of neural network nodes in the output layer were used for 

ELC median score group classification and classification probability. For example, given a 

connectivity feature vector, if the output responses of the neural network are AM = 0.35 and 

BM = 0.65, then the infant is classified as BM with probability equal to 0.65. We calculated 

an overall accuracy value which quantified the percentage of times an infant was correctly 

assigned to their cognitive group averaged over the 10 trained models. Detailed information 

on the classification model is presented in Supplement Section III.

2.9 ELC 2-year Score Prediction Models

The classification probability values generated by the ELC 2-year median score group 

classification model were first normalized (Figure 3) and then used to train two different 

linear regression models (one for the BM group and AM group) capable of predicting the 

actual ELC score at age 2. For each prediction model, one predictor variable (normalized 

classification probability) and one response variable (actual 2-year ELC score) were used to 

train the linear regression model. To test the strength of the regression prediction model, we 

calculated Pearson’s product-moment correlations between infant’s actual and predicted 

scores and tested for significance at the level of p < 0.05. We additionally calculated the 

mean absolute error to quantify the difference in score points between actual and predicted 

ELC scores. Additional information on the prediction model can be found in Supplement 

Section IV.

2.10 Application to a Preterm Dataset

To test how well our ELC 2-year prediction pipeline trained with FT infant data generalizes 

to new infant connectome datasets, we evaluated its accuracy when applied to fully 

independent datasets from PT infants scanned at approximate term-age-equivalent. This 

allows us to determine if the trained models are overfit to the FT infant data; achieving 

similar classification accuracies in a separate dataset of infants with potentially distinct WM 

characteristics and differential risk for poor cognitive outcomes would suggest that our 

pipeline models are not overfit and can detect fundamental WM organizational 

characteristics associated with emergent cognition. Our prediction model is based on the 10-

fold cross-validation and thus generates 10 separate predictions for the PT infants, which we 

average for an overall prediction. More detailed information regarding the PT infant analysis 

can be found in Supplement Section III.C and Section IV.C.

2.11 Extraction of the Connectivity Fingerprint

A backtrack approach similar to that proposed in Hazlett et al.(2017b) was employed to 

identify a systematic WM connectivity pattern, or connectivity fingerprint, important for 

classification accuracy. In general, our approach works backwards through layers of the 

trained neural network to the input layer and follows the nodes that have the largest 

contribution to the layer directly above. When the backtrack approach completes, each WM 

connection is assigned a normalized weight that indicates its contribution to classification 
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accuracy. Next, using the assigned weight values, the connectivity fingerprint is formed by 

including only those WM connections that account for top 20% of the total weight. In the 

results, we present this backtrack weight per connection in the fingerprint; brain regions are 

also assigned a frequency that is based on the number of times they appear in separate 

connections (i.e. if connections between regions A and B and regions A and C are identified 

through the backtrack approach, region A will have a frequency of 2). More detailed 

information on the backtrack analysis can be seen in Supplement Section V.

3. RESULTS

3.1 Classification of ELC Score Group

Classification labels were generated by grouping infants into two categories based on their 

performance on the 2-year ELC relative to others in our sample: above the median (AM; 

ELC > 110; FT: n = 38, PT: n = 15) and below the median (BM; ELC < 110; FT: n = 37, PT: 

n = 22). The ELC median score group classification model achieved 89.5% (SD = 5.7%, SE 

= 0.15%) accuracy for the FT infants and 83.8% accuracy for PT infants.

3.2 Prediction of ELC Scores

Plots comparing the predicted ELC score to actual scores can be seen in Figure 4A for FT 

infants and Figure 4B for PT infants. Correlations between predicted and actual scores were 

high for both FT (r = 0.978, df = 73, p < 0.0001) and PT infants (r = 0.956, df = 35, p < 

0.0001; for mean predicted score across 10 folds). The mean absolute error across 

individuals for the prediction was 3.45 points (SD = 1.48) for FT and 4.47 points (SD = 

1.56) for PT infants.

3.3 Connectivity Fingerprint

The connectivity fingerprint shown in Figure 5 defines region-to-region WM connections 

that are important for accurate classification based on ELC score group. WM connections 

contributing to classification accuracy (Figure 5A) span the brain, with the majority of 

connections within the frontal cortex and between regions in the frontal lobe and other brain 

areas including the occipital, temporal, and parietal cortices, insula, cingulate, and pre- and 

postcentral gyri. Additional connections important for classification include those between 

the cingulum cortex and the occipital, temporal, and parietal cortices, as well as connections 

between the occipital cortex and parietal and temporal cortices. Connections with the largest 

backtrack weight were interhemispheric connections in the frontal lobe, including 

connections between the right superior frontal and left middle frontal gyri, left superior 

orbitofrontal and right inferior orbitofrontal gyri, and connections between the left olfactory 

gyrus and the right precentral gyrus, right middle frontal gyrus, and right frontal inferior 

triangularis. Connections within the right hemisphere and inter-hemispheric connections 

each account for 40% of backtrack connections, while connections within the left 

hemisphere account for the remaining 20% of backtrack connections.

Brain regions with the highest frequencies among backtrack connections are found in the 

frontal cortex and include the bilateral frontal superior medial cortex, right orbitofrontal 

medial cortex, right frontal inferior operculum, right rectus gyrus, and right inferior parietal 
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and occipital gyri (Figure 5B). Additional brain regions of lower frequency include the left 

frontal inferior operculum, left olfactory, left orbitofrontal medial cortex, left rectus gyrus, 

right anterior and left middle cingulate cortices, right cuneus, right superior occipital cortex, 

left fusiform gyrus, right angular gyrus, and right inferior temporal gyrus.

4. DISCUSSION

Using a developmental connectomics framework coupled with a deep learning approach, we 

have demonstrated the ability to accurately predict an infant’s cognitive performance at age 

2 using WM connectivity matrices generated from scans following birth. Specifically, we 

show that taking a two-step approach by first classifying infants based on their cognitive 

performance group and then using results from this group classification to directly predict 

ELC scores, allowed us to achieve estimates of children’s cognitive scores two years later 

that are highly correlated with their actual scores. Importantly, we found that our prediction 

model, which was trained using WM data from term-born infants, was equally effective in 

infants born preterm, despite reported associations between prematurity and altered WM 

development (Elitt and Rosenberg, 2014). Finally, we report neonatal WM connections that 

may be particularly important for supporting emergent cognitive abilities at age 2 in both 

full-term and preterm infants. This study demonstrates the importance of fetal and early 

postnatal brain development for subsequent cognition and suggests that the WM connectome 

is an important biomarker of cognitive abilities in early life that deserves further study.

4.1 WM Connectomes at Birth as Biomarkers of Cognition in Infancy

Neuroimaging research has greatly improved our understanding of human brain function and 

development; however, it has not yet propelled significant changes in clinical or educational 

practice (Gabrieli et al., 2015). Thus, as the field advances, there is a critical need to identify 

neuroimaging biomarkers, or ‘neuromarkers’ that can aid in improving diagnostic criteria 

and identifying people at risk for poor mental health and cognitive outcomes so that 

adequate interventions can be designed and implemented. Our study using non-invasive 

neuromarkers, in this case WM connectomes, to accurately predict infants’ future cognitive 

performance is an important step in this direction. Machine learning, and particularly deep 

learning, have been instrumental in neuroimaging research by allowing complex patterns 

between brain structural and functional features and cognitive and clinical phenotypes to be 

revealed (Shen et al., 2017; Vieira et al., 2017). In this study, we trained a deep learning 

classification model to use infant WM connectomes following birth to predict future 

cognitive outcomes 2 years post-birth. The classification accuracies were relatively high; we 

achieved 89.5% accuracy in full-term and 83.8% accuracy in preterm infants. This highlights 

the promise of WM networks as a neuromarker of cognitive abilities during development.

Given the potential clinical relevance of predicting cognitive scores directly, we used 

classification probabilities from the ELC median score group classification model as inputs 

in a regression prediction model to estimate each infant’s future cognitive score at age 2. 

This two-step process achieved very high correlations between predicted and actual scores, 

within just a few points of the actual score in many cases. One preterm infant had a very low 

score of 51 in the ELC at age 2. Despite scoring 20 points lower than the lowest-scoring full-
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term infant used to train the model, the infant was accurately classified as below average. 

While the average predicted score of 57 was above the infant’s actual score, this predicted 

score was still the overall lowest predicted score in both the full-term and preterm samples. 

Thus, our prediction method correctly identified this subject as the lowest performing 

subject in the sample, which is an indication of its robustness.

The mean absolute error between predicted and actual scores are, on average, comparable to 

the standard errors of measurement for the ELC, which range between about 3 and 4 score 

points for 2-year-olds, and reflect a band of error around the mean, or “true”, score that 

would be obtained if an individual could be tested repeatedly without influences of practice 

or other factors (Mullen, 1995). This level of accuracy is critical for using neuromarkers to 

potentially guide cognitive and behavioral interventions in young children.

4.2 Methodological Considerations

Through preliminary experimentation we found that a single neural network was not capable 

of accurately predicting a continuous cognitive measure when applied to a 78 × 78 

dimension connectome (3,003 connectivity features) and ~70 FT datasets. This prompted the 

implementation of a pipeline that defines two sequential models (classification followed by 

prediction); this was an important step designed to mitigate overfitting by reducing the 

complexity of the learning task, which is inherent with high dimensionality data and limited 

sample sizes (see Supplement Section VI for details).

When compared to previous single model machine learning approaches that use infant 

structural connectomes (Kawahara et al., 2017) or adult functional connectomes (Finn et al., 

2015) to predict a continuous cognitive measure, our two-step approach is more accurate 

even though the connectome samples are similar. In particular, the convolutional neural 

network model developed Kawahara et al. used 90 × 90 dimension connectomes (4,005 

connectivity features) and 168 infant connectome samples, and the linear regression model 

developed by Finn et al. used 268 × 268 dimension connectomes (35,778 connectivity 

features) and 118 adult connectome samples. Even though Kawahara et al. applied a 

procedure to synthetically increase the number of samples, and Finn et al. applied a 

correlation technique to reduce the number of connectivity features, the highest correlations 

achieved between predicted and actual scores were r = 0.31 and r = 0.50, respectively. In 

general, there could be any number of reasons for the lower correlations (including 

differences in images and connectome processing), but it is reasonable to assume the high 

complexity of the machine learning problem resulted in an overfit model that, when applied 

to unseen data, resulted in lower prediction accuracy than the two-step design which was 

purposely implemented to minimize such errors in this study.

In addition to the two-step approach, several additional steps have been taken to mitigate 

overfitting errors in our results: (1) a 10-fold cross-validation strategy was used in which 

infants in each fold were randomly selected and the outcome ratios were maintained, (2) an 

integrated 10-fold grid-search capability was performed that identified the optimal model 

parameter values, and (3) the addition of several dropout layers that further prevent model 

overfitting (Srivastava et al., 2014) were included in the neural network design. Even though 

our study has a limited number of datasets, the overfitting precautionary steps we have 
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introduced produce a prediction pipeline that is reliable even when applied to connectomes 

of preterm infants from an independent data set, which suggests that, if overfitting is indeed 

happening, the impact is minimal.

4.3 Application to an Independent Sample of Preterm Infants

Importantly, our models, which are trained using data from full-term infants, robustly 

predicted future cognitive scores with similar accuracy using WM connectomes from a 

sample of preterm infants scanned near term-age-equivalent. The ability to accurately 

classify across both groups was of clinical interest; preterm birth is associated with 

alterations in WM microstructural development (Partridge et al., 2005) and increased risk for 

poor cognitive outcomes (Bode et al., 2014) and neurodevelopmental disorders including 

attention deficit hyperactivity disorder and autism, which have been linked to disruptions in 

brain connectivity (Liston et al., 2011; Uddin et al., 2013). Despite the impact of prematurity 

on neurodevelopment, our model was able to accurately predict cognitive scores in both 

groups, suggesting there exists an underlying set of organizational principles that govern 

WM network topology across early pre- and postnatal development and have important 

implications for cognitive development. This highlights the potential usefulness of WM 

connectomes as neuromarkers of cognition across heterogeneous infant populations.

4.4 WM Connections Important for Prediction Accuracy

A connectivity fingerprint consisting of connections spanning the cortex at birth contributed 

to classification accuracy, with the highest backtrack-weighted connections confined to the 

frontal lobe. These findings are consistent with previous reports that rich club regions in the 

infant WM connectome include regions in the medial frontal cortex (Ball et al., 2014). 

Interestingly, studies linking infant WM connectomes to parental reports of children’s 

behavior at age 4 also found connectivity to the right inferior frontal gyrus to be an 

important predictor of future externalizing behavior at 48 months (Wee et al., 2016), and a 

WM hub in the middle frontal gyrus in preterm infants was found to be related to cognitive 

abilities at age 2 (Kawahara et al., 2017). These findings, along with the results from our 

study, suggest that frontal lobe WM connections play an important role in early learning and 

cognition. We also found that connections between the cingulate and other brain areas were 

important for classification accuracy, suggesting that the cingulate, reported to support 

cognitive control in adults (MacDonald et al., 2000; Shenhav et al., 2016), may also be 

important for emerging cognition and deserves further study. Finally, many more 

connections responsible for prediction were located in the right hemisphere than the left, 

which is in line with work demonstrating a rightward asymmetry of WM network topology 

in neonates (Yap et al., 2011) as well as adolescents and adults (Zhong et al., 2017). 

However, the connections with the highest backtrack weight are interhemispheric, and the 

atlas used in this study is not symmetric, thus we suggest caution in the interpretation of this 

rightward lateralization.

Results from this study suggest that WM connectomes following birth, as a reflection of 

fetal brain development, have important implications for future cognitive capacities in 

children. WM connections in the developing brain are built through genetically regulated 

cascades of cellular events that govern neurogenesis and migration and promote an 
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exuberance of connections via processes of axon guidance, synaptogenesis and dendritic 

arborization (Stiles and Jernigan, 2010). In the final trimester, the infant WM connectome 

undergoes substantial refinement through apoptotic mechanisms that promote the pruning of 

axons, a process which continues through early postnatal life (Innocenti and Price, 2005). 

Disruptions in any of these processes may have lasting consequences, as has been suggested 

by findings that maternal immune activation (Knuesel et al., 2014), maternal stress (Bale, 

2015), and maternal drug use (B. L. Thompson et al., 2009) during pregnancy cause 

alterations in brain development that increase risk for poor cognitive, behavioral, 

neurological and mental health outcomes in offspring. Our findings would suggest that the 

foundational wiring of WM circuitry important for future cognition is set in place in utero 
and has a lasting impact on child development, highlighting the importance of understanding 

how genetic and environmental factors jointly shape fetal brain development.

4.5 Study Limitations

This study has limitations that should be considered. First, a cortical-only atlas was used for 

probabilistic tractography, which does not include cortico-subcortical connections which 

may be important for emerging cognition, though prediction accuracy was very good 

without considering subcortical connectivity. Second, cognitive scores in toddlerhood are not 

particularly strong indicators of later childhood cognitive ability, with 2-year ELC scores 

accounting for roughly 20% of the variance in 6-year IQ scores, and even weaker 

associations found for preterm infants (Girault et al., 2018b). Therefore, longitudinal studies 

will be needed to determine if the neonatal WM connectome serves as a biomarker for later 

childhood performance. Third, interpreting diffusion connectivity is not trivial; the number 

of streamlines generated during probabilistic tractography is not a direct measure of 

anatomical connectivity (Jbabdi and Johansen-Berg, 2011) and partial volume effects 

present at the spatial resolution of the DWIs used in this study will influence the number of 

streamlines detected. Finally, findings from this study are limited by small sample sizes and 

results may not generalize to larger populations, it will be critically important to replicate 

these findings in other longitudinal datasets, for example, using publicly available data from 

the Baby Connectome and Developing Human Connectome projects in the US and Europe.

5. CONCLUSIONS

Findings from this study indicate that the infant WM connectome is predictive of cognitive 

performance at age 2, which highlights the importance of WM development in utero for 

subsequent cognition. Our study has implications for screening and intervention and 

suggests that future work should focus on identifying the ways in which prenatal 

mechanisms of WM development are influenced by genetic factors as well as the intra- and 

extrauterine environment to shape individual differences in the WM connectome that serves 

as a biological foundation for learning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Participant Gestational Age at Birth and ELC Distributions.
Participant distributions for gestational age at birth (A) and ELC scores at age 2 (B) are 

presented. Data from full-term infants are shown in blue and preterm infants are shown in 

orange.
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Figure 2. Approach for predicting ELC scores at age 2 from WM connectomes at birth.
Data were preprocessed to reshape each WM connectivity matrix at birth into a 3,003 

dimension connectivity feature vector ((78 × 77)/2 = 3,003 region pairs) using the 

normalized connectivity values in the upper triangular portion of the symmetric connectome 

(not including the main diagonal). Classification labels were generated by grouping 75 FT 

subjects into two categories based on their performance on the 2-year ELC relative to others 

in our sample: above the median (AM) and below the median (BM). Next, a 10-fold cross-

validation approach was used to train and test a two-step prediction pipeline. First, a 

classification model was trained to identify ELC group (AM, BM), generating classification 

probability values. Classification probability values were then used to train two separate 

prediction models for each ELC median score group that directly estimates the ELC score at 

age 2.
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Figure 3: Two-step prediction pipeline design.
The box plots in (A) show the distribution of classification probability values for infants 

assigned by the model to the correct median score group. Since the variability of the 

underlying data distribution is small this translates to a very large learning step as seen by 

the red lines in (B), which in turn may be difficult for a single model design. Alternatively, 

by introducing a second model building step, which normalizes the classification 

probabilities, the large learning step is transformed to a smaller learning step as seen by the 

green lines in (B). As a result, a two-step prediction pipeline design approach may better 

identify subtle correlations between white matter connectomes and cognitive ability
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Figure 4: Correlations between actual and predicted 2-year cognitive scores.
Estimated ELC scores generated through regression prediction models are plotted against 

each FT infant’s actual ELC score, along with linear regression lines (blue line) and shaded 

95% confidence intervals (A). PT infants were classified using each of the 10 models 

generated through cross-validation. Estimated ELC scores are presented for each of the 10 

folds (B), where the first fold is represented by F1, along with the linear regression line 

(black line) for the mean predicted score across folds and a 95% confidence interval for the 

regression fit.

Girault et al. Page 22

Neuroimage. Author manuscript; available in PMC 2020 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Connectivity fingerprint of WM connections important for ELC group classification 
accuracy.
Results from the backtrack approach identifying region-to-region connections in the WM 

connectomes that are most responsible for ELC median score group classification accuracy 

are shown in (A), where brain regions in this fingerprint are colored by frequency (number 

of backtrack connections to that brain region) and connections are colored by their backtrack 

weight [0.25,1]. The highest frequency regions (frequency ≥ 3) are visualized in (B) along 

with a listing of the anatomical regions from the parcellation atlas.
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