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Abstract

Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of an RNA 

intermediate. The lack of proofreading capacity of the viral DNA polymerase results in a high 

mutation rate of HBV genome. Under the selective pressure created by the nucleos(t)ide analogue 

(NA) antiviral drugs, viruses with resistance mutations are selected. However, the replication 

fitness of NA-resistant mutants is markedly reduced compared to wild-type. Compensatory 

mutations in HBV polymerase, which restore the viral replication capacity, have been reported to 

arise under continuous treatment with lamivudine (LMV). We have previously identified a highly 

replicative LMV-resistant HBV isolate from a chronic hepatitis B patient experiencing acute 

disease exacerbation. Besides the common YMDD drug-resistant mutations, this isolate possesses 

multiple additional mutations in polymerase and core regions. The transcomplementation assay 

demonstrated that the enhanced viral replication is due to the mutations of core protein. Further 

mutagenesis study revealed that the P5T mutation of core protein plays an important role in the 

enhanced viral replication through increasing the levels of capsid formation and pregenomic RNA 

encapsidation. However, the LMV-resistant virus harboring compensatory core mutations remains 

sensitive to capsid assembly modulators (CpAMs). Taken together, our study suggests that the 

enhanced HBV nucleocapsid formation resulting from core mutations represents an important 

viral strategy to surmount the antiviral drug pressure and contribute to viral pathogenesis, and 

CpAMs hold promise for developing the combinational antiviral therapy for hepatitis B.
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Introduction

Hepatitis B virus (HBV) is a medically important human pathogen which causes chronic 

infection in approximately 257 million people worldwide, leading to a series of life-

threatening complications, including cirrhosis, liver failure and hepatocellular carcinoma 

(Alter et al., 2018). HBV is a partially double stranded DNA virus that replicates its genome 

through reverse transcription of a pregenomic (pg) RNA (Block et al., 2007). HBV 

replication can be suppressed effectively by nucleos(t)ide analogue (NA) reverse 

transcriptase (RT) inhibitors, which target the viral polymerase (pol) and cease DNA chain 

elongation. Unfortunately, the emergence of resistant viral mutants significantly limits the 

effectiveness of some NAs (Gish et al., 2012; Lampertico and Liaw, 2012). Usually, the NA-

resistance mutations in the catalytic YMDD motif of pol lead to a decreased viral replication 

due to reduced enzymatic activity of the mutant pol (Allen et al., 1998; Sheldon et al., 2006). 

However, compensatory mutations have been reported to partially restore the viral 

replication capacity, including rtL80V/I, rtL82M, rtV173L and rtV207I, mostly in the RT 

region of pol (Delaney et al., 2003; Ono et al., 2001; Pichoud et al., 1999). In addition, a 

NA-resistant mutant HBV with increased replication has also been found in chronic hepatitis 

B (CHB) patients with progressive liver disease (Zoulim and Locarnini, 2009). We have 

previously identified a highly replicative lamivudine (LMV)-resistant HBV isolate from 

CHB patients experiencing fulminant hepatitis, which, in addition to the YMDD mutation, 

possesses multiple mutations in pol, core, X, and surface genes (Zhang et al., 2005) (Fig. 1).

HBV core protein or hepatitis B core antigen (HBcAg) plays a critical role in HBV life 

cycle, which self-assembles into the capsid of virus and encapsdiates viral pgRNA and pol to 

form the cytoplasmic nucleocapsid (Bartenschlager and Schaller, 1992; Birnbaum and 

Nassal, 1990), inside of which pol synthesizes HBV DNA by reverse transcribing pgRNA 

(Summers and Mason, 1982). HBV core protein is composed of 183 amino acids, of which 

the first N-terminal 149 residues are characterized as the assembly domain that mediates the 

capsid formation (Hu and Liu, 2017). HBcAg possesses a four-helix bundle structure, two 

core monomers bind together to form a dimer first, followed by the construction of viral 

capsid from 90 or 120 copies of dimer (Birnbaum and Nassal, 1990; Bottcher et al., 1997; 

Wynne et al., 1999). Naturally-occurring mutations within the N-terminus of HBcAg have 

been reported to affect capsid assembly, uncoating, or virion secretion (Cui et al., 2015; 

Ning et al., 2018; Pairan and Bruss, 2009). Among those core mutations with high 

frequencies in CHB patients, the switch of phenylalanine (F) or isoleucine (I) to leucine (L) 

at residue 97 results in an enhanced immature secretion phenotype, in which the virion 

mainly contains single-stranded (SS) HBV DNA rather than the mature relaxed circular (rc) 

DNA (Ceres et al., 2004; Suk et al., 2002; Yuan et al., 1999a; Yuan et al., 1999b). Codon 5 is 

another hot spot of naturally occurring mutation of HBcAg. Previous studies have shown 

that the substitution of proline (P) with threonine (T) at codon 5 of HBcAg caused lower 

levels of virion secretion, which, would revert to the wild type secretion phenotype when it 
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coexisted with F97L mutation (Chua et al., 2003b; Le Pogam et al., 2000). Moreover, it has 

also been suggested that P5T/A mutation is an independent factor for acute-on-chronic liver 

failure (ACLF) (Yan et al., 2011; Zhang et al., 2013). However, the mechanism of P5T-

associated liver disease progression remains unclear.

To further investigate the potential role of core protein mutations in hepatitis B exacerbation, 

we cloned the full-length HBV isolates from patients prior to treatment and after emergence 

of LMV-resistance with exacerbation, and assessed their replication fitness in vitro. Our 

study revealed that the mutant core, predominantly P5T, boosts the levels of HBV capsid 

formation and pgRNA encapsidation, and subsequently enhances the viral replication 

competency, which may contribute to disease progression during LAM treatment. Therefore, 

the core mutation-mediated enhancement of HBV replication fitness represents an important 

viral strategy to surmount the antiviral drug pressure due to suppression of polymerase 

function by NAs.

Materials and Methods

Construction of replication-competent recombinant HBV DNA

Paired serum samples from the patient before treatment (wild type, WT, GenBank Accession 

No. AY220698; genotype B, serotype adw) and after the lamivudine drug-resistance 

exacerbation (mutant type, isolate GYF634, GenBank Accession No. AY220697; genotype 

B, serotype adw) were collected previously (Zhang et al., 2005). The 1.0mer replication-

competent HBV genomes were PCR amplified and cloned into vector pUC19 at the SacI 

restriction site to generate pHBV-WT and pHBV-GYF as previously described (Gunther et 

al., 1995). To construct plasmid pCMVHBV-WT and pCMVHBV-GYF (1.1 mer, pgRNA 

transcription is driven by the CMV-IE promoter), the DNA fragment containing HBV nt 

1823–3215/1–1822 was retrieved from pHBV-WT and pHBV-GYF by SapI digestion and 

cloned into the SapI site of plasmid PHY106. pHBV1.3-WT and pHBV1.3-GYF containing 

HBV nt 957–3215/1–1952 were constructed as previously described (Wang et al., 2007). 

The core gene point mutations (P5T, S35T, S87G, I97L, Q177K) and the reversion 

mutations (T5P, T35S, Q79P, D83E, G87S, L97I, K177Q) were individually introduced into 

pCMVHBV-WT and pCMVHBV-GYF, respectively, by using QuikChange Site-directed 

Mutagenesis Kit (Stratagene) or Q5 Site-directed Mutagenesis Kit (NEB). The PCR 

fragment containing the combined 6 core mutations (P5T/S35T/P79Q/E83D/S87G/Q177K) 

were amplified from pCMVHBV-GYF-L97I and the PCR product was used as primers to 

mutate pCMVHBV-WT by Q5 mutagenesis, giving rise to plasmid pCMVHBV-WT-6Cmut. 

The pol-null pCMVHBV-WTΔpol and pCMVHBV-GYFΔpol were generated by mutating 

the start codon of pol ORF to ACG without changing the amino acid sequence of the 

overlapping core. The core-null pCMVHBV-WTΔcore and pCMVHBV-GYFΔcore were 

made through mutating the start codon of core ORF to CTG. The primer sequences for site-

directed mutagenesis are listed in Supplemental Table 1. The ORF of core and pol were PCR 

amplified from pCMVHBV-WT and pCMVHBV-GYF and cloned into pcDNA3 vector to 

obtain the plasmids expressing wildtype or mutant core and pol. The sequences of plasmids 

used in this study have been validated by Sanger sequencing.
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Drugs

Lamivudine (3TC) was kindly provided by Dr. William Mason (Fox Chase Cancer Center). 

AT-61 (Delaney et al., 2002) was synthesized by Pharmabridge Inc. GLS-4 (Mani et al., 

2018; Wu et al., 2013) and SBA-R01 (Zhou et al., 2017) were kindly provided by Arbutus 

Biopharma, Inc.

Cell culture and transfection

HepG2 cells and Huh7 cells are maintained in Dulbecco’s modified Eagle’s medium 

(DMEM)/F-12 medium (Corning) supplemented with 10% fetal bovine serum, 100 U/ml 

penicillin, 100 g/ml streptomycin. Cell transfection was conducted with Lipofectamine 2000 

(Invitrogen) by following the manufacturer’s instruction.

HBV RNA and DNA analysis

Total cellular RNA was extracted from transfected cells by using the TRIzol reagent 

(Invitrogen) according to the manufacturer’s specifications. The cytoplasmic encapsidated 

HBV pgRNA was extracted as previously described (Cai et al., 2016; Liu et al., 2017). HBV 

RNA Northern blot analysis was performed as previously described (Mao et al., 2013; Mao 

et al., 2011). HBV core DNA was extracted from transfected cells and subjected to Southern 

blot analysis as previously described (Cai et al., 2013; Guo et al., 2009; Guo et al., 2007). 

Membranes were probed with either α−32P-UTP (800 Ci/mmol, Perkin Elmer) labeled plus-

strand-specific (for Northern blot hybridization) or minus-strand-specific (for Southern blot 

hybridization) full-length HBV riboprobe and exposed to a phosphorimager screen. 

Hybridization signals were quantified with QuantityOne software (Bio-Rad).

HBV particle gel assay

The extracellular HBV particles were analyzed by particle gel assay according to a 

published protocol (Yan et al., 2017).

The intracellular HBV capsid gel assay was performed as previously described (Yan et al., 

2015). Briefly, cells in one well of a 12-well plate were lysed with 200 l of lysis buffer 

containing 1% NP40. Twenty microliters of the cell lysate were resolved by electrophoresis 

through a non-denaturing 1% agarose gel, which was then transferred onto the nitrocellulose 

membrane in TNE buffer (10 mM Tris-HCl [pH 7.6], 150 mM NaCl, and 1 mM EDTA). 

HBV capsid and its viral DNA content were detected by enzyme immunoassay (EIA) with a 

polyclonal anti-core antibody (Dako) and DNA hybridization, respectively, as described in 

the protocol of particle gel assay (Yan et al., 2017).

Results

Replication fitness of wildtype and LMV-resistant HBV isolates

We have previously identified a clinical HBV isolate that exhibited resistance to LMV from 

a CHB patient undergoing LMV treatment with remarkably high viremia. The patient was 

initially infected with the wildtype genotype B HBV before the treatment, the drug-resistant 

mutant virus then became dominant during LMV therapy, resulting in acute exacerbations 

(Zhang et al., 2005). In the current study, we firstly assessed the replication fitness of this 
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mutant virus, termed GYF, in vitro in HepG2 cell culture. As shown in Fig. 2A, the wildtype 

(WT) strain and GYF mutant exhibited similar levels of HBV RNA under the transcriptional 

control of authentic HBV promoters (Fig. 2A, top panel, lanes 1 and 2), indicating that the 

transcriptional activity of WT and GYF is comparable. When HBV pgRNA is transcribed 

under the control of CMV-IE promoter, the pgRNA levels are also similar between WT and 

GYF, though much higher than those transcribed by the HBV core promoter due to stronger 

activity of the CMV-IE promoter (Fig. 2A, top panel, lanes 3 and 4; and comparing to lanes 

1 and 2). However, The GYF isolate exhibited a significantly higher level of intracellular 

core DNA replication than WT (Fig. 2A, middle panel). In addition, higher levels of HBV 

virion and DNA-containing naked capsid were found in the supernatant of cells transfected 

by GYF compared to WT, as revealed by particle gel assay (Fig. 2A, bottom panel). 

Interestingly, the GYF virions migrate faster than WT in the gel and form a smeared 

electrophoretic pattern (Fig. 2A, bottom panel), which is possibly due to the mutations on 

the viral envelope proteins (Zhang et al., 2005) (Fig. 1). Indeed, HBsAg staining of the 

particle gel demonstrated that the enveloped particles (a mixture of virions (minor species) 

and subviral particles (major species)) from GYF strain also migrate faster than WT (Fig. 

2B). Furthermore, the high DNA replication fitness of GYF was also seen in another 

hepatoma cell line Huh7 cells (Fig. 2C). Taken together, the high replication fitness of the 

clinical isolate GYF has been validated in cell cultures, and is mainly attributed to a robust 

intracellular core DNA replication.

HBV core protein mutations contribute to the replication enhancement of GYF strain

HBV core protein and pol are essential viral factors for core DNA replication. To assess 

whether the mutations of core or pol play a major role in the elevated replication of GYF, the 

transcomplementation assay was conducted. First, as shown in Fig. 3A, cotransfection of the 

pol-null WT (CMV-WTΔpol, left panel) or GYF (CMV-GYFΔpol, right panel) with plasmid 

expressing WT pol or GYF pol revealed that the mutant pol has less activity to support HBV 

DNA replication compared to WT pol, which is consistent with previous reports that the 

NA-resistant pol normally has a reduced reverse transcriptase activity (Zoulim and 

Locarnini, 2009). Next, core transcomplementation experiment was performed. As shown in 

Fig. 3B, when core-null WT HBV (CMV-WTΔcore) was cotransfected with GYF core, the 

viral DNA replication was restored to a significantly higher level than the WT core (lanes 1–

3). The same trend was observed in the core-null GYF (CMV-GYFΔcore) group (lanes 4–6). 

The above results suggest that the core protein of GYF isolate supports a high level of HBV 

DNA replication, regardless of whether the viral pol is wildtype or LMV-resistant.

The levels of capsid formation and pgRNA encapsidation of WT and GYF core proteins 

were then determined. As shown in Fig. 4, GYF core supported a higher level of capsid 

assembly, and the electrophoretic mobility of GYF capsid was faster than the WT in capsid 

gel (panel A); more strikingly, the levels of encapsidated pgRNA were significantly higher 

in GYF strain compared to WT (panel B); as a consequence, and consistent with the results 

in Fig. 2, GYF strain produced more replicative viral DNA than WT (panel C). Thus, it is 

inferred that the core mutations in GYF isolate enhance HBV DNA replication primarily 

through promoting pgRNA encapsidation.
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I97L mutation is dispensable for the enhanced viral replication of GYF strain

The mutations within the core protein of GYF mutant include P5T, S35T, P79Q, E83D, 

S87G, I97L and Q177K. Among those, I97L has been reported to be associated with the 

increased HBV DNA replication in Huh7 cells (Suk et al., 2002), we thus first examined the 

potential role of I97L in the replication fitness of GYF isolate. After L97I reversion in the 

GYF isolate, the levels of pgRNA encapsidation, core DNA replication, and virion secretion, 

remained unchanged (Fig. 5A–D), indicating that I97L is dispensable for the high 

replication fitness of GYF isolate. Furthermore, introducing I97L mutation into WT did not 

enhance viral DNA replication, but changing WT core to other six mutations together (P5T, 

S35T, P79Q, E83D, S87G, and Q177K) significantly elevated the replication level of WT 

(Fig. 5E), further suggesting that one or more core mutations other than I97L are responsible 

for the high replication fitness of GYF isolate.

P5T promotes HBV replication

In order to map the functional core mutation(s) responsible for the elevated replication of 

GYF isolate, we reversed other six core mutations back to the wildtype counterparts 

individually and assessed their replication in cells. The screening demonstrated that only the 

T5P restoration in GYF isolate significantly decreased pgRNA encapsidation and core DNA 

replication (Fig. 6, lane 3 vs 2). The GYF-T5P construct still replicated better than WT (lane 

3 vs 1), indicating that other core mutation(s) may also be able to coordinately enhance viral 

replication (lanes 4–8). Interestingly, the T5P reverse mutation produced slightly more 

intracellular rcDNA than GYF and restored the wildtype particle gel pattern (lane 3), 

suggesting that P5 of core may regulate HBV rcDNA synthesis and virion morphogenesis. 

Furthermore, the G87S reverse mutation eliminated the presence of naked capsid in cell 

supernatant (lane 7), inferring a potential role of G87 in the secretion of nonenveloped 

capsid.

Vice versa, the P5T core mutation of WT HBV markedly upregulated pgRNA encapsidation 

and ssDNA replication (Fig. 7, lane 3 vs 1). The capsid gel assay demonstrated that P5T 

mutation exhibited a significant higher EIA signal of capsid (panel B, lane 3), although it 

remains unknown whether such phenomena results from enhanced capsid formation or a 

better epitope accessibility of the core antibodies. Furthermore, the P5T single mutation 

reduced the level of mature rcDNA and resulted in an altered virion electrophoresis pattern 

(panel D and E, lane 3), which is consistent with the above result (Fig. 6).

Other core mutations (S35T, S87G, Q177K) did not obviously affect the replication of WT 

HBV (lanes 4–6). Considering that the P5T mutant did not completely bring up the WT 

replication to the level of GYF, it is plausible that the multiple core mutations and/or pol 

mutations of GYF synergistically contribute to the enhanced pgRNA encapsidation and 

DNA replication of the GYF strain. Moreover, consistent with the phenotype of G87S 

reverse mutation shown in Fig. 6, S87G mutation of WT core resulted in an elevated 

secretion of naked capsid (Fig. 7, lane 5).
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Replication of GYF strain is inhibited by CpAMs

The development of HBV core protein allosteric modulators or capsid assembly modulators 

(CpAMs) provides a novel opportunity to treat HBV infection through inhibiting viral 

nucleocapsid formation (Yang and Lu, 2018; Zoulim and Durantel, 2015). Currently, there 

are three major chemical classes of CpAMs, including heteroaryldihydropyrimidine (HAP) 

(Deres et al., 2003; Wu et al., 2013), phenylpropenamide (PPA) (Delaney et al., 2002; Feld 

et al., 2007), and sulfamoylbenzamide (SBA) (Campagna et al., 2013; Lam et al., 2017; 

Mani et al., 2018). Other chemical scaffolds of CpAMs have also been identified (Corcuera 

et al., 2018; Lahlali et al., 2018). CpAMs have shown synergistic antiviral effect with NAs, 

and can be used to treat NA-resistant viruses (Klumpp et al., 2018; Lahlali et al., 2018; Mani 

et al., 2018). We thus set out to test whether CpAMs could inhibit the GYF strain containing 

multiple proviral core mutations. As shown in Fig. 8, the replication of WT HBV was 

significantly inhibited by lamivudine (3TC), the HAP derivative GLS-4, the PPA derivative 

AT-61, and the SBA reference compound SBA-R01 (lane 2–6). Consistent with the known 

mechanism of action of these antiviral drugs, 3TC specifically inhibited the reverse 

transcription of WT HBV and resulted in accumulation of encapsidated pgRNA (lane 3), 

GLS-4 blocked capsid assembly and reduced the steady state level of core protein (lane 4), 

AT-61 and SBA-R01 mainly inhibited pgRNA encapsidation without significantly affecting 

capsid assembly (lanes 5–6). As expected, GYF replicated more efficiently than WT HBV 

and exhibited resistance to 3TC (lanes 7–8). However, the tested CpAMs significantly 

inhibited the replication of GYF at the similar efficiencies compared to WT (lanes 9–11). 

The above results demonstrated that the core mutations of GYF do not confer resistance to 

CpAMs.

Discussion

In clinical practice, the development of HBV drug resistance in CHB patients treated with 

low barrier NAs, such as lamivudine, is commonly accompanied by virological 

breakthrough, exacerbation of hepatitis, and even liver failure in severe cases (Zoulim and 

Locarnini, 2009). The resistance mutations within viral reverse transcriptase region (RT) are 

selected by NAs, which would however decrease the viral replication capacity (Melegari et 

al., 1998). Therefore, the underlying mechanism of enhancement of HBV replication and 

progression of liver disease by certain clinical drug-resistant mutants remains largely 

unclear. Compensatory mutations with RT regions have been reported to restore the virus 

replication efficiency under the continuously selection of lamivudine therapy (Ahn et al., 

2015; Ghany and Liang, 2007; Ji et al., 2012; Lin et al., 2012; Zoulim and Locarnini, 2009). 

Our results herein demonstrated that the enhanced nucleocapsid formation and DNA 

replication of GYF isolate are attributed to core mutations, which represents a previously 

unknown viral strategy for surmounting antiviral drug pressure.

Our previous study has identified and cloned the full-length HBV isolates from patients 

prior to treatment and after emergence of LMV-resistance with exacerbation (Zhang et al., 

2005). In the present study, we further validated the replication fitness of GYF isolate by 

systematically analyzing the RNA transcription, capsid assembly, pgRNA encapsidation, 

DNA replication, and virion secretion in hepatoma cells transiently transfected with the 
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mutant viral genome. Our results demonstrated that GYF isolate produces higher levels of 

capsid pgRNA and DNA, as well as higher level of virion secretion, than wildtype HBV 

(Figs. 2 and 4). Furthermore, the trans-complementation experiment revealed that multiple 

mutations of viral core protein, but not the pol mutants, contribute to the high replication 

fitness of the GYF isolate (Fig. 3).

Among the 7 concurrent core mutations of GYF isolate, the I97L mutation has been reported 

to promote HBV DNA replication in cell cultures (Suk et al., 2002). Based on that, we 

changed I97L mutant back to its wild type sequence within the GYF background. The 

transient transfection result showed that the isoleucine restoration at codon 97 of core did 

not alter the capacity of viral DNA replication or virion secretion of GYF isolate (Fig. 5), 

indicating that I97L mutation does not play a role in enhancing HBV replication, at least not 

in HepG2 cells. It is worth noting that the previous study indeed observed a much weaker 

phenotype of I97L-mediated enhancement of HBV replication in HepG2 cells compared to 

Huh7 cells (Suk et al., 2002).

Further investigation revealed that the mutation from proline (P) to threonine (T) at codon 5 

(P5T) of core protein led to enhanced viral replication competency (Figs. 6–7). A previous 

study reported that the P5T mutation (strain: Shanghai adr) enhanced the intracellular viral 

DNA replication and rescued the immature secretion phenotype of I97L mutation in Huh7 

cells (Chua et al., 2003a). Here, our result demonstrated that P5T alone promoted the viral 

ssDNA replication but reduced intracellular rcDNA level in HepG2 (Fig. 7); reversely, T5P 

restoration reduced the DNA replication of GYF isolate but enhanced intracellular rcDNA 

production (Fig. 6). The slight discrepancy between this study and the previous report may 

be due to cell type-specific or virus strain-specific effect(s). Moreover, P5T mutation 

enhanced the EIA signal of capsid in the native gel assay, indicating that P5T may promote 

capsid assembly and the subsequent pgRNA encapsidation (Fig. 7). Structurally, HBV core 

protein has a four helix bundle structure, and according to the previously published three-

dimensional structure of HBcAg dimer (Klumpp et al., 2015; Packianathan et al., 2010; 

Wynne et al., 1999), amino acid 5 appears to be located at the interface of two monomers at 

the N-terminus of HBcAg, indicating that the P5T mutation may regulate the core 

dimerization/oligomerization to affect nucleocapsid assembly and viral DNA maturation. 

However, the P5T mutation of WT HBV alone does not completely recapitulate the 

replication phenotype of GYF isolate, inferring that other core mutation(s) and/or the pol 

mutation(s) may work together with P5T to further promote virus replication and rcDNA 

maturation. The synergistic effect among those individual core mutants in the GYF isolate 

awaits further investigation.

The proline residue at amino acid 5 position of core protein is highly conserved among HBV 

genotypes. It has been reported that the P5T mutation of HBcAg is common in HBV-related 

acute-on-chronic liver failure (ACLF) patients (Yan et al., 2011; Zhang et al., 2013). The 

mechanistic link between P5T mutation and CHB exacerbation including ACLF remains 

elusive, but may be related to the enhanced virus replication and/or HBcAg-mediated liver 

inflammation.
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Our study suggests that, under circumstances in which the viral polymerase function is 

suppressed by NAs, enhancement of capsid assembly and viral replication resulting from 

compensatory core protein mutations is a viable strategy to improve the replication fitness of 

the virus under NA drug pressure. It is worth noting that core protein mutations are not the 

classical compensatory mutations which would occur after the emergence of the drug 

resistance mutations. HBV core mutations could arise in both the wildtype and mutant 

viruses (Pairan and Bruss, 2009; Tong and Revill, 2016). The mechanism underlying the 

emergence of compensatory core mutations remain elusive. One limitation of this study is 

that, though P5T and I97L mutations are commonly found in HBV patients, limited reports 

are available on the co-existence of multiple core compensatory mutations in NA-resistant 

patients (Wei et al., 2011; Zhang et al., 2005). The generalizability of our findings should be 

further evaluated with wider sampling of CHB patients receiving NA therapy.

Nonetheless, the NA-resistant GYF strain harboring compensatory core mutations remains 

sensitive to non-NA, CpAM type compounds (Fig. 8). This is not unanticipated because 

none of the core mutations of the GYF isolate overlaps with the reported changes in core 

protein that reduce sensitivity to CpAMs (Berke et al., 2017; Klumpp et al., 2015; Ruan et 

al., 2018; Zhou et al., 2017). Thus, CpAMs represent a promising future treatment option for 

CHB patients, especially those harboring infection with the NA-resistant viruses.
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Highlights:

• Naturally occurring HBcAg mutations compensate for the reduced replication 

fitness of a lamivudine-resistant HBV variant.

• The HBcAg mutations enhance HBV replication primarily through promoting 

viral nucleocapsid formation.

• HBV capsid assembly modulators (CpAMs) efficiently inhibit the mutant 

virus nucelocapsid formation and DNA replication.
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Figure 1. The lamivudine-resistant GYF isolate harbors multiple mutations.
The one unit-length HBV genome is schematically illustrated in linear form and the encoded 

ORFs are shown with arrows, including the surface (S) proteins ORF, polymerase (P) ORF, 

precore/core (PC/C) ORF, and HBx (X) ORF. The mutations carried by GYF isolate are 

listed underneath their corresponding ORFs as amino acid changes from the wildtype (WT) 

sequence at the indicated positions.
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Figure 2. Replication fitness of the wildtype (WT) HBV and the lamivudine-resistant GYF 
isolate.
(A) HepG2 cells in 12-well-plate were transfected with 1.6 μg of pHBV1.3-WT (lane 1, 

labeled as 1.3-WT for convenience), pHBV1.3-GYF (lane 2, labeled as 1.3-GYF), 

pCMVHBV-WT (lane 3, labeled as CMV-WT), pCMVHBV-GYF (lane 4, labeled as CMV-

GYF). Cells and supernatant were harvested at day 5 post-transfection for the following 

analyses: (top panel) Intracellular HBV RNA was detected by Northern blot, the bands of 

3.5kb, 2.4/2.1kb HBV RNA are marked. Cellular 28S and 18S ribosomal RNA served as 

loading control; (middle panel) Cytoplasmic HBV core DNA was determined by Southern 

blot, the positions of rcDNA (RC) and single-stranded DNA (SS) are labeled; (bottom panel) 
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extracellular HBV virion and naked capsid were analyzed by particle gel assay, the 

encapsulated viral DNA was detected by hybridization. The relative levels of viral 

encapsidated pgRNA and core DNA replicative intermediates in each sample are expressed 

as the percentage of RNA and DNA level in WT samples (lanes 1 and 3), respectively, and 

indicated underneath the blots. (B) The supernatant samples from panel (A), lanes 3 and 4 

were subjected to particle gel assay, and virions and subviral particles (SVP) were 

detectedby immunoblotting using antibodies against HBsAg. (C) Huh7 cells in 12-well-plate 

were transfected by CMV-WT or CMV-GYF for 5 days, followed by Southern blot analysis 

of core DNA. The relative levels of core DNA are expressed as the percentage of that in WT 

sample.
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Figure 3. Core protein mutations contribute to the enhanced viral replication of GYF isolate.
(A) HepG2 cells in 12-well-plate were transfected with 0.8 μg of pol-null pCMVHBV-WT 

(CMV-WTΔpol, lanes 1–3) or 0.8 μg of pol-null pCMVHBV-GYF (CMV-GYFΔpol, lanes 

4–6) in combination with 0.8 μg control vector (lanes 1 and 4), or 0.8 μg of plasmid 

expressing WT pol (lanes 2 and 5), or 0.8 μg of plasmid expressing GYF pol (lanes 3 and 6). 

(B) HepG2 cells were transfected with 0.8 μg of core-null pCMVHBV-WT (CMV-

WTΔcore, lanes 1–3) or 0.8 μg of core-null pCMVHBV-GYF (CMV-GYFΔcore, lanes4–6) 

in combination with 0.8 μg control vector (lanes 1 and 4), or 0.8 μg of plasmid expressing 

WT core (lanes 2 and 6), or 0.8 μg of plasmid expressing GYF core (lanes 3 and 5). Cells 

were harvested at day 5 post-transfection and the cytoplasmic HBV core DNA were detected 

by Southern blot. The relative levels of core DNA are expressed as the percentage of that in 

the indicated control (ctrl) samples.
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Figure 4. GYF isolate exhibits higher levels of pgRNA encapsidation than WT.
HepG2 cells in 12-well-plate were transfected with 1.6 μg of pHBV1.3-WT (lane 1), 

pHBV1.3-GYF (lane 2), pCMVHBV-WT (lane 3), pCMVHBV-GYF (lane 4). Cells were 

harvested at day 5 post-transfection for the following analyses: (A) the cytoplasmic capsid 

was detected by capsid gel EIA assay using anti-core antibodies; (B) the cytoplasmic 

encapsidated pgRNA was analyzed by Northern blot, and the relative levels are expressed as 

the percentage of that in the indicated control samples; (C) the cytoplasmic capsid-

containing viral DNA was detected by capsid gel assay through DNA hybridization.
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Figure 5. HBc I97L mutation does not contribute to the elevated replication of GYF strain.
(A-D) HepG2 cells in 12-well-plate were transfected with 1.6 μg of pCMVHBV-WT (lane 

1), or pCMVHBV-GYF (lane 2), or pCMVHBV-GYF-L97I (lane 3) for 5 days. The 

intracellular HBV total RNA (A) and encapsidated pgRNA (B) were analyzed by Northern 

blot, cytoplasmic core DNA (C) was detected by Southern blot. The extracellular virion and 

capsid were analyzed by particle gel assay to detect DNA content (D). (E) HepG2 cells in 

12-well-plate were transfected with pCMVHBV-WT, or pCMVHBV-WT-L97I, or 

pCMVHBV-WT-6Cmut for 5 days. HBV core DNA was analyzed by Southern blot. A linear 

full-length HBV genome DNA serves as 3.2kb size marker. The relative levels of 
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encapsidated pgRNA and core DNA in each sample are expressed as the percentage of RNA 

and DNA level in the indicated control samples.
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Figure 6. The contribution of individual core mutations to the replication capacity of GYF strain.
HepG2 cells were transfected with 1.6 μg of pCMVHBV-WT (lane 1), pCMVHBV-GYF 

(lane 2), and pCMVHBV-GYF with the indicated single HBcAg amino acid mutation being 

changed back to its wildtype residue (lane 3–8). Cells were harvested at day 5 

posttransfection. Total intracellular viral RNA (A), cytoplasmic capsid (B), encapsidated 

pgRNA (C), core DNA (D), and supernatant viral particles (E) were analyzed. The relative 

levels of encapsidated pgRNA and core DNA in each sample are expressed as the percentage 

of RNA and DNA level in the indicated control samples.
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Figure 7. The effect of individual core mutants from GYF strain on WT HBV replication.
HepG2 cells were transfected with 1.6 μg of pCMVHBV-WT (lane 1), pCMVHBV-GYF 

(lane 2), and pCMVHBV-WT with indicated single HBcAg amino acid mutations from the 

GYF strain (lane 3–6). Cells and supernatant were harvested at day 5 post-transfection for 

analyses of total intracellular viral RNA (A), cytoplasmic capsid (B), encapsidated pgRNA 

(C), core DNA (D), and supernatant viral particles (E). The relative levels of encapsidated 

pgRNA and core DNA in each sample are expressed as the percentage of RNA and DNA 

level in the indicated control samples.
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Figure 8. The antiviral effect of NA and CpAMs on WT and GYF strains.
HepG2 cells were transfected with 1.6 μg of pCMVHBV-WT (lanes 2–6) or pCMVHBV-

GYF (lanes 7–11). 16 h later, the transfected cells were left untreated (control, lanes 2 and 7) 

or treated with the indicated compounds at subinhibitory concentrations. The treatment was 

refreshed every other day, and cells were harvested at day 4 post-treatment. The cytoplasmic 

capsid (A), encapsidated pgRNA (B), and core DNA (C) were analyzed. The intensities of 

core DNA signals were quantified and are presented as relative levels compared to the 

untreated samples (WT or GYF).
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