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Abstract

Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but 

are also prone to forming promiscuous and potentially deleterious interactions. We investigate the 

extent to which the properties of, and content in, IDRs have adapted to enable functional diversity 

while limiting interference from promiscuous interactions in the crowded cellular environment. 

Information on protein sequences, their predicted intrinsic disorder and 3D structure contents, is 

related to data on protein cellular concentrations, gene co-expression, and protein-protein 

interactions (PPI) in the well-studied yeast S. cerevisiae. Results reveal that both the protein IDR 

content and the frequency of ‘sticky’ amino acids in IDRs (those more frequently involved in 

protein interfaces) decrease with increasing protein cellular concentration. This implies that the 

IDR content and the amino acid composition of IDRs experience negative selection as the protein 

concentration increases. In the S. cerevisiae PPI network, the higher a protein’s IDR content, the 

more frequently it interacts with IDR-containing partners, and the more functionally diverse the 

partners are. Employing a clustering analysis of Gene Ontology (GO) terms we newly identify 

~600 putative multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in 

IDRs and contribute significantly to all the observed trends. In particular, IDRs of multi-functional 

proteins feature more sticky amino acids than IDRs of their non-multifunctional counterparts, or 
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the surfaces of structured yeast proteins. This property likely affords sufficient binding affinity for 

the functional interactions, commonly mediated by short IDR segments, thereby counterbalancing 

the loss in overall IDR conformational entropy upon binding.

Introduction

To carry out their function, proteins tend to associate with other macromolecules (other 

proteins, nucleic acids, etc.) [1] as well as with small molecule ligands. These functional 

associations take place in the crowded cellular environment, where they have to compete 

with promiscuous non-functional binding events that may be detrimental to fitness because 

they sequester interaction partners [2,3].

There is mounting evidence that to mitigate the interference from non-functional 

interactions, nature acts at several levels. These include, adapting the amino acid sequence to 

modulate protein solubility and intrinsic stability [4,5], temporal, condition-dependent 

regulation of gene expression [6,7] or protein abundance and half-life [8]. Other means of 

reducing such interference involve post translational modifications (PTMs) [9,10], binding 

to various protein adaptors [11], or the sequestration of proteins within specialized cellular 

compartments [7,12].

Of particular interest in this context are intrinsically disordered proteins (IDPs) and proteins 

with intrinsically disordered regions (IDRs). IDPs/IDRs and their properties have been 

extensively reviewed [13,14]. These are polypeptides, or segments thereof, which are 

essentially devoid of stable secondary or tertiary structures, when in isolation. These 

segments are described as ensembles of conformations that interconvert on a range of 

timescales [15,16]. Nonetheless, a significant fraction of IDPs and IDRs have some regions 

with residual transient secondary structures. These regions often mediate function through 

association with other proteins (mostly to structured domains in these proteins), and can 

undergo disorder to order transitions as part of the recognition process [17].

Functional associations of IDPs/IDRs tend to be mediated by peptide recognitions motifs, 

the so-called short linear motifs (SLiMS), which are relatively well conserved in evolution 

[15,18,19]. While interactions mediated by individual motifs tend to be quite weak, 

interactions with several motifs of the same IDR may act cooperatively, thereby increasing 

the range of observed affinities [20,21], and enabling interactions with multiple partner 

proteins [22–25]. These properties empower IDPs/IDRs to carry out a diverse range of 

important functions, more particularly in regulatory [26,27] and signaling processes [15,28]. 

Intrinsic disorder has also been suggested to play a role in promoting the assembly of protein 

complexes [29].

The same properties, however, may also prompt disordered proteins to form promiscuous 

interactions with other proteins, especially at higher protein concentrations, causing for 

example, deleterious dosage sensitivity in yeast [2]. It has also been observed that proteins 

with a high degree of intrinsic disorder are often hubs in protein-protein interaction (PPI) 

networks of human and other model organisms [22,24,25,30,31], with hubs being defined as 

the subset of protein nodes that form interactions with many other proteins, typically more 
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than ten. While many of these interactions may be functional in nature [32], the fact that 

they may also include non-functional interactions needs to be considered [33].

The cellular abundance of a protein is a crucial parameter governing its association with 

other cellular components, since this association depends on the standard free energy of the 

binding reaction and on the concentrations of the interacting components [34]. Previous 

analyses have shown that the abundance and residence time of IDPs in the cells of yeast S. 
pombe and human were tightly regulated by fine-tuning the rates of translation, protein 

degradation and transcript clearance [35]. Another mechanism of regulating availability of 

IDPs was suggested to involve synthesizing them at the site where they are required, by 

localization of the corresponding mRNA [36].

The main question addressed in the present study is if and to what extent the chemistry and 

other properties of IDPs and IDRs have adapted to mitigate their risk of engaging in 

promiscuous interactions, while enabling their diverse functional roles. To address this 

question, we focus on proteins of the yeast S. cerevisiae, one of the most extensively studied 

organisms in terms of protein function, proteome-scale PPI data [33,37], gene expression 

[38], and protein abundance [39]. We relate information on protein sequences, their 

predicted intrinsic disorder content and 3D structures to cellular protein abundance, and 

associate these relationships with protein function. In addition, we analyze patterns of the 

physical interactions of these proteins in a high-confidence (HC) PPI network of yeast 

soluble proteins [40]. These patterns are correlated to the intrinsic disorder content and 

abundance level of the corresponding proteins, as well as to the functional similarity and 

gene co-expression of their interacting partners. Importantly, we complement the analysis by 

identifying multi-functional proteins on the basis of their Gene Ontology (GO) annotations 

[41], and evaluate the relative contribution of protein multi-functionality versus its degree of 

intrinsic disorder to the observed trends.

Results of our analysis yield new insights into how the IDR content of proteins and the 

amino acid composition of IDRs have adapted to enable IDR-containing proteins to perform 

diverse functional roles, while reducing interference from promiscuous interactions in the 

crowded cellular environment.

Results and Discussion

Intrinsic disorder content in relation to protein abundance and functional annotations Figure 

1 plots the fraction of proteins encoded by the S. cerevisiae genome containing a high degree 

of intrinsic disorder as a function of their abundance in the cell. Proteins with a high degree 

of disorder are defined as those with ≥ 30% of their residues predicted to be in IDRs of ≥20 

consecutive residues along the chain. Disordered residues were predicted using the IUPred 

software [42,43], but essentially the same results were obtained using other disorder 

prediction methods (see Materials and Methods). Data on protein abundance were obtained 

from the PaxDb database [39]. These data are expressed in parts per million (ppm), a 

quantity linearly related to the protein copy number in cells [44].
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The plot of Figure 1 shows a clear trend for the fraction of proteins displaying high intrinsic 

disorder to decrease with increasing protein abundance. This trend translates into a strong 

inverse correlation between the fraction of highly disordered proteins and their abundance 

(rS = −0.76, with rS being the Spearman’s rank correlation coefficient), which is however 

weakly significant (p = 0.02), likely due to the dip in the fraction of highly disordered 

proteins in the lowest abundance range. Indeed, the correlation becomes stronger and highly 

statistically significant (rS = −0.94 p = 2e-16) when ignoring proteins with abundance below 

8 ppm. The latter tend to include membrane proteins, for which cytoplasmic abundance is 

underestimated [12], and various cellular proteins that are not reliably detected by current 

proteomics methods [45,46] (see Materials and Methods for details). A highly statistically 

significant but lower correlation coefficient is obtained (rS = −0.11, p = 4e-15) when taking 

into account the fraction of all the residues in a protein that are predicted to be intrinsically 

disordered, over the entire range of protein abundances. Taken together, these results 

indicate that IDRs, especially IDRs ≥ 20 residues, are selected against as protein abundance 

increases.

Both the abundance and the degree of putative intrinsic disorder of a protein were shown to 

correlate with protein function to some extent [47]. To re-examine these correlations in our 

dataset, we computed the enrichment in the Biological process (BP) Gene Ontology (GO) 

terms in S. cerevisiae proteins in the highest and lowest one third of the abundance range, 

respectively. This was repeated for subsets in each of these two categories, comprising 

proteins of high- and low disorder, featuring ≥30% and <10% of their residues in IDRs of 

≥20 residues, respectively, with results displayed in Figure 2.

The first two columns of the heatmap in Figure 2 clearly indicate that most BP terms related 

to cellular metabolism, ribosome biogenesis, translation and protein folding are 

overrepresented in high-abundance proteins, and are underrepresented in proteins of low 

abundance. This trend is reversed, with an overrepresentation in low-abundance proteins, 

and an under-representation in highly abundant ones, of processes related to the cell cycle, 

chromosome segregation, transcription, cellular component morphogenesis, and signal 

transduction.

Interestingly, these same trends are significantly strengthened in the subsets of proteins with 

the highest and lowest disorder content in each of the 2 abundance categories (last two 

heatmap columns in Figure 2). For example, the overrepresentation of metabolic processes, 

ribosome biogenesis, and translation and protein folding, is more pronounced in high-

abundance proteins with low IDR content, than in all high-abundance proteins. The same 

applies to the underrepresentation of the same processes in low-abundance proteins with 

high IDR content. Likewise, the highlighted reverse trend for processes such as chromosome 

segregation, transcription and cell cycle processes is also significantly more pronounced 

when IDR content is considered.

These various trends are in good agreement with those reported in a previous study 

examining the relation between proteins with high IDR content in UniProt [48] and their 

biological process annotations [49]. The new insight provided by our analysis is that the 

Macossay-Castillo et al. Page 4

J Mol Biol. Author manuscript; available in PMC 2020 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relation of IDR content to protein function also depends on protein abundance, an aspect 

likely reflecting a more complex level of regulation and adaptation in evolution.

Residue properties of IDRs in relation to protein abundance

In the following, we investigate the relationships of various sequence properties of the IDRs 

with the abundance levels of the corresponding proteins. The main properties examined are 

the average stickiness of IDR residues, with stickiness representing an interaction propensity 

scale derived from structural data (see reference [4] and Figure 3d), and the average 

aggregation propensity of residues in IDR regions, as measured by different aggregation 

propensity scales (see Materials and Methods for details). These properties were computed 

only for IDRs of ≥20 consecutive residues along the polypeptide.

The most statistically significant correlation is found between the average stickiness value of 

residues in IDRs and protein abundance. From the scatter plot of Figure 3a we see that the 

average stickiness of IDRs decreases with protein abundance (rS = −0.31 p = 6e-59). 

Interestingly, this trend is very similar to that reported previously for the average stickiness 

values of surface (solvent-accessible) residues of globular proteins in S. cerevisiae and other 

model organisms [4].

Retrieving the atomic coordinates of globular soluble yeast proteins, totaling 452 structures, 

from a recent version of the PDB (October 2017), and computing the average stickiness 

values of their surface residues, we confirm the previous reported [4] negative correlation 

between these values and protein abundance (rS = −0.26, p = 2e-8) (Figure 3b). Using our 

more recent larger dataset of yeast protein structures, we also reproduce the reported 

negative correlation [4] between the average stickiness of residues in the protein interior and 

protein abundance (rS = −0.22, p = 2e-6) (Supplementary Figure S1). But unlike in reference 

[4], we observe a weak positive correlation between protein size and, respectively, the 

stickiness of both interior and surface residues (Supplementary Figure S2a,b). The latter 

positive correlation may reflect the greater tolerance of larger proteins for surface residues to 

evolve towards optimizing interactions with binding partners at the cost of compromising 

intrinsic stability, owing to the smaller surface to volume ratio of larger proteins [50].

Finally, we note that the average residue hydrophobicity of IDRs, measured using the Kyte 

and Doollitle scale [51] (Supplementary Figure S3a), was also negatively correlated with 

protein abundance, albeit to a lesser degree (rS = −0.12, p = 4e-10) than the average 

stickiness.

Following reference [4] we interpret the decrease of average IDR stickiness with protein 

abundance as reflecting the fact that proteins tend to limit promiscuous interactions by 

reducing the stickiness of residues in readily accessible, solvent exposed regions: the IDRs 

of at least 20 residues, analyzed here, and the surface residues of structured proteins and 

domains.

Somewhat unexpectedly, however, in proteins of all abundance levels, and particularly in 

less abundant proteins, the average stickiness of residues in IDRs is shifted towards higher 

values (more sticky) relative to surface residues of globular proteins (p = 1e-10 to 2e-4), as 
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witnessed by the distributions in Figure 3c. To gain further insight into the origins of this 

shift, we examine the amino acid propensities in the two types of regions respectively 

(Figure 4a), using the full yeast proteome as reference. We find that both IDRs and surface 

residues of globular proteins are depleted in sticky amino acids, especially in the aromatics 

W, Y, and F, and in C, and somewhat enriched in the least sticky charged amino acids 

(Figure 3d). Interestingly, the depletion in the four sticky amino acids is more pronounced in 

IDRs, whereas surface residues are enriched in the least sticky charged amino acids (E, D, 

K) (Figure 4a). To understand how these trends contribute to the higher stickiness of IDRs 

relative to surface residues, one must take into account amino acid frequencies in the 

proteome (Figure 4b). We see, indeed, that the more sticky amino acids (W, Y, F, C) are the 

least abundant amino acids overall, whereas the less sticky charged amino acids (E, D, K, R) 

are among the most abundant amino acids. Thus, the higher average stickiness of IDRs 

relative to surface residues is the consequence of the protein surface being enriched in less 

sticky and highly abundant charged amino acids. For the full list of amino acid frequencies 

and propensities see Supplementary Table S2.

This higher stickiness of IDRs is interesting. It may reflect the need to afford a minimum 

binding affinity for the short linear motifs (SLiMS) of IDRs that commonly engage in 

interactions with binding partners. Such minimum binding affinity would partially 

compensate for the overall loss in conformational entropy upon binding, and may therefore 

relate to the more multi-functional nature of these proteins in comparison to their structured 

counterparts, an aspect examined further along this study. Also noteworthy is the enrichment 

in the more abundant S and T amino acids in IDRs relative to surface residues (Figure 4a). 

These very marginally sticky residues commonly undergo phosphorylation. Their 

enrichment in IDRs is hence consistent with the frequent role of IDRs in signaling processes 

[15,28].

Lastly, we find that there is virtually no overlap between putative IDRs and aggregation 

prone segments identified using two different computational methods: TANGO, an 

algorithm for predicting aggregation prone regions in unfolded polypeptide chains [52] and 

PASTA2.0, a predictor of residues likely to be part of amyloid fibrils [53]. Less than 1% of 

the residues in IDRs overlapped with aggregation prone residues predicted by both methods, 

indicating that unlike globular proteins [52–54], IDRs are essentially devoid of such 

segments. Recent findings on intracellular liquid-like protein compartments, which often 

lead to the formation of fibrillar aggregates involving IDRs, suggest indeed that these 

aggregation phenomena are distinct from those occurring in the unfolded state of structured 

proteins [55].

Relating protein properties to the pattern of their physical and functional interaction in the 
cell

Having gathered evidence that structural disorder has evolved properties that promote its 

capacity to form functional interactions with other proteins, we proceed to investigate how 

several of the protein properties analyzed above, relate to the patterns of physical and 

functional interactions proteins form in the cell. These patterns are investigated in the high 

confidence (HC) PPI network of S. cerevisiae soluble proteins, built from data obtained by 
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two different groups using affinity purification and mass spectrometry (AP-MS) techniques 

[40]. This network, thereafter denoted as the Collins network, contains 1622 proteins, 

representing only a fraction (~25%) of all yeast proteins. These proteins engage in 9070 

reliably detected ‘interactions’ (see Materials and Methods, and [40] for details). The 

detected ‘interactions’ represent in fact co-complex associations, of which only a fraction 

corresponds to direct physical contacts [33].

For each protein in the network, we retrieved their abundance values and several other 

properties of interest. The functional implications of the interactions was obtained by 

associating each protein node to its functional annotations, retrieved from the Gene 

Ontology (GO) resource [56,57], as well as its mRNA expression profiles measured in a set 

of different conditions (COXPRESdb [38]). This information was further analyzed to 

quantify the degree of functional diversity among the interacting proteins.

Relating protein abundance and intrinsic disorder to the number of interaction 
partners—The number of interactions formed by a protein in a PPI network depends on 

several factors. When present at higher concentrations, a protein may engage in promiscuous 

interactions with multiple partners [58,59] and is generally more readily detected by 

experimental methods [33,37]. Interactions with multiple partners may also be a distinctive 

property of proteins that carry out multiple functions. It is therefore not surprising to find 

that the number of interaction partners (node degree) of a protein in the Collins yeast 

network, is significantly positively correlated with its abundance (rS = 0.18, p = 5.2e-13) 

(Figure 5a). As a result, hubs in the network, defined as proteins (nodes) connected to at 

least 10 other proteins, are enriched in abundant proteins (Figure 5b).

Next, we investigate the relation between the number of interaction partners of a protein and 

its intrinsic disorder level, with the latter defined as described above. Depicting the 

histograms of predicted protein disorder and the corresponding node degree distributions 

side by side (Figure 6a), there appears to be no correlation between the two parameters (rS = 

−0.02, p = 0.44). This lack of correlation confirms earlier findings by Schnell et al. [60], but 

disagrees with a several other studies according to which network hubs tend to be more 

intrinsically disordered than non-hub proteins [22,24,25,61].

Being fully aware that PPI networks of the same organism detected by different 

experimental methods or derived from different databases may differ substantially (for 

review see [33,37,62–64]), we hypothesized that differences between the yeast PPI networks 

used in different studies are the main reason for these contradictory observations. To test this 

hypothesis, we computed histograms displaying the fractions of proteins featuring increasing 

levels of disorder in hubs and ‘end’ proteins respectively. This was done for proteins in the 

PPI network used here, and for those in a recent version (March 2018) of the multi-validated 

(MV) PPI network of yeast, downloaded from BioGRID (interactions supported by at least 2 

publications) [65]. We considered this literature-curated network, hereafter denoted as 

BioGRID, because earlier versions of this network were used in two of the above mentioned 

earlier studies [22,32].
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Our results show striking differences of the corresponding histograms (Figure 6b,c). In the 

Collins network, hub proteins tend to be less disordered (albeit not significantly) than ‘end’ 

proteins (average p ≥0.05). On the other hand, hubs in the BioGRID network are 

significantly more disordered than ‘end’ proteins (maximum p = 1e-5), in excellent 

agreement with previous observations (Figure S1 of reference [22]). These opposing trends 

cannot be attributed to a bias in protein disorder content of the respective networks, since 

both networks are similarly enriched in IDP/IDRs relative to the proteome as a whole 

(Supplementary Figure S4).

Reproducing the same trends as in reference [22] with an up-to-date version of the BioGRID 

network, therefore, suggests that other differences between the BioGRID and Collins 

networks may be at play. In the Materials and Methods section, we present evidence that the 

BioGRID and Collins networks differ substantially in a number of important aspects. We 

show, in particular, that the Collins network is significantly less noisy than the BioGRID 

network, despite the fact that the latter includes PPI data from multiple detection methods, in 

agreement with previous finding [33], thereby justifying the use of the Collins network 

throughout our analysis.

Relating protein intrinsic disorder to the properties of its interaction partners
—Having demonstrated that the level of intrinsic disorder of a protein is not significantly 

correlated with the number of its interaction partners in the PPI network, we now examine 

the relation of protein disorder with various properties of its partners. In particular, we 

considered the disorder level of the interacting partners, their gene co-expression 

relationship and their functional similarity based on GO terms. The latter two properties 

were evaluated for protein pairs, and averaged over all pairs of the direct interaction partners 

of a given protein node (see Materials and Methods for details).

Our analysis reveals that more disordered protein nodes tend to interact with more 

disordered partners (rS = 0.31 p = 2e-37) (Figure 7b,c). On the other hand, statistically 

significant negative correlations are detected between the disorder level of the protein node 

and both the average pairwise semantic similarity of the Biological Process GO annotations 

(rS = −0.13 p = 4e-4), and the average pairwise correlation coefficient of the gene expression 

profiles (rS = −0.15, p = 3e-7) of its partners (Figure 7b,d,e).

To further scrutinize the latter findings, we examined properties of hub proteins and their 

interaction partners. Hubs interact with a larger number of partners, yielding more robust 

statistics for trends in various partner properties. We segregated hubs into two groups: hubs 

with weakly co-expressed partners (average pairwise Pearson correlation coefficient <|0.5|), 

and hubs with highly co-expressed partners (average pairwise Pearson correlation coefficient 

≥ 0.5) (see Materials and methods). In line with the correlations described above, we find 

that, on average, hubs with weakly co-expressed partners contain nearly twice as many 

disordered residues than those interacting with highly co-expressed partners (19% versus 

11%, p = 5e-6) (Figure 8a). The weakly co-expressed partners of the first category of hubs 

are also more disordered than the highly co-expressed partners of the second category (26% 

of disordered residues versus 17%, p = 4e-41)) (Figure 8b). Interestingly, the same weakly 

and highly co-expressed partners of the corresponding two hub categories display, on 
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average, significantly different abundance levels (p = 3e-35), and half-lives (p = 6e-5) 

(Figure 8c,d). Average values for all the parameter distributions are listed in the Table of 

Figure 8. These various trends hold when segregating hubs into those with low-to-medium, 

and high abundance levels, respectively (Supplementary Figure S5).

In summary, the picture emerging from these observations is that more disordered proteins 

tend to interact with more disordered partners. The interaction partners of these proteins are 

also more weakly co-expressed and functionally diverse, as well as less abundant and shorter 

lived. These trends are consistent with previous findings, where more disordered network 

hubs were suggested to play distinct roles in diverse signaling cascades [32] (Supplementary 

Figure S6). In the next section, we explore an alternative explanation that takes the 

multifunctional character of the protein nodes into account.

Contribution of multifunctional proteins to the observed trends

While the low functional similarity and weak co-expression of interaction partners are often 

linked to noise (promiscuous interactions) in the corresponding PPI data [33,37,66–68], they 

may also reflect a genuine functional behavior, namely of proteins performing multiple 

cellular functions. How to define such proteins remains however, a subject of much debate. 

Some authors focus on proteins performing unrelated molecular functions (moonlighting) 

[69–72], others integrate information from functional (molecular and cellular) annotations, 

and/or protein interaction data [41,69]. These different definitions and approaches often 

yield small and poorly overlapping sets of multifunctional proteins for the same organism 

(for data on yeast, for example, see Supplementary Section I).

To evaluate the contribution of protein multifunctionality to the observed trends, we 

identified putative multifunctional proteins in the S. cerevisiae proteome. To this end, the 

GO functional annotations of each yeast protein (including multidomain proteins) were 

clustered using a metric reflecting the similarity between these annotations [41]. A protein 

was classified as multi-functional if it is annotated with GO terms belonging to at least 2 

clusters (see Materials and Methods, and Supplementary Figures S7 and S8 for details). The 

analysis was performed for both the GO Biological Process (BP) and Molecular Function 

(MF) terms.

By applying this procedure to the full S. cervecisiae proteome (6437 proteins), we identified 

a total of 595 putative multifunctional proteins (MFPs) on the basis of the GO BP terms, and 

423 MFPs on the basis of the GO MF terms. These two sets are essentially distinct as only 

74 proteins are common to both. For the purpose of the present analysis, we considered 

mainly the MFPs based on GO BP terms, as we were primarily interested in multiple 

functions of a protein, most likely to affect the number and types of interactions it forms in 

the cell.

Results show that the identified putative MFPs are enriched in structural disorder (proteins 

with >30% of their residues in IDRs ≥20 residues). As shown in Table 1, the full set of 595 

MF proteins is 44% enriched in IDRs, relative to the entire proteome. The subset of MFPs 

that is part of the PPI network is 37% enriched in IDRs relative to all proteins in the 

network, whereas MFP hubs are most highly enriched in IDRs (65%), relative to non-MFP 
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hubs in the network. This enrichment is all the more significant considering that MFPs tend 

to be slightly more abundant than the entire yeast proteome (Supplementary Figure S9a), a 

trend that should in principle lower the proportion of IDRs (Figure 1). The observed 

enrichment therefore agrees with the view that protein intrinsic disorder may promote more 

diverse functional roles in the cell [72].

Furthermore, we find that the IDRs of the predicted MFPs display on average higher 

stickiness values than their non-functional complement, when considered in the context of 

both the whole yeast proteome and the interactome (Table 2). This trend is consistent with 

the hypothesis presented above that higher stickiness of IDRs relative to surface residues of 

globular proteins may be linked to the thermodynamics of the IDR mediated functional 

interactions.

Next we investigate the potential influence of intrinsic disorder and multifunctionality on the 

properties of their interaction partners. To tease out these influences, we analyzed various 

properties of the interaction partners of MFPs and their non-MFPs counterpart with the same 

extreme intrinsic disorder levels: respectively, those with ≥30% and those with <10% of 

their residues in disordered regions.

The results summarized in Figure 9 (and the Table within) show that among highly 

disordered proteins, the subset of MFPs interacts with more disordered partners on average 

(31% versus 25% disordered residues in partners of MFPs versus non-MFPs, p = 4e-3). 

These partners also tend to display a lower level of functional diversity (average semantic 

similarity of 0.40 for MFPs versus 0.52 for non-MFPs, p = 4e-3), and weaker gene co-

expression (0.33 for MFPs versus 0.42 for non-MFPs, p = 1e-3) than their equally 

disordered non-MFP counterparts (Figure 9a-c). On the other hand, among the set of most 

highly structured (least disordered) proteins, the interaction partners of MFPs display on 

average a similar level of disorder and functional diversity as non-MFPs, while nonetheless 

maintaining a similar lower level of gene-co-expression as in the highly disordered set 

(Supplementary Figure S10). Importantly, consistent with higher intrinsic disorder in MFPs, 

20% of the proteins in the highly disordered set are predicted to be multifunctional, whereas 

this fraction is only 13% for the more structured set.

Lastly we note that somewhat surprisingly, MFPs interact on average with fewer partners in 

the yeast PPI network than their non-MFP counterparts (Supplementary Figure S9b). 

Considering that MFPs represent a small fraction of the proteins in the network, this 

observation may reflect the general bias in the PPI data towards more abundant proteins, 

which are more likely to form promiscuous interactions [33,37].

Thus, taken together, these observations indicate that multifunctionality contributes 

significantly to the elevated stickiness of IDRs in comparison to the surfaces of globular 

proteins. Multifunctionality also increases significantly the propensity of disordered proteins 

to interact with more disordered and functionally diverse partners.
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Concluding remarks

In this study, we evaluated how intrinsic disorder of proteins and the properties of disordered 

regions have adapted to mitigate the risk of engaging in non-functional interactions, while at 

the same time enabling the corresponding proteins to perform diverse cellular functions. To 

this end, we used information on the protein sequences, 3D structures, as well as genome-

scale data on cellular protein concentrations, gene coexpression, and protein-protein 

interactions in one of the most thoroughly studied model organism, the yeast S. cerevisiae.

We found that the fraction of highly disordered proteins decreases significantly with 

increasing protein abundance, in agreement with previous findings [35]. This trend suggests 

that protein intrinsic disorder is selected against as protein abundance increases, in line with 

the observation that disorder is associated with deleterious dosage sensitivity in yeast [2].

A significant new finding is that IDRs of highly abundant proteins have adapted their amino 

acid composition in order to minimize promiscuous interactions with other proteins, in a 

way similar to surface residues of globular proteins [4]. This adaptation has lowered the 

frequency of ‘sticky’ amino acids found more frequently in protein-protein interfaces, and 

raised the frequency of polar and charged amino acids, which tend to remain solvated even 

for proteins present at high concentrations in the cell. We find however, that IDPs/IDRs of 

≥20 contiguous disordered residues maintain a somewhat higher average stickiness than 

surface residues at all protein abundance levels. This is explained by the lower frequency of 

less sticky polar and charged amino acids in IDRs than on the surface of globular proteins.

We propose that the trend towards higher stickiness of IDRs likely reflects the need to 

provide sufficient binding affinity for the SLiMs-mediated functional interactions to 

counterbalance the large loss of conformational entropy that generally accompanies these 

interactions. A good example is the binding of the trans-activator domain (TAD) of p53 to 

the nuclear coactivator-binding domain (NCBD) of CREB-binding protein (CBP), largely 

driven by intermolecular hydrophobic contacts involving 2 short segments of the disordered 

portion of p53 [73].

Investigating the pattern of interactions made by IDPs/IDRs in the context of the high 

confidence S. cerevisiae PPI network yielded further important insight into the balancing act 

of protein disorder, enabling it to engage in diverse functional interactions while minimizing 

promiscuity. Overall, proteins with a higher level of intrinsic disorder were found to interact 

more frequently with more highly disordered partners. These partners also tend to be 

functionally more diverse, as evident by the reduced similarity of their GO functional 

annotations and the weaker correlation of their gene expression profiles.

Most importantly still, our study makes significant headway towards assessing the respective 

contributions of functional versus promiscuous interactions to the observed trends. GO 

functional annotations were used to identify ~600 putative MFPs in S. cerevisiae, and these 

proteins were mapped to and analyzed in the context of the yeast PPI network. Interestingly, 

we found that multifunctional proteins, which represent ~20% of the highly disordered 

proteins in the PPI network (Table 1), make a significant contribution to the trends described 

above. They are enriched in IDRs (by 44–65%, Table 1), their interaction partners tend to be 
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more disordered (p = 4e-3) and the functional similarity of these partners is significantly 

lower (p = 4e-3 for their partners GO-BP semantic similarity annotations; p = 1e-3 for their 

partners gene co-expression) (Figure 9 a-c), in comparison to their non-MFPs counterpart.

Moreover, the IDRs of MFPs display higher stickiness values than IDRs of their non-

multifunctional complement (Table 2), lending support to the idea that the somewhat higher 

average stickiness of IDRs reflects the thermodynamic requirements of forming specific 

interactions with cognate proteins, mediated by SLiMs. Indeed, our yeast MFPs do feature, 

on average, a somewhat higher coverage of SLiMs predicted by the ANCHOR algorithm 

[74] than non-MFPs (between 32 and 34% for MFPs in the whole proteome and Collins 

interactome, and 28% for the non-MFPs in both datasets respectively, see Supplementary 

Figure S11).

Nevertheless, it is reasonable to assume that a fraction of the interactions formed by both 

structured proteins and IDPs/IDRs is likely non-functional under certain conditions, but 

serve as a reservoir for future adaptation to altered conditions and environmental contexts 

[3,75]. Evidence has, indeed, been accumulating that IDPs/IDRs are frequently involved in 

intracellular liquid-like compartments, where they form both functional and spurious 

interactions [55,76]. More data on such cellular assemblies, and on the functional 

interactions involving IDPs/IDRs in specific systems [77] are clearly needed to better 

evaluate the functional contexts of the trends uncovered in our analysis.

It also remains to be seen if the trends observed here for yeast proteins are shared by other 

organisms. The study of Levy et al. [4] showed that the stickiness of surface residues in 

structured human proteins is more weakly anti-correlated to protein abundance than in yeast. 

This may be attributed to the fact that protein abundance is ill defined in human cells, due to 

the variety of cell types, and to a higher degree of compartmentalization of proteins in 

human cells, which relieves some of the pressure to decrease their propensity to engage in 

promiscuous associations. This may also be the case for IDPs/IDRs, as the latter can be 

translated into a spatially localized fashion within mammalian cells [36].

Materials and Methods

Datasets

Data on protein sequences abundance levels and half-life—Data on S. cerevisiae 
protein sequences were taken as provided by the Protein Abundance Database (PaxDb) 

version 4.0 (March 2016) [39].

Data on protein abundance levels in yeast S. cerevisiae, expressed as parts per million (ppm), 

a quantity linearly related to the protein copy number in the cell [44], were obtained from 

PaxDb). We used the integrated organism-level abundance data provided by PaxDB for a 

total of 6437 yeast proteins. From these data, 1457 proteins with very low abundance levels 

(<2ppm) were discarded from our analysis, as they were found to have higher variability 

among individual datasets deposited in PaxDB, and therefore considered as less reliable (see 

Supplementary Figure S12).
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Data on the steady-state half-life of yeast proteins expressed in minutes were obtained from 

[78].

Gene co-expression data—Data on the Pearson correlation coefficient of mRNA 

expression profiles of S. cerevisiae gene pairs, taken to represent the co-expression levels of 

the corresponding gene, were extracted from the COXPRESdb [38]. The mRNA profiles 

were computed from mRNA expression data (microarrays) measured under a large set of 

different conditions and retrieved from the ArrayExpress database <https://www.ebi.ac.uk/

arrayexpress>. The expression data were normalized using the robust multi-array average 

(RMA) method [79].

Protein-protein interaction data—Data on genome-wide protein-protein interactions 

(PPI) in the yeast S. cerevisiae were taken from the study of Collins et al. [40]. This study 

derived a high confidence (HC) PPI network involving soluble yeast proteins, starting from 

the raw data obtained by affinity purification and mass spectrometry analysis (AP-MS) in 

the two independent high throughput studies by Krogan et al.[66] and Gavin et al.[80].

The HC ‘Collins’ yeast PPI network was derived using the Protein Enrichment (PE) 

statistical scoring scheme to filter out spurious interactions. Applying a PE threshold of 

≥3.19 [40], the ‘Collins’ PPI network contains 9070 high confidence co-complex 

associations, commonly denoted as ‘interactions’ among 1622 distinct proteins (1600 

protein with abundance levels > 2ppm). The estimated TP/FP ratio for this dataset is ~30, 

where TP (true positive) are detected interactions from the positive examples, and FP (false 

positive) are detected interactions from the negative examples. The PPI dataset with the 

associated PE scores was downloaded from <http://interactome-cmp.ucsf.edu/>.

In addition, we examined S. cerevisiae PPI data retrieved from the March 2018 release of the 

BioGRID database [65]. These data include protein-protein interactions annotated from the 

scientific literature, detected by both high- and low- throughput methods of variable 

stringencies and includes both co-complex and binary interactions. We used the multi-

validated (MV) dataset of BioGRID. In this dataset, the reliability criteria for a given 

interactions is based on the number of experimental systems and publications where the 

physical interaction between the proteins was detected.

Data on structures of yeast globular proteins—A dataset of yeast globular proteins 

was assembled from the protein data bank (RCSB-PDB) [81] (Sep. 2017). We selected 

entries comprising x-ray structures determined at 3Å resolution or better, which contain only 

proteins (no DNA or RNA) from S. cerevisiae, displaying ≤ 90% sequence identity. For 

these structures, we downloaded both the atomic coordinates and biological assembly 

assignments. Structures representing membrane proteins (annotated intra- or trans-

membrane regions in UniProt [48] or predicted by TOPCONS [82]), those lacking UniProt 

[48] identifiers or protein abundance information in PaxDb [39], or identified as probable 

errors in QSbio [83] (low and very-low confidence), were discarded. This set was further 

reduced to a total of 452 structures by retaining entries containing only a single protein chain 

(e.g. hetero-complexes were not considered). All subsequent calculations were performed on 

the biologically meaningful assembly state of the protein (Biological Unit).
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Gene functional annotations, enrichment analysis, and functional similarity

Functional annotations for yeast proteins were downloaded from the Gene Ontology [56] 

(GO) (July 2016). Unless otherwise specified, only GO terms based on evidence codes IDA 

(Inferred from Direct Assay) and IPI (Inferred from Physical Interaction) from respectively, 

the Biological Process and Molecular Function ontologies were considered for the present 

analysis. The GO enrichment analysis was performed using the BiNGO [84] plugin for 

Cytoscape [85].

The extent to which two interacting proteins carry out similar functions was evaluated using 

the semantic similarity measure. The specific measure was that of Wang et al. [86] 

implemented in the R-package GOSemSim [87]. This measure evaluates the similarity of 

two GO terms based on both the locations of these terms in the GO graph and their relations 

to their ancestor terms.

Comparing the Collins and BioGRID PPI networks

To justify the use of the Collins PPI network for the bulk of our analysis we compared 

various properties of interacting protein pairs in respectively, the MV BioGRID and Collins 

yeast PPI networks, with those of a random network having the same node degree 

distribution as the Collins network (generated as described below).

The evaluated properties are derived from independent data types routinely used to gauge 

the quality and biological relevance of experimentally derived PPI networks. For individual 

interacting protein pairs in each network we computed the GO BP (Biological Process) 

semantic similarity score [86], the gene co-expression Pearson correlation coefficient, and 

the ratio of the protein abundance levels [38,39]. These values were then averaged over all 

the interacting pairs in each of the networks.

First we note that while 42% of the proteins of the larger MV BioGRID network are shared 

with the HC Collins network, only 14% of the PPI in MV BioGRID are also part of the 

Collins network (Supplementary Figure S13a,b). As a result the proteins defined as ‘hubs’ 

(protein nodes connected to >10 interaction partners in the network) and those defined as 

‘ends’ (proteins connected to only 1 partner) differ substantially (Supplementary Figure 

S13c,d).

Next our analysis shows (Figure 10a) that the distribution of the Pearson correlation 

coefficient of the mRNA expression profiles of interacting pairs for both the HC Collins and 

MV BioGRID networks, are significantly different from the distribution for the random 

network. On the other hand, the distribution for the HC Collins network is bimodal, with a 

significant fraction of interacting pairs (~57%, 4387 out of 7636 pairs with a coexpression 

correlation value) displaying highly correlated expression profiles (≥0.5), shifting it further 

towards higher values relative to the random distribution than the distribution computed for 

the MV BioGRID network. We find furthermore, that the HC Collins network features a 

larger fraction of functionally similar interacting pairs (SemSim values ≥0.6), and a smaller 

fraction of functionally diverse pairs (≤0.4) than the MV BioGRID network, and that the 

SemSim distributions of both networks depart significantly from random (Figure 10b). In 

addition, the distributions of the pairwise protein abundance ratio and the half-life ratio of 
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interacting protein pairs are more significantly shifted towards lower values in the HC 

Collins network than for the MV BioGRID network, although the distributions for both 

networks differ significantly from random (Figure 10c,d).

On the basis of this multipronged comparison, we conclude that the HC Collins network is 

of higher quality than the MV BioGRID network, confirming earlier findings that the HC 

Collins network is one of the highest quality interaction networks of the soluble S. cerevisiae 
proteome and therefore is the network of choice for the present analysis. Many of its 

interactions were indeed confirmed by subsequent publications, allowing the generation of 

CYC2008, a widely used updated version of annotated yeast protein complexes[88].

Generation of random networks

Ten different random networks were created, which preserve the number of protein nodes 

and the node degree distribution of the Collins PPI network [40]. Starting from the Collins 

network, binary interactions (network edges) were randomly shuffled using the 

sample_degseq function in the igraph package for R <http://www.igraph.org/r>, avoiding 

repeating interactions and self-loops. Next, the identities of the protein nodes were randomly 

shuffled using the sample function without replacement in the base package of R <http://

www.r-project.org>. The resulting networks were pruned to eliminate the few interactions 

that were also in the Collins network, yielding essentially identical random networks shown 

in the Supplementary Figure S14.

Residue properties and amino acid propensities

The stickiness scale of Levy and Teichmann [4] (values were taken from the Supplementary 

Material of ref [4] ), was used to evaluate the propensity of a protein residue to be part of an 

interaction interface with another protein. In addition, we used the Kyte-Doolittle amino acid 

hydrophobicity scale [51]. Surface residues were defined as those with a relative solvent 

accessible surface area (RSASA) of at least 20, with RSASA=SASAprotein / SASAfree, 

where SASAprotein is the accessible surface area of the residue in the protein structure, and 

SASAfree is the accessible surface area of the corresponding amino acid free in solution. The 

accessible surface area values were computed using FreeSASA [89].

The amino acid composition of intrinsically disordered regions (IDRs) and surface residues 

of globular proteins, respectively, was evaluated using a propensity score. The latter was 

derived by calculating the fractional occurrence (f) of each individual amino acid with 

respect to the total number of residues in each dataset (IDRs or surface residues in the 

dataset of globular proteins). Amino acid propensities (p) were then calculated using p = 

log10 (fA / fB ), where fA is the fractional contribution of an amino acid for a given residue 

subset (IDRs or protein surfaces) and fB is its average fraction computed for the full yeast 

proteome.

Prediction of intrinsically disordered and aggregation-prone residues

Residues likely to be part of IDRs were predicted from the amino acid sequence by the 

IUPred software [43], using the long-window option. To decrease the level of noise, we 

considered only segments of at least 20 consecutive residues predicted to be disordered. 
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Additionally, we analyzed predicted IDRs from the meta-predictor MobiDB-lite [90] and 

observed the same trends as with IDRs inferred by IUPred. These are: 1) the negative 

correlation between the fraction of highly disordered proteins and protein abundance levels 

gets stronger when filtering out proteins with an abundance of <2 and <8 ppm (rS = −0.26 p 
= 0.48 and rS = −0.84 p = 2e-3, respectively), 2) At the protein abundance cutoff of 2ppm, 

there is a negative correlation between protein abundance and IDR stickiness (rS = −0.29 p = 

1e-47) and 3) and a significant, but weak negative correlation between protein abundance 

and IDR hydrophobicity (rS = −0.07 p = 5e-4). Moreover, we observed a very high 

correlation between the amino acid propensities in IDRs predicted by both software tools (rS 

= 0.98 p = 6e-6) using the whole yeast proteome as reference.

The propensity of amino acid residues to be aggregation prone, was evaluated from the 

amino acid sequence using respectively the TANGO [52] and PASTA2.0 [53] software. 

TANGO, which predicts aggregation prone regions in unfolded polypeptide chains, was 

applied using the default parameters for pH, temperature, and ionic strength (7, 298°K and 

0.1 respectively). An aggregation prone region was defined as a segment of at least five 

consecutive residues with a β-aggregation propensity of minimum 5%.

PASTA2.0, a predictor of residues likely to be part of amyloid fibrils [53], was applied using 

parameters optimized to achieve 90% specificity. The file containing the “best pairs” was 

used to retrieve the putative amyloid forming regions.

Identifying putative multifunctional proteins

Putative multifunctional proteins in the genome of S. cerevisiae were identified on the basis 

of publically available functional annotations, using a slight modification of the procedure of 

Khan et al. (2014) [41].

In summary, protein annotations were retrieved from UniProtKB Swiss-Prot database 

<http://www.uniprot.org/>. GO terms [56,57] from all UniProtKB evidence codes were 

extracted. Next, the GO terms belonging to Molecular Function (MF) and Biological Process 

(BP) category were clustered separately. Clustering was done using single linkage clustering 

[91] based on the sematic similarity among GO terms, with similarity cutoff of 0.1 and 0.5. 

A protein was classified as multi-functional if it is annotated with GO terms a) belonging to 

2 or more clusters with sematic similarity cutoff of 0.1 and b) belonging to 4 or more 

clusters with sematic similarity cutoff of 0.5 (Supplementary Figures S7 and S8). These 

cutoff values were empirically determined (2014) [41]. When only MF GO terms are 

available, the number of clusters based on BP terms was assigned as 0 (zero). Multi-domain 

proteins were included in the analysis. Ideally Multi-functional proteins identified by this 

approach should be validated on the basis of manual curation of the literature and other 

sources [41]. But this very time consuming process was therefore foregone in this study, but 

may be performed in the future, using recently developed text-mining techniques [92].

In the present study, we considered protein clusters derived on the basis of the GO BP terms. 

Results were essentially unchanged when considering the union of putative multifunctional 

proteins inferred using respectively the MF and BP GO annotations.
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Statistical analyses

The statistical analyses and the corresponding graphical representations were performed 

using custom R scripts. To evaluate the relationships between variables we used the non-

parametric Spearman’s rank correlation coefficient (rS) and its p-value as implemented in the 

cor.test function in R Stats package. To compare pairs of distributions of the same variable, 

the nonparametric Wilcoxon rank-sum (Mann-Whitney U) test was used. In case of multiple 

distribution comparison, the Bonferroni correction was applied. To compare the fraction of 

elements in different groups we used the two-sample test for equality of proportions with 

continuity correction (Pearson’s chi-squared statistic).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AP-MS affinity purification and mass spectrometry

BP biological process

FP false positive

GO gene ontology

HC high confidence

IDP/R intrinsically disordered protein/region

MF molecular function

FP multifunctional protein

MV multi-validated

NCBD nuclear coactivator binding domain

PaxDB protein abundance database

PDB protein data bank

PE protein enrichment

PPI protein-protein interaction

ppm parts per million
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PTM post translational modification

RMA robust multi-array average

rS Spearman’s rank correlation coefficient

RSASA relative solvent accessible surface

SLiM short linear motif

TP true positive
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Highlights:

• Intrinsically disordered proteins are prone to forming weak promiscuous 

interactions

• We set out to determine how nature mitigates interference from such 

interactions

• We study protein disorder level, sequence properties and cellular context in 

yeast

• Protein disorder level and sequence properties have evolved to minimize 

promiscuity

• Protein disorder and sequence properties also evolved to enable functional 

diversity
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Figure 1. 
Fraction of S. cerevisiae proteins with a high degree of putative intrinsic disorder, as a 

function of their cellular abundance.

The graph reveals a strong negative correlation between the fraction of highly disordered 

proteins and the corresponding protein abundance level (Spearman correlation rS = −0.76, 

pvalue = 0.02). A stronger and highly significant correlation is obtained when applying a 

somewhat higher abundance threshold and a lower but significant correlation when taking 

into account the fraction of all the disordered residues in a protein (see text). Proteins 

featuring a high degree of intrinsic disorder are defined as those containing ≥30% of their 

residues in IDRs of at least 20 consecutive residues. Proteins in the yeast proteome were 

divided according to their abundance into ten equally populated bins (498 proteins each). 

Numbers along the horizontal axis represent the rounded upper limit in the protein 

abundance range of each bin.
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Figure 2. 
Enrichment in Gene Ontology terms for proteins with different abundance levels and 

intrinsic disorder contents.

The first column lists the biological process (BP) terms of the Gene Ontology [56,57] for 

which statistically significant enrichments were obtained. The number of S. cerevisiae 
proteins with the corresponding BP term in the reference dataset is indicated in parentheses. 

The last 4 columns represent the heat maps of the computed statistically significant 

enrichment levels for each of the listed BP terms among proteins in the following 4 

categories respectively. Proteins among the 33.3 percentile most abundant and least abundant 

proteins, respectively (columns 2 and 3); the subset of proteins from each of the previous 

categories with high ( ≥ 30%) and low (<10%) IDR content, respectively (columns 4 and 5). 
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The number of proteins in each of the 4 categories is listed at the bottom. The Biological 

Process (BP) Gene ontology (GO) terms are those from the GO slim yeast ontology in the 

BiNGO [84] application for Cytoscape [85] with all possible evidence codes. Enrichments 

were computed using as reference, all S. cerevisiae proteins with available GO annotation 

and abundance levels of at least 2 ppm (4900 proteins in total). The statistical significance of 

the computed enrichment was evaluated using the hypergeometric test with Benjamin and 

Hochberg false discovery rate (FDR) multiple testing correction [93].
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Figure 3. 
Average residue stickiness versus protein abundance.

a) Scatter plot of the average residue stickiness in IDRs ≥20 residues of 2874 (2566 ≥2 ppm) 

S. cerevisiae proteins, as a function of protein abundance. b) Scatter plot of average 

stickiness of surface residues in 452 yeast globular proteins retrieved from the PDB, as a 

function of protein abundance. The Spearman’s correlation coefficients (rS) and the 

corresponding pvalues are given at the top of each panel. For both datasets, correlations were 

calculated using proteins with an abundance value of at least 2ppm. c) Boxplots of average 

residue stickiness on the surface of globular proteins (white) and in IDRs ≥20 residues 

(gray) for proteins in three abundance ranges: low (2 – 15.5ppm), medium (15.6 – 64.7ppm) 

and high (64.8 – 21866). The corresponding average stickiness values (diamond in each 

boxplot) are: −0.13, 0.06, −0.14, −0.10, −0.17 and −0.15. p-values (computed using the 

Wilcoxon rank-sum test) between pairs of distributions in the three abundance ranges are 

given at the top of the panel in parentheses. The number of data points in each distribution 

(n) is shown below each boxplot. The horizontal line in each boxplot indicates the median 
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value. Outliers are not depicted. d) Bar plot of the stickiness score of amino acids in [4]. 

Protein abundance values were obtained from PaxDb [39] (see Material and Methods).
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Figure 4. 
Comparing amino acid propensities of IDRs to those on surfaces of globular proteins.

a) Amino acid propensities in IDRs ≥20 residues (horizontal axis) versus those on the 

surfaces of globular proteins/domains (vertical axis) using the yeast proteome as reference 

(see Materials and Methods). Amino acids are represented by the one-letter code. The 

Spearman’s correlation coefficient between the two sets of propensities and the 

corresponding p-value are given at the top of the graph. b) Frequencies of amino acids (%) 

in the yeast proteome.
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Figure 5. 
Relating protein abundance to the number of interaction partners (node degree) in the yeast 

interactome.

a) Boxplots of the number of interaction partners (node degree) for proteins in three ranges 

of abundance: low (2 – 15.5ppm), medium (15.6 – 64.7ppm) and high (64.8 – 21866ppm). 

P-values (computed using the Wilcoxon rank-sum test) between pairs of distributions in the 

three abundance ranges are given in parentheses. The number of data points in each 

distribution (n) is shown below each boxplot. The horizontal line in each boxplot indicates 

the median value and the diamond indicates the mean value. Outliers are not depicted in the 

panel. b) Scatter plot of protein abundance versus node degree. Hub proteins (those with ≥10 

interaction partners) are colored from orange to brown and non-hubs (<10 interaction 

partners) are colored from light to dark blue, according to the 3 protein abundance ranges 

given in (a). Hubs represent 22%, 30% and 39% respectively, of proteins of low-, medium- 

and high abundance in the HC Collins interactome.
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Figure 6. 
Node degree of proteins with different levels of intrinsic disorder.

a) Depicted on the right hand side is the histogram of the intrinsic disorder ranges (fraction 

of disordered residues in IDRs ≥20 residues long) of protein nodes in the Collins yeast PPI 

network [40]. Shown on the left are boxplots representing the distributions of the number of 

interaction partners (node degree) for individual disorder ranges of disorder. The Spearman’s 

correlation coefficient (rS), and its corresponding p-value are given at the right hand side of 

the panel. b) The fraction of hub (≥10 partners) and ‘end’ (1 partner) proteins at different 

IDR length cutoffs in the HC yeast PPI network of Collins. c) The same as (b) but for 

proteins in a recent version of the BioGRID [65] interactome. In both panels, the p-value 

between the fraction of hub and end proteins was calculated using the two-sample test for 

equality of proportions with continuity correction (Pearson’s chi-squared statistic).
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Figure 7. 
Relating intrinsic disorder of protein nodes to the properties of their interaction partners.

a) Schematic representation of the source of the values depicted in the following panels. b) 

histogram of the intrinsic disorder levels of protein nodes of the HC Collins yeast PPI 

network [40], depicted in Fig. 6a. Shown to the right are box plots representing the 

distributions of various properties of the interaction partners of protein nodes in the disorder 

ranges depicted on the far-left histogram: c) Average disorder (fraction of disordered 

residues in IDRs≥ 20 residues long) of interaction partners, d) average functional similarity 

(semantic similarity of their biological process gene ontology annotation, BP SemSim) of 

interactions partners and e) average co-expression (Pearson correlation coefficient of the 

mRNA expression profiles [38]) of interaction partners. The Spearman’s correlation 

coefficient (rS), and its corresponding p-value are given at the top of each panel. Nodes with 

the highest disorder level comprising <10 proteins (greyed box plots), were not considered 

in the analysis.
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Figure 8. 
Contrasting the properties of protein nodes and their interaction partners in hubs with highly 

and weakly co-expressed interaction partners.

a) Box plots depicting the average disorder level of: hubs with highly co-expressed partners 

(average partners’ mRNA expression profiles Pearson correlation coefficient ≥0.5; dark 

gray), hubs with weakly co-expressed partners (average partners’ mRNA expression profiles 

Pearson correlation coefficient <|0.5|; light gray), all protein nodes in the HC Collins 

interactome (white), b-d) Boxplots depicting respectively the distributions of: disorder 
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content, abundance levels (ppm) and half-life (min) of the interaction partners for the same 3 

categories of protein nodes as in (a). Abundance values are from PaxDb [39] and yeast 

protein half-lives are taken from reference [78]. p-values (computed using the Wilcoxon 

rank-sum test) between pairs of distributions in the three groups are given in parentheses. 

The number of data points in each distribution (n) is shown below each boxplot. The 

horizontal line in each boxplot indicates the median value and the diamond indicates the 

mean value. Outliers are not depicted. The Table at the bottom lists the average values of the 

corresponding displayed distributions.
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Figure 9. 
Relations of high intrinsic disorder content and the multifunctional nature of protein nodes 

to the properties of their interaction partners.

Panels a-c) compare the distributions of the disorder levels, functional similarity (BP 

SemSim), and the mRNA co-expression levels, respectively, of interaction partners in the 

two groups of proteins with a high disorder content (≥30% residues in IDRs ≥20 residues): 

putative multi-functional protein nodes of the Collins PPI network [40] (dark grey) and 

nonmulti-functional proteins nodes (light grey). p-values (computed using the Wilcoxon 

ranksum test) between the pair of distributions are given in parentheses. The number of data 

points in each distribution is shown below each boxplot. The horizontal line in each boxplot 

indicates the median value and the diamond indicates the mean value. Outliers are not 

depicted. The Table at the bottom lists the average values of the corresponding displayed 

distributions.
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Figure 10. 
Comparing the Collins and BioGRID interactomes of S. cerevisiae.
The HC interactome of Collins [40] and the multi-validated BioGRID interactome [65] 

(March 2018) are compared against each other and to a random PPI network (see Material 

and Methods for detail). Four properties of interacting proteins pairs in the network are 

compared: a) Pearson correlation coefficient of mRNA expression profiles (gene co-

expression), b) the semantic similarity of the biological process GO annotation (BP 

SemSim), c) the ratio of protein abundance levels and d) the ratio of protein half-life. Panels 

c, d) p-values (computed using the Wilcoxon rank-sum test) between pairs of distributions in 

the three networks are given in parentheses. The number of data points in each distribution is 

shown below each boxplot. Data on protein abundance are from PaxDb [39], and those on 

half-life are from reference [78].
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Table 1.

Intrinsic disorder enrichment in multifunctional proteins (MFP) of S. cerevisiae

Dataset Proteins Highly disordered proteins Fraction highly disordered proteins p* Enrichment

Whole proteome 6437 1055 0.16
5e-5 1.44

MFPs 595 137 0.23

Interactome 1622 314 0.19
0.02 1.37

MFPs in interactome 246 64 0.26

Hub proteins 530 92 0.17
0.08 1.65

MFP hubs 58 16 0.28

MFPs: multifunctional proteins

Highly disordered proteins are those with ≥30% disordered residues

*
P-values from the two-sample test for equality of proportions (Pearson's chi-squared statistic)
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Table 2.

Average stickiness scores in IDRs of MFP and non-MFP in S. cerevisiae

Dataset Proteins <Stickiness> SD p*

Whole proteome MFPs 367 −0.0947 0.1151
0.04

NMFPs 2507 −0.1095 0.1195

Collins interactome MFPs 160 −0.1144 0.1129
6e-4

NMFPs 771 −0.1474 0.1210

MFPs: multifunctional proteins

NMFPs: non-multifunctional proteins

<Stickiness>: average IDR stickiness per protein. More negative values correspond to lower stickiness

SD: standard deviation

*
P-values from the two-sample test for equality of proportions (Pearson’s chi-squared statistic)

J Mol Biol. Author manuscript; available in PMC 2020 April 05.


	Abstract
	Introduction
	Results and Discussion
	Residue properties of IDRs in relation to protein abundance
	Relating protein properties to the pattern of their physical and functional interaction in the cell
	Relating protein abundance and intrinsic disorder to the number of interaction partners
	Relating protein intrinsic disorder to the properties of its interaction partners

	Contribution of multifunctional proteins to the observed trends

	Concluding remarks
	Materials and Methods
	Datasets
	Data on protein sequences abundance levels and half-life
	Gene co-expression data
	Protein-protein interaction data
	Data on structures of yeast globular proteins

	Gene functional annotations, enrichment analysis, and functional similarity
	Comparing the Collins and BioGRID PPI networks
	Generation of random networks
	Residue properties and amino acid propensities
	Prediction of intrinsically disordered and aggregation-prone residues
	Identifying putative multifunctional proteins
	Statistical analyses

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Table 1.
	Table 2.

