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Abstract

Over the past two decades a growing body of evidence has demonstrated an important role of tight 

junction (TJ) proteins in the physiology and disease biology of gastrointestinal (GI) and liver 

disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming 

barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where 

they play important functional roles in signaling, trafficking and regulation of gene expression. A 

hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal 

transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal 

cancer and gastric cancer. Among the best characterized roles of TJ proteins in liver disease 

biology is their function as cell entry receptors for hepatitis C virus – one of the most common 

causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel 

therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role 

of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as 

therapeutic targets.
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Tight junctions (TJs) are intercellular adhesion complexes that are essential to the barrier 

function of epithelia and endothelia. They maintain cell polarity by limiting the movement 

of proteins within the plasma membrane and by regulating paracellular solute and water flux 

(for a recent review see[1]). Their functions are however not limited to these important 

structural gate and fence functions as TJs also act as signaling hubs[1, 2]. TJs are highly 

dynamic structures that constantly enable cells to adapt to their environment. Not 

surprisingly, perturbation of TJ protein expression or function and/or disruption of TJ 

integrity is associated with a variety of diseases, including skin, intestinal and lung diseases, 

and cancers[1, 3] (Table 1). Furthermore, pathogens have evolved strategies to overcome 

epithelial and endothelial barriers by using TJ components for their infection/invasion[1, 4]. 

TJs are composed of transmembrane proteins, including different claudins (CLDNs), tight 

junction-associated marvel proteins (TAMPs) such as occludin, junctional adhesion 

molecules (JAMs) as well as cytosolic proteins, which form what has been termed the 

junctional plaque and connect transmembrane components to the cytoskeleton[1] (Figure 1).

OCLN was the first identified integral membrane protein forming TJs. OCLN is a 65-kDa 

protein with 4 transmembrane domains. Posttranscriptional modification leads to several 

splice variants. OCLN contains a small intracellular loop and two extracellular loops 

(ECLs), ECL1 and ECL2, the latter being involved in homophilic interactions between 

OCLNs expressed on adjacent cells. The N- and C-terminal parts are both located within the 

cell. The C-terminal part is longer than the N-terminal part and its role in the modulation of 

TJ assembly, structure and function via posttranslational modifications of OCLN as well as 

for interaction with other TJ components and the cytoskeleton has been well studied[5] 

(Figure 1). OCLN contains a conserved four transmembrane marvel domain and is thus a 

member of the tight junction-associated marvel proteins (TAMPs) that also include 

tricellulin and marvelD3[6]. It has been shown that the three TAMPs have distinct but 

overlapping functions at the TJ. Tricellulin localizes at tricellular junctions formed by the 

corners of three epithelial cells while OCLN localizes at bicellular junctions. MarvelD3 has 

been reported to interact with tricellulin and OCLN, suggesting that it may be present at bi- 

and tricellular junctions[6].

The observation that TJs can form in the absence of OCLN[7] has led to the identification of 

CLDNs as integral TJ components. CLDNs form a family of 25-27 kDa proteins that in 

mammals comprises up to 27 members with high sequence homology. Like OCLN, CLDNs 

can also be subject to posttranslational and postranscriptional regulation. Their structure also 

resembles the one of OCLN, except for a shorter C-terminal part. The ECLs contribute 

through homophilic or heterophilic interactions with CLDNs or other integral membrane 

proteins located on adjacent cells to TJ formation[8]. The C-terminal part links the protein to 

intracellular TJ components and the actin cytoskeleton (Figure 1). Interestingly, CLDN 

expression patterns vary between different organs and cancers. CLDNs have thus been 

suggested as diagnostic markers and targets for cancer therapy[9, 10, 11].
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Beside CLDNs and TAMPs that form TJ strands, additional transmembrane barrier proteins, 

including JAMs and related proteins, have been described (reviewed in[12, 13]. The best 

characterized JAM in the regulation of TJ barrier function is JAM-A, a member of the 

immunoglobulin (Ig) superfamily. The dimerization of two JAM-A molecules expressed on 

the same cell (cis-dimerization) contributes to the formation of a complex between 

transmembrane TJ proteins and cytoplasmic scaffold proteins[12] (Figure 1). Furthermore, 

JAM-A has been shown to act as a landmark for bicellular TJ formation[14] while lipolysis-

stimulated lipoprotein receptor (LSR)/angulin-1, another member of the Ig superfamily of 

proteins, defines cell corners for tricellular TJ formation[15].

The best studied cytoplasmic proteins of TJs are zona occludens (ZO) proteins. ZO-1, -2, 

and -3 can interact with each other as well as with several transmembrane proteins (OCLN, 

CLDNs, JAM-A) and F-actin (Figure 1). Cytoplasmic proteins of TJs have thus been 

suggested to act as scaffolds linking TJs to the actin cytoskeleton and microtubules[12].

Importantly, TJ proteins have been reported to be also localized at sites outside TJs (non-

junctional expression). Indeed, CLDN, OCLN and ZO proteins can be expressed at the 

basolateral membrane, in the cytoplasm and/or the nucleus where they have important 

functions in addition to those observed in TJs. For TJ protein expressed at the basolateral 

membrane these non-canonical functions include endosomal trafficking, signaling and 

additional ion transport functions while TJ proteins in the nucleus have been shown to 

regulate gene transcription (reviewed in[16]). Noteworthy, non-junctional TJ proteins do not 

diffuse in a random manner throughout the membrane. Rather, by interacting with defined 

molecules within the membrane and/or their phosphorylation, non-junctional CLDNs have 

been shown to be stabilized in discrete domains within the basolateral membrane and 

contribute to cell adhesion through interactions with the extracellular matrix[17, 18]. 

Furthermore, CLDNs can regulate the expression/activity of matrix metalloproteases 

(MMPs) that contribute to matrix remodelling[19, 20, 21, 22]. These functions can 

contribute to epithelial-to-mesenchymal transition (EMT), a process by which polarized 

epithelial cells lose their contacts to neighbouring cells and enable them to migrate. EMT 

has been shown to play an important role in organogenesis (EMT type 1), homeostasis, 

inflammation and fibrosis (e.g. wound healing, fibrogenesis; EMT type 2) but can also 

promote tumorigenesis, invasion and metastasis (EMT type 3).

The role of TJ proteins in the physiology and disease biology of the GI system and the liver 

deserves special emphasis. The GI tract epithelium has to maintain a delicate however 

dynamic balance in allowing specific substances (food, ions and solutes) to pass through the 

epithelium while not allowing many others (e. g. pathogens) in order to maintain the delicate 

balance between immune tolerance and activation. These considerations are further enriched 

by the recent findings that a feed-forward loop may exist between the gut microbiota and 

mucosal barrier function in such regulatory schemes[23]. Moreover, studies have now also 

revealed non-canonical roles of specific TJ integral proteins in regulating cellular 

differentiation, proliferation and migration; cellular mechanisms implicated in normal repair/

regeneration as well as the oncogenic growth during tumorigenesis[24, 25]. Accordingly, a 

causal role of TJ proteins in GI disease, including esophagitis, inflammatory bowel disease 

(IBD) and cancers has been demonstrated. Similar to the GI tract, the liver endothelial 
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junctions are important for liver functions and TJ dysregulation has been observed in chronic 

liver disease and hepatocellular carcinoma (HCC). Interestingly, TJ proteins CLDN1 and 

OCLN have been shown to be essential entry factors for the hepatitis C virus (HCV)[26, 27]. 

Here we review our current knowledge of the role of TJ proteins in GI and liver disease and 

discuss their potential as therapeutic targets focussing on GI cancer and viral infection of the 

liver.

TJ proteins and the GI tract

The functional role of TJ proteins in the physiology of the GI system

The GI mucosal barrier plays an important role in the separation of the inside of the body 

from the outside environment. TJs are present on the apical end of the lateral membrane 

surface in epithelial cells and regulate paracellular transport and apicobasal cell polarity. The 

expression of different TJs in the gut varies according to the gut’s functional properties as 

well as localization in villus or crypt (small bowel vs colon). The proteins can be localized 

strictly at the apical cell-cell adhesion or extend to the lateral or basolateral surfaces[28, 29, 

30, 31]. Moreover, expression and cellular distribution of the TJ proteins – such as the 

CLDN family of proteins – is associated with regulation of differentiation of the intestinal 

epithelium[32, 33, 34]: CLDN1 is mainly expressed at the apex of the epithelial cells with a 

reticular pattern in the colon. CLDN2 is expressed in both villus and crypt cells of the small 

intestine but restricted to undifferentiated crypt cells in the colon. CLDN3, -4, -7 and -8 are 

predominantly expressed in the distal parts (colon, sigmoid and rectum) of the GI tract while 

CLDN10 and -12 show an ubiquitous expression pattern throughout the GI tract.

Loss- and gain-of-function studies in mice have revealed specific roles for a number of 

CLDNs in the TJ barrier function, selective ion permeability, as well as their related 

pathological phenotypes. For instance, knockout of CLDN7 in mice has severe intestinal 

defects including mucosal ulcerations, epithelial cell sloughing and inflammation, which 

leads to the death of the mice[35, 36]. Similarly, constitutive overexpression of CLDN1 in 

the mouse gut epithelium (to mimic upregulated CLDN1 expression in colon cancer) 

demonstrated a key role of CLDN1 in normal colonic epithelial homeostasis by regulating 

Notch-signaling[21], while in combination with APC (adenomatous polyposis coli) mutation 

(APCmin mice) CLDN1 overexpression induced colon tumorigenesis[37]. Similarly, 

upregulated CLDN2 expression in the mouse gut epithelium demonstrated a critical and 

complex role of CLDN2 in intestinal homeostasis by regulating epithelial permeability, 

inflammation and proliferation[38, 39]. Moreover, CLDN8 contributed to regulation of 

paracellular Na+ permeability, protecting the leakage of Na+ into the intestinal lumen[40]. 

CLDN16 is responsible for the defective absorption of Ca2+ in the intestine causing primary 

hypercalciuria[41]. Furthermore, the interdependence between CLDN proteins in regulating 

intestinal homeostasis is well demonstrated by in vivo loss-of-function studies for CLDN15. 

CLDN15 knockout mice grow normally despite having a mega-intestine[42]. However, a 

double knockout of CLDN15 with CLDN2 chronically reduces the paracellular flow of Na+ 

from the intestinal submucosa into the lumen resulting in shunting of the nutrient absorption, 

malnourishment and death [43]. Of note, both CLDN2 and -15 are paracellular transporters 
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of Na+[44]. Overall, these findings show a critical functional role of these proteins in 

regulating intestinal homeostasis.

Furthermore, OCLN and JAMs have been shown to contribute to regulate intestinal 

homeostasis. For example, mice lacking JAM-A display an alteration of intestinal 

homeostasis as shown by perturbed regulation of epithelial permeability, inflammation, and 

proliferation, and significant alteration in CLDN protein expression[45]. Next generation 

gene editing technology such as CRISPR and fluorescent gene-reporter tags will enable to 

better understand the details of the function of TJ proteins in regulating GI physiology.

Functional role of TJ proteins during GI neoplastic transformations and growth

During neoplastic transformation in GI cancer, the expression and localization of TJ proteins 

is perturbed by several mechanisms occuring at the transcriptional, translational and post-

transcriptional level (Figure 2). Signaling mechanisms that are known to promote neoplastic 

growth and cancer malignancy, including receptor tyrosine kinase signaling, inflammatory 

signaling cascades and non-coding RNAs, have been shown to perturb TJ protein expression 

and function. Perturbed TJ protein expression or function alters downstream signaling that 

targets cellular pathways relevant for epithelial homeostasis, invasion, chronic inflammation 

and cancer (Zeb-1/E-cadherin, Wnt signaling, MMP9/Notch signaling and Src/PI3K/Akt 

signaling). Furthermore, disruption of TJs during infection or injury can result in increased 

permeability with translocation of bacteria and luminal antigen, which in turn increase IL-6/

Stat3 signaling contributing to carcinogenesis (Figure 2). Delocalization of TJ proteins from 

their normal membrane-tethered expression appears to be common among inflammatory 

diseases and GI cancers. Aberrant cell signaling may contribute to this process. Notably, in 

Ras-overexpressing MDCK cells, CLDN1, OCLN, and ZO-1 were absent from the cell-cell 

contact sites however were present in the cell cytoplasm[46]. Inhibition of MEK1 activity 

recruited all three proteins to the cell membrane leading to a restoration of the TJ barrier 

function in these cells. In line with this, it has been shown that growth factor receptors, 

including EGF, HGF and IGF receptors, as well as proinflammatory and tumor promoting 

cytokines, including TNF-α, IFN-γ, IL-13, and IL-22, contribute to regulate CLDN 

expression[47, 48, 49, 50, 51]. It has also been reported that nonsteroidal anti-inflammatory 

drugs regulate CLDN expression in association with p38 MAPK activation in gastric 

epithelial cancer cells[52]. Furthermore, protein modifications by phosphorylation, 

sumoylation, palmitoylation[53, 54, 55] and endocytic recycling have emerged as potential 

mechanisms of regulating TJ protein function and expression [56, 57, 58].

Transcription factors known to be associated with cellular differentiation and EMT, 

including Snail, Cdx-2, HNF-α, and GATA-4[34, 59, 60], can bind to the promoter regions 

of specific CLDN genes to affect their expression in intestinal epithelial cells. In colon 

cancer cells, caudal homeobox proteins (Cdx1 & Cdx2) and GATA-4 in cooperation with the 

Wnt pathway are involved in CLDN1 promoter activation[34]. CLDN1 transcripts are 

regulated by Smad-4 (a known tumor suppressor) and HDAC inhibitors supporting a 

complex multiprotein regulatory scheme[61, 62]. Furthermore, transcription factor RUNX3, 

which is a gastric tumor suppressor, upregulates CLDN1 expression by binding to the 

promoter region of CLDN1 in gastric epithelial cells[63] and a similar regulatory scheme 
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involving Cdx-proteins, GATA-4 and HNF- has been demonstrated for CLDN2 and -4. 

Additionally, various epigenetic regulatory mechanisms likely also contribute to the 

transcriptional regulation of CLDN expression (Table 2). Indeed, it has been shown that 

DNA hypermethylation associated with the downregulation of CLDN11 in gastric cancer 

cells[64] and CLDN7 in colon cancer cells[34]. Furthermore, loss of repressive histone 

methylations, including H3K27me3 and H4K20me3, is associated with the overexpression 

of CLDN4 in gastric cancer[65, 66].

Finally, microRNAs (miRNAs) post-transcriptionally regulate TJ formation and barrier 

function[67]. Indeed, different miRNAs have been shown to modulate CLDN1 expression 

(Table 2): targeting of CLDN1 mRNA by miR-29 has been shown to regulate intestinal 

permeability[68], while the regulation of CLDN1 mRNA by miR-155 plays an important 

role in promoting colorectal cancer (CRC) cell migration and invasion[69]. Moreover, the 

histone deacetylase has been shown to regulate CLDN1 mRNA stability in CRC cells 

through modulating the binding of the human antigen R and tristetraprolin to the 3′ UTR of 

CLDN1 mRNA[70].

TJ proteins and colorectal disease and cancer

Perturbation of the epithelial barrier function as well as TJ protein function and expression 

are hallmarks of GI disease including CRC. The breakdown of polarized epithelial barrier 

leads to the activation of specific signaling pathways as a response to injury. However, 

chronic activation of these signaling pathways can also promote cancer formation in 

premalignant epithelial tissues when TJs are chronically leaky. Furthermore, TJ proteins, 

especially CLDNs, have now been demonstrated to play an essential role in cell proliferation 

and neoplastic transformation during tumorigenic growth.

Understanding how these complex signaling networks are altered in cancer cells represents a 

major challenge for the success of anti-cancer therapies. Upregulation or aberrant tissue 

expression of CLDNs may contribute to neoplasia by altering TJ structure and function or 

affecting cell signaling pathways. As stated above, the loss of cell polarity, due to TJ 

deregulation can abrogate the normal check-points. Moreover, studies linking EMT with the 

acquisition of stem cell characteristics have demonstrated important role of CLDNs in 

regulating the EMT process and cancer progression[16, 71, 72, 73]. In addition to regulating 

the barrier properties, TJs also serve as hubs for a multitude of signaling proteins including 

known tumor suppressor molecules like APC, PTEN (phosphatase and tensin homolog) and 

polarity proteins like Par-3[74, 75, 76]. Silencing of the expression and/or function of these 

proteins modulates CLDN expression and induces loss of polarity and EMT. Interestingly, 

genetic modulation of CLDN proteins in mice or cancer cells can similarly affect these 

signaling cascades, suggesting a feedback regulation.

Junctional proteins are known to play an important role or assist in cellular transformation 

when mislocalized from their normal membrane localization and could serve as oncogenic 

molecules. In this regard, the Wnt signaling pathway, essential for the differentiation of 

epithelial cells and imbalanced during intestinal epithelial oncogenic transformation is a 

major regulator of TJ protein expression[77]. For example, CLDN1 and CLDN2 proteins are 

known target genes of the Wnt/β-catenin signaling pathway with binding sites in the 
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promoter of these genes[34, 59]. CLDN1 expression not only decreased significantly in 

response to the reduction of intracellular β-catenin by adenovirus-mediated transfer of wild-

type APC into the APC-deficient colon cancer cells, but also two putative Tcf4 binding 

elements in the 5' flanking region of CLDN were confirmed to be responsible for activating 

its transcription[34]. Importantly, in the intestine CLDN1 is weakly expressed at the apical 

border of the lateral membrane of normal enterocytes but is strongly expressed at cell-cell 

boundaries as well as in the nucleus/cytoplasm of CRC cells. Many studies have 

demonstrated that the expression of CLDN1 at the mRNA and protein levels is increased in 

CRC tissue and correlates with tumor depth[78]. Additional studies using gene editing have 

further shown that an intricate interdependence between the Notch and Wnt-signaling 

upregulating CLDN1 expression to augment CRC progression[37] (Table 2). A role of the 

nuclear effectors of the Wnt signaling pathway is to bind directly to the CLDN2 promoter 

region and thereby enhance CLDN2 promoter activity. Also, a crosstalk between the Wnt 

signaling and Cdx related transcriptional activation machinery has been implicated in 

regulating CLDN2 promoter-activation[59]. Recent studies have also demonstrated that 

levels of CLDN1 and CLDN2 are elevated in IBD-associated carcinoma[39] (Table 2). 

Kinugasa et al.[79] demonstrated increased staining for CLDN1 in both high-grade 

dysplasia and ulcerative colitis (UC)-associated CRC when compared with normal or UC 

samples. CLDN1 overexpression modulates Notch-signaling in an MMP9-dependent 

manner to modulate barrier properties and immune homeostasis to promote susceptibility to 

inflammation-induced colitis and cancer[21]. Here it is worth noting that the outcome from a 

series of studies have now provided ample evidence for a role of deregulated CLDN1 

expression in promoting invasive and metastatic abilities of the colon cancer cells. Notably, 

CLDN1 expression was sufficient to induce metastatic abilities in a colon cancer cell line 

that normally does not metastasize well in vivo. In contrast, stable genetic inhibition of 

CLDN1 in a poorly differentiated, highly metastatic and CLDN1 high colon cancer cell 

significantly inhibited its metastatic abilities in a splenic model of CRC metastasis[78]. An 

increase in CLDN2 expression also participates in promoting colorectal carcinogenesis 

potentially dependent on the EGFR/ERK1/2 signaling[80, 81]. Here, overexpression of 

CLDN2 in CLDN2 deficient CRC cells resulted in increased cell proliferation, anchorage-

independent growth and tumor growth[81]. A similar effect of the Wnt-/ -catenin signaling 

upon gene expression of yet another component of the TJ complex, ZO-1, in human colonic 

cancer cell lines with low endogenous β-catenin has been reported suggesting potential 

contribution to the loss of epithelial polarization in neoplastic cells[59] (Table 2). Decreased 

ZO-1 expression was noted in the human digestive tract[82]. Using tissue biopsy samples, 

Mees et al.[83] also found that CRC in human exhibits significantly elevated expression 

levels of CLDN1 and -4 compared with normal mucosa. However, CLDN expression in 

colon cancer tissues is differential and downregulation of CLDN7 and -8 has been reported 

in colorectal adenoma samples compared with the normal intestinal tissues[84]. Collectively, 

these studies suggest that these proteins may serve as potential biomarkers for CRC 

progression and therapy resistance.

CLDNs and esophageal and gastric cancer

Similar to CRC, TJ proteins are also regulated aberrantly in the esophageal and gastric 

cancers and this abnormal expression correlates with specific clinicopathologic parameters. 
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In the esophageal adenocarcinoma (EA), CLDN expression has been tested as potential 

biomarker for the transition of the Barrett’s esophagus to the EA. Indeed, CLDN2, -3, -4 and 

-7 are reported to have increased expression in EA compared to precancerous lesions and 

normal esophageal squamous mucosa[85, 86]. JAMs, which comprise the integral parts of 

TJs in the gastric epithelium, have been shown to promote proliferation, invasion, and inhibit 

apoptosis. JAM-B was upregulated significantly in tumor samples compared with adjacent 

normal tissues and was higher in high grade tumors than in the low grade and intermediate 

grade tumors[87].

An increased expression of CLDN2 is also associated with gastric cancer progression[88]. 

Additionally, expression of CLDN11 and -23 is downregulated in gastric cancer[89] and 

miR-421 was implicated in regulating CLDN11 expression to promote the proliferation, 

invasion and metastasis of gastric cancer cells[90] (Table 2). In contrast, CLDN23 positive 

expression was associated with poor prognostic outcomes of gastric cancer patients and may 

therefore serve as an independent predictor of patient survival. Similarly, upregulated 

expression of CLDN4 in gastric cancer was associated with cancer progression and poor 

prognosis[91]. Furthermore, CLDN4-expressing gastric adenocarcinoma AGS cells were 

found to have increased MMP2 and -9 expression, indicating that CLDN-mediated increased 

invasion may be mediated through the activation of MMPs[91]. Overall, these results 

suggest that CLDN4 overexpression may promote gastric cancer metastasis through the 

increased invasion of gastric cancer cells. Yet another CLDN family protein, CLDN18 is 

significantly downregulated in gastric cancer tissues and cell lines, which was associated 

with tumor size, location invasion, histologic type and tumor-node-metastasis stage. 

miR-1303 was demonstrated to have putative binding sites in CLDN18 mRNA 3'-UTR and 

visibly lower the expression of CLDN18[92] (Table 2). On the other hand, CLDN18.2 

(isoform 2 of claudin-18) was retained on malignant transformation and was expressed in a 

significant proportion of primary gastric cancers and its metastases[9]. The expression of 

CLDN7 has also been reported to have the potential of serving as an independent indicator 

of the poor prognosis in gastric cancer[93].

Taken together, TJ proteins are tissue-specific regulators of the epithelial and endothelial 

barrier function and EMT, which cumulatively perturb the epithelial and immune 

homeostasis leading to carcinogenesis in CRC as well as gastric and esophageal cancer.

TJ proteins and the liver

The liver plays an essential role in homeostasis by its metabolic and storage functions. It is 

composed of different cell types, including two types of epithelial cells: hepatocytes and 

cholangiocytes. Liver epithelial junctions are important for liver function. Hepatocytes are 

liver parenchymal cells that exhibit a complex honeycomb morphology displaying at least 

two basolateral membranes (facing the sinusoidal blood) and two intercellular apical 

membranes (forming the bile canaliculi) separated by TJs. This peculiar architecture creates 

what has been termed the blood-biliary barrier[94] and enables hepatocytes to perform 

distinct secretory functions at the same time[95]. Hepatocytes produce and secrete bile into 

the bile canaliculi from where it is transported via intrahepatic and extrahepatic bile ducts, 

formed by cholangiocytes, to the gallbladder. Cholangiocytes contribute to modify the bile 
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during its transport to the latter. Hepatocyte polarity and bile duct TJs play a major role in 

the liver[96, 97] and thus defects in hepatocyte and/or cholangiocyte TJ integrity can result 

in pathophysiological consequences.

Several lines of evidence indicate that disruption or loss-of-function of TJs contributes to the 

pathogenesis of cholestatic diseases including primary biliary cholangitis and primary 

sclerosing cholangitis[98, 99]. Interestingly, mutations in CLDN1 are associated with 

neonatal ichthyosis and sclerosing cholangitis (NISCH) syndrome where deficient CLDN1 

expression may contribute to paracellular bile leakage through deficient TJs[100]. Mutations 

in ZO-2 have been described in familiar hypercholanemia[101]. The loss-of-function of TJ 

proteins is not lethal and the clinical manifestation is variable including very mild 

symptoms[102]. A comprehensive description of TJ protein alterations in biliary diseases is 

reviewed in reference[97].

Recent studies demonstrate that TJ protein expression is altered in HCC (primary liver 

cancer) and cholangiocarcinoma (biliary tract cancer). For example, CLDN1 has been shown 

to be up-regulated in advanced liver disease and HCC[103] and differential CLDN4 

expression can help to distinguish these two forms of cancer at a molecular level[104]. Of 

note, TJ alteration in epithelia outside the liver can also contribute to liver disease. Indeed, 

dysfunction of the intestinal epithelial barrier - due to or unrelated to (aetiological factor(s) 

of) the underlying liver disease - has been associated with the pathogenesis of chronic liver 

disease and the development of complications in cirrhosis by favouring translocation of 

bacteria and bacterial products from the intestinal lumen into the systemic circulation[105].

CLDN1 and OCLN mediate hepatocyte entry of HCV

Ten years ago, expression cloning experiments uncovered CLDN1 to be required for HCV 

infection[26]. The role of OCLN in HCV infection was uncovered two years later using 

different approaches[27, 106, 107]. Subsequently several studies have characterized the 

underlying molecular mechanisms and highlighted the essential function played by these 

proteins in HCV entry and infection[4, 108, 109]. While over the past 20 years many host 

factors have been reported to contribute to the early steps of HCV infection[108, 110], 

CLDN1 and OCLN are regarded as two of the four major HCV host entry factors together 

with CD81[111] and scavenger receptor BI (SR-BI)[112] (Figure 3).

First binding studies indicated that CLDN1 was unable to bind the HCV envelope 

glycoprotein E2[26], suggesting that CLDN1 does not play the role of a primary receptor but 

rather of a co-receptor, which contributes to (a) step(s) subsequent to viral binding[26]. This 

was further confirmed in kinetic assays using anti-CLDN1 antibodies[113]. Several years 

later it was shown that in contrast to soluble E2, HCV E1E2 complexes can interact with the 

CLDN1 ECL1 and that this interaction is involved in viral fusion[114]. Based on the 

Coxsackie B virus cell entry model, it was suggested that HCV may first interact with host 

factors on the basolateral surface of hepatocytes and then move to the TJ co-entry factor(s), 

e.g. through CD81-lateral membrane movements[26, 115]. Elegant fluorescence resonance 

energy transfer studies showed that CLDN1 interacts with CD81 to promote viral 

internalization[116, 117, 118]. Interestingly, no cellular function for CD81-CLDN1 

interaction has been reported so far and disruption of these complexes by defined anti-
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CLDN1 antibodies prevents HCV infection without affecting TJ integrity or any detectable 

adverse effect[113, 119, 120]. Indeed, several lines of evidence support a model in which the 

non-junctional form of CLDN1 rather than CLDN1 localized within TJ mediates HCV 

entry[117, 121]. The major pool of CLDN1 is expressed at TJs of hepatocytes and polarized 

hepatoma cells but a minor fraction is also located at the basal membranes of these 

cells[117, 122]. Of note, CD81-CLDN1 co-receptor association could only be detected at the 

basal membranes but not in TJ-associated pools of CLDN1 and CD81[117]. Furthermore, 

the ECL1 appears to be the critical part of the protein for HCV entry while the intracellular 

C-terminal part of CLDN1 that plays an important role for its interaction with intracellular 

TJ components is not required for this process[26, 121]. Interestingly, CLDN6 and CLDN9 - 

but not other members of the CLDN family of proteins - have been shown to be able to 

promote HCV entry into CLDN-deficient 293T-derived cell lines[123, 124]. This is most 

likely due to their ability to form co-receptor associations with CD81 like CLDN1 [118]. It 

is of interest to note that in experimental model systems using a liver tumor cell lines some 

HCV genotypes have been reported to be able to use either CLDN1 or CLDN6[125] through 

mutation in the HCV E1 envelope protein[126]. Whether CLDN6 or 9 can replace CLDN1 

in the liver of HCV-infected patients remains questionable since CLDN6 and CLDN9 

expression is very low or absent in human liver tissues[124, 125, 127]. Furthermore, 

treatment of HCV infection in human liver chimeric mice with a monoclonal CLDN1-

specific antibody did not reveal any detectable escape (for a detailed review of the role of 

CLDN6 and CLDN9 in HCV entry please see[128]).

Like CLDN1, OCLN does not appear to play the role of a primary HCV attachment receptor 

but rather is required for late postbinding event(s) during the HCV entry process[107, 129] 

(Figure 3). Nevertheless, HCV might interact with OCLN during viral entry and/or in 

infected cells. Indeed, imaging studies evidenced a co-localization between OCLN and HCV 

E2 in the endoplasmic reticulum of hepatoma cells[130]. Furthermore, it was shown that an 

anti-E2 antibody could immunoprecipitate OCLN while GST-OCLN could pull down 

E2[129, 130]. The OCLN ECL2 appears to be important for this interaction with HCV E2 as 

well as for HCV entry[129]. However, the OCLN ECL2 was unable to pull down E2, 

suggesting that either this interaction might not be direct or not be visualized in the utilized 

experimental design[129]. Experiments using OCLN engineered to be recognized by anti-

FLAG antibodies are in favour of a HCV-OCLN interaction as different clones displaying 

the FLAG epitope at different locations within ECL1 or ECL2 exhibited HCV isolate-

dependent host factor activity[131]. Using kinetic assays in polarized cells, this study also 

showed that OCLN plays a role subsequent to SR-BI, CD81 and CLDN1[131]. These results 

were recently confirmed in kinetic assays using anti-OCLN mAbs directed against either the 

ECL1 or ECL2 of OCLN[132]. How and where HCV interacts with OCLN as well as what 

pool(s) of OCLN is(are) involved in this process remain to be further characterized. 

Although in liver sections OCLN has been located at apical surfaces of hepatocytes[117], a 

minor pool of this protein is expressed on the basolateral surface of hepatocytes. Indeed, 

OCLN is known to traffic through the basolateral membrane towards TJs[133] and its 

subcellular localization appears to be dependent on its phosphorylation status: 

phosphorylated forms of OCLN mainly are found in TJs of epithelial cells, while less 

phosphorylated forms are localized at the basolateral membrane and in the cytosol[134]. 
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This is in line with a recent report showing that tumor-associated calcium signal transducer 2 

(TACSTD2) regulates HCV entry by leading to the phosphorylation of CLDN1 and OCLN 

and regulates their subcellular localization[135]. The importance of the subcellular 

localization of OCLN for HCV entry is also underscored by the fact that only OCLN and its 

splice variant OCLN-ex7ext that both localize to the plasma membrane are able to promote 

HCV entry in contrast to other OCLN splice variants that exhibit an intracellular 

localization[136]. Of note, OCLN together with CD81 define the HCV species specificity as 

HCV non-permissive mouse cells acquire HCV-permissivity subsequent to human CD81 and 

OCLN expression both in vitro and in vivo[27, 137, 138, 139]. The species-specific 

determinants appear to be located within the second extracellular loop of OCLN[27, 139].

Beside cell-free HCV entry, CLDN1 and OCLN have also been shown to be important for 

HCV cell-to-cell transmission (Figure 3), a major mode of viral dissemination that enables 

the virus to avoid the host's immune surveillance and to establish chronic infection[140, 141, 

142, 143]. The exact localization at the plasma membrane of this process as well as the 

form(s) of CLDN1 that contribute(s) to HCV cell-to-cell transmission remain unknown. The 

importance of CLDN1 and OCLN for the pathogenesis of HCV infection in vivo has been 

confirmed by observations of liver tissues from HCV-infected liver transplant patients. HCV 

recurrence was associated with an increase in CLDN1 and OCLN expression levels in 

hepatocytes over time after transplantation[144]. This is in line with findings indicating 

increased CLDN1 and OCLN expression levels in HCV-infected livers[122, 145, 146]. In 

contrast, in cell-based studies HCV infection was shown to downregulate CLDN1 and 

OCLN expression to prevent superinfection[106]. Differences in TJ protein expression upon 

HCV infection may thus exist depending on the analyzed samples.

CLDNs and HCC

The expression of several TJ proteins has been reported to be perturbed in liver tissue from 

HCC patients. Many studies have shown different expression levels of the individual CLDNs 

and OCLN and CLDN1 are being investigated as biomarkers for liver disease 

progression[103, 122, 147, 148, 149, 150, 151]. From these studies, it appears that 

expression of CLDNs is associated with more severe disease and/or bad prognosis in HCC 

patients (Table 2): epigenetic silencing of CLDN14 was significantly associated with 

advanced tumor state and tumor aggressiveness[152]; CLDN11 downregulation by miR-99 

has been associated with metastasis of HCC[153]; and CLDN3 downregulation has been 

suggested to promote EMT via Wnt- -catenin signaling[154]. However, more data are 

needed to decipher the role of these TJ proteins in the pathogenesis of HCC. Several studies 

have shown an increase in CLDN1 expression on basolateral and apical hepatocyte 

membranes in cirrhotic livers and HCC compared to normal livers[103, 122, 149]. 

Interestingly, this increase was observed in tissues from both HCV-positive and -negative 

patients, although it appeared to be stronger in tissues from HCV-infected patients, as well 

as in HCC that developed on either cirrhotic or non-cirrhotic livers[103] and in paediatric 

HCC[149]. In advanced HCC down-regulation of CLDN1 has been observed[147, 151] 

which may correspond to the de-differentiation of cancer cells. Of note, a greater 

cytoplasmic localization of CLDN1 was observed in some HCC in line with reports 

indicating that CLDN localization has a causal role in cellular transformation[78, 155].

Zeisel et al. Page 11

Gut. Author manuscript; available in PMC 2020 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CLDN1 likely contributes to proliferation, motility and invasion by modulating cellular 

signaling. Overexpression of CLDN1 increases the migration and invasiveness of human 

hepatoma cells as well as normal liver cells through expression of MMP2 via the c-Abl-PKC 

pathway[20] (Figure 4). Furthermore, increased CLDN1 expression has been associated with 

mitochondrial dysfunction and invasiveness of hepatoma cells, and reactive oxygen species-

mediated activation of heat shock factor 1 (HSF1) was demonstrated to increase CLDN1 

expression in these cells[156, 157] (Table 2). These data are in line with reports indicating 

that CLDN1 enhances cell growth, migration and/or invasiveness of other cancer cell types 

such as oral squamous cell carcinoma cells, CRC cells, ovarian cancer-initiating cells or 

melanoma cells[69, 158, 159, 160, 161]. Taken together, these data suggest that by 

promoting cell migration and increasing the invasive behaviour of cancer cells, CLDN1 can 

contribute to cancer spread. Of note, CLDN1 has been shown to promote EMT in normal 

liver cells and HCC cells that thereby acquire an invasive phenotype[162]. This process is 

mediated by the c-Abl-Ras-Raf-1-ERK pathway and involves the transcription factors Slug 

and Zeb1[162] (Figure 4). Confirming the functional role of these signaling pathways, an 

CLDN1-specific antibody inhibits the HCV-induced increase in ERK1/2 phosphorylation in 

human liver tissue [120]. Further studies are needed to understand the detailed role of 

CLDNs in pathogenesis of liver disease and cancer.

Targeting TJ proteins for therapeutic approaches in the gut and the liver

CLDNs as targets for CRC

While the field related to the role and regulation of TJ proteins in GI pathologies and 

oncogenic growth has taken a significant leap forward, therapeutic application of this 

knowledge is now emerging. Significant progress has been made at several fronts including 

the development of prognostic biomarkers, imaging and targeting. In this regard, CLDN 

proteins are currently investigated as potential biomarkers for disease progression and 

therapy resistance. A recent study has shown that serum levels of CLDN1 and CLDN7 may 

be a useful tool in the differential diagnosis of CRC[163]. Furthermore, a progressive 

increase in CLDN1 expression in colon cancer and the recent findings that infra-red imaging 

using CLDN1-targeted conjugated peptide can enhance the ability of conventional 

colonoscopy for detecting human colonic adenomas strongly supports the potential impact 

of CLDN1 as a biomarker[164]. CRC has been found to arise from missed polypoid and flat 

precancerous lesions which are more difficult to visualize by colonoscopy and the new 

CLDN1 targeted fluorescent peptides may be used to improve screening of high-risk patients 

with multiple polyps, inflammatory bowel disease, Lynch syndrome, or a family history of 

CRC.

Aiming to develop targeted therapies, several antibodies against the extracellular domain of 

CLDNs have been developed. Their therapeutic effects for cancer and metastasis are 

summarized in Table 3. Ideal monoclonal antibodies (IMAB) specific to the proteins 

expressed only on the tumor and hence avoiding potential off-target effects are actively 

being developed. Currently, monoclonal antibodies (mAbs) have been generated against 

CLDN1,-2, -3, -4, -6, and -18.2. The antibody against CLDN18.2 (claudiximab) is in clinical 

development for gastric cancer[9]. Interestingly, claudiximab significantly extends median 
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survival when added to standard chemotherapy (13.2 vs 8.4 months) in patients with 

advanced gastric cancer[9]. Importantly, this target is not present in any healthy tissues 

except the lining of the stomach, thereby minimizing treatment side effects. In addition, 

recent studies have investigated the anti-tumor effect of anti-CLDN1 and anti-CLDN2 mAbs 

using cancer cell models[11, 165] (Table 3). Importantly, anti-CLDN mAbs have been 

shown to be safe and no relevant off-targets have been reported. Their marked therapeutic 

effects combined with excellent safety profiles are highly encouraging for their development 

in clinical applications.

CLDN1 and OCLN - targets for cure of HCV infection

CLDN1 was the first TJ protein to be explored as a therapeutic target for HCV infection 

using anti-CLDN1 antibodies directed against its extracellular domain(s) (Table 3). Such 

antibodies could be used to prevent liver graft infection in HCV-positive transplant recipients 

and as a promising alternative for patients who fail current anti-HCV therapies[166]. The 

first antibodies directed against human CLDN1 and blocking HCV infection were generated 

by genetic immunization in rats[113, 119]. They recognize a conformational-dependent 

epitope within the ECL1 and prevent CD81-CLDN1 co-receptor association at the 

basolateral membrane[113, 119]. They are characterized by pan-genotypic inhibition of the 

infection by all major HCV genotypes by blocking both cell-free virus entry and viral cell-

to-cell transmission[19, 143]. Of note, studies in human liver-chimeric mice demonstrated 

that the lead antibody OM-7D3-B3 was not only able to prevent acute de novo infection with 

HCV (i.e. the anticipated effect of an entry inhibitor) but also to cure already established 

chronic HCV infection without detectable side or off-target effects[120]. These results 

highlighted the importance of viral dissemination for maintenance of chronic HCV 

infection. It is of interest to note that this antibody interfered with MAPK signalling 

suggesting an important role in this pathway potentially also contributing to its antiviral 

effect[120]. The therapeutic potential of this antibody is further underscored by the fact that 

it acts in synergy with HCV direct-acting antivirals (DAAs), the current state-of-the-art 

antiviral therapy, to clear viral infection and is also active on viral variants escaping 

DAAs[143, 167]. This antibody has recently been successfully humanized (IgG4) for further 

clinical development[168]. Subsequently, other CLDN1-specific antibodies inhibiting HCV 

infection have been reported: clones 3A2 and 7A5, generated in mice and recognizing the 

human CLDN1 ECL2 can prevent HCV infection of human liver-chimeric mice[169] while 

several antigen-binding fragments (Fab) and single chain antibody fragments selected using 

phage display were demonstrated to inhibit HCV infection in vitro when converted into 

human IgG1 or IgG4[170, 171]. Administration of CLDN1-specific antibodies has been 

shown to be very safe in various animal and human-cell based models without any adverse 

effects on the liver or other organs such as the gut or skin[120, 168, 172]. This is most likely 

to the mechanism of action of CLDN1-specific antibodies targeting the non-junctional 

expressed CLDN1 on the hepatocyte basolateral membrane without affecting TJ barrier 

function as shown in several TJ model systems[120, 168, 172].

Antibodies directed against OCLN have been more difficult to generate than anti-CLDN 

mAbs but very recently five mAbs with anti-HCV activity were described by two different 

groups[132, 173]. The mouse mAb (67-2) - raised against a linear peptide within OCLN 
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ECL2 - was shown to recognize an epitope present in the ECL2 of both human and mouse 

OCLN[173]. Interestingly, this mAb hardly inhibited the infection of human hepatoma 

Huh7.5.1 cell monolayers with HCV when applied to the apical membrane of cells while it 

was able to efficiently prevent HCV infection when applied to the basolateral membrane of 

cells using a double-chamber culture system or a 3D culture model[173]. Of note, in line 

with the hypothesis that mAb 67-2 interacts with OCLN monomers expressed on the 

basolateral membrane, this mAb had no effect on TJ function in Eph4 cells[173]. Four rat 

mAbs - generated by genetic immunization and directed against either the ECL1 or ECL2 of 

OCLN – inhibited the entry of HCV into human hepatoma cells without affecting TJ barrier 

function of polarized cells. Since the mAb directed against ECL2 appeared to be more 

potent in inhibiting HCV infection than mAbs directed against ECL1 and in line with 

previous studies using OCLN mutants/chimeras having demonstrated the essential function 

of ECL2 for HCV infection[27, 129, 174], the authors hypothesized that the mAb directed 

against ECL2 may block an essential function of OCLN in the HCV entry process while 

mAbs directed against ECL1 may block HCV infection through steric hindrance. Two of 

those mAbs targeting either ECL1 or ECL2 (1-3 and 37-5) were shown to inhibit HCV 

infection in human liver chimeric mice without apparent side effects highlighting the 

possibility to target OCLN in vivo[132].

The positioning of CLDN1- and OCLN-specific antibodies in the widening arsenal of anti-

HCV therapies is most likely for patients with multi-resistance to DAAs or in organ 

transplantation including HCV-positive donors where prevention of de novo infection may 

be preferable to cure of an established HCV infection. They may offer also perspectives to 

further shorten therapy regimens when combined with DAAs[175, 176].

Conclusions and future perspectives

Research in the last two decades has demonstrated an important role of TJ proteins in the 

physiology and disease biology in GI and liver disease. TJ proteins exert their functional role 

as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ 

proteins are expressed non-junctionally where they play important roles in signaling, 

trafficking and regulation of gene expression outside the TJs. A hallmark of TJ proteins in 

disease biology is their role in EMT, which is relevant for organogenesis and differentiation 

(EMT type 1), inflammation and fibrosis (EMT type 2) and cancer metastasis/invasion 

(EMT type 3). A causative role of TJ proteins has been established in the pathogenesis of 

CRC and gastric cancer. Among the best characterized role of TJ proteins in liver disease 

biology is their function as cell entry receptors for HCV – one of the most common causes 

of HCC. At the same time TJ proteins are emerging as targets for novel therapeutic 

approaches for GI and liver disease: these include treatment of CRC and gastric cancer as 

well as antiviral therapy for chronic HCV infection complementing DAAs. Further studies 

are needed to study their role in chronic inflammation, fibrosis and their role as drivers for 

carcinogenesis. The understanding of these mechanisms offers new perspectives for novel 

therapeutic approaches for key unmet medical needs in the gut including CRC and gastric 

cancer as well as chronic liver disease and HCC.
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Abbreviations:

APC adenomatous polyposis coli

CLDN claudin

CRC colorectal cancer

DAA direct-acting antiviral

EA esophageal carcinoma

ECL extracellular loop

EGFR epidermal growth factor receptor

EMT epithelial-to-mesenchymal transition

Fab antigen-binding fragment

GI gastrointestinal

HCC hepatocellular carcinoma

HCV hepatitis C virus

IBD inflammatory bowel disease

IgG immunoglobulin G

IMAB ideal monoclonal antibody

JAM junctional adhesion molecule

mAb monoclonal antibody

miR/miRNA microRNA

MMP matrix metalloprotease

TJ tight junction

OCLN occludin

SR-BI scavenger receptor BI
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TAMP tight junction-associated marvel proteins

UC ulcerative colitis

ZO zona occludens
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Figure 1. Schematic representation of the expression and function of the major tight junction 
proteins addressed in this review.
This simplified cartoon only displays the localization and interactions of the major tight 

junction (TJ) protein families that are addressed in this review. TJs are composed of 

transmembrane proteins, including different claudins (CLDNs), tight junction-associated 

marvel proteins (TAMPs, e.g. OCLN), junctional adhesion molecules (JAMs e.g. JAM-A) as 

well as cytosolic proteins (e.g. ZO-1, -2 and -3), which connect transmembrane components 

to the cytoskeleton (actin filaments, microtubules). For a more detailed description please 

refer to reference[1].
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Figure 2. Schematic representation of differential regulation of tight junction proteins and 
associated signaling in gastrointestinal cancer.
Signaling and molecular mechanisms that are known to promote neoplastic growth and 

cancer malignancy include the receptor tyrosine kinase signaling, inflammatory signaling 

cascades and non-coding RNAs that perturb tight junction (TJs) expression and function. TJ 

perturbation alters downstream signaling that target important cellular events in epithelial 

homeostasis, invasion, chronic inflammation and cancer (Zeb-1/E-cadherin, Wnt signaling, 

MMP9/Notch signaling and Src/PI3K/Akt signaling). Furthermore, disruption of TJs can 

result in increased permeability to promote translocation of bacteria and luminal antigens, 

which then activate IL-6/Stat3 signaling to induce carcinogenic processes.
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Figure 3. Functional roles of CLDN1 as hepatitis C virus entry factor.
CLDN1 is one of the four main hepatitis C virus (HCV) host factors (i.e. SR-BI, CD81, 

CLDN1 and OCLN) essential for the early steps of HCV infection. Several other host factors 

(e.g. highly sulphated heparan sulfate (HS), low-density lipoprotein receptor (LDLR), 

epidermal growth factor receptor (EGFR), integrin beta 1 (ITGB1), transferrin receptor 1 

(TfR1) and Niemann Pick C1 like 1 (NPC1L1)) contribute to viral binding and entry. EGFR-

mediated signaling leads to the formation of a CD81-CLDN1 co-receptor complex that 

ultimately leads to viral internalization[116, 118]. HCV infection induces CLDN1-depend 

signaling via the ERK1/2 pathway[120]. HCV infection increases CLDN1 expression[122, 

145]. TJ proteins involved in the HCV entry process are depicted in black, non-TJ host entry 

factors are depicted in white.
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Figure 4. Functional role of CLDN1 in signal transduction and EMT in liver disease.
In transformed liver cells, CLDN1 over-expression activates the c-Abl-PKC pathway to 

increase cellular migration and invasion via MMP2 activation[20] as well as the c-Abl-Ras-

Raf-ERK pathway to promote EMT via the transcription factors Slug and Zeb1[162].
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Table 1.
Role of TJ proteins in disease.

Examples of TJ protein-disease associations and the underlying mechanisms are shown. CLDN: claudin, JAM: 

junctional adhesion molecule, TJ: tight junction, ZO: zona occludens

TJ protein Disease TJ protein
expression

Described mechanism References

JAM-A Cancer PI3K/MAPK signaling, Notch 
signaling, TGF-β1 signaling

[177, 178, 179, 180, 181, 182, 183, 184, 
185]

Brain ↑

Breast ↑↓

Gastric ↑

Lung ↑

Endometrial ↓

Pancreatic ↓

Hereditary diseases [186]

Cystic fibrosis ↓

Viral infection [187]

Retroviral infection 
(hydrocephalus, 
encephalitis)

↑

JAM-C Cancer LRP5/AKT/β-catenin/CCND1 
signaling, PI3K/MAPK signaling

[188, 189, 190, 191, 192, 193, 194, 195]

Fibrosarcoma ↑

Lung ↑

Melanoma ↑

Ovarian ↑

Coxsackie virus 
and adenovirus 
receptor (CAR)

Cancer MyD88/IRAK-4/NF- B, ERK1/2 
signaling, estrogen signaling

[196, 197, 198, 199, 200, 201, 202, 203, 
204]

Breast ↑

Endometrial ↑

Lung ↑

Oral ↑

Ovarian ↑

Thyroid ↑

CLDN1 Cancer Reactive oxygen species-mediated 
activation of heat shock factor 1 
(HSF1)

[34, 78, 156, 157, 205, 206, 207, 208, 
209, 210, 211, 212, 213, 214, 215, 216, 
217, 218, 219, 220, 221]Breast ↑↓

Cervical ↑

Colorectal ↑↓

Gastric ↑

Liver ↑

Oral ↑

Ovarian ↑

Prostate -

Thyroid neoplasma ↑

Hereditary disease

Cystic fibrosis - [186]
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TJ protein Disease TJ protein
expression

Described mechanism References

CLDN2 Cancer EGFR/MEK/ERK signaling PI3K 
signaling

[212, 221, 222, 223, 224, 225, 226, 227, 
228, 229]

Breast ↑↓

Colorectal ↑

Lung ↑

Skin ↑

Prostate ↓

Inflammation

Inflammatory bowel 
disease: Morbus 
Crohn

↑ [230, 231]

Collagenous colitis ↑

CLDN3 Cancer EGFR/MEK/ERK signaling PI3K/Akt 
signaling Wnt signaling Stat3

[19, 217, 232, 233, 234, 235, 236, 237, 
238]

Breast ↑

Colorectal ↑

Endometrial ↑↓

Gastric ↑

Kidney ↑

Lung ↑

Ovarian ↑

Prostate

Uterine ↑

Inflammation

Inflammatory bowel 
disease: Morbus 
Crohn

↓ [230, 239]

Bacterial toxins

Clostridium 
perfringens 
enterotoxin

↓ [240]

CLDN4 Cancer ERK signaling AMPK signaling [19, 91, 217, 232, 235, 241, 242, 243]

Breast ↑

Endometrial ↑

Gastric ↑↓

Kidney ↑

Lung ↑

Nasopharyngeal ↑

Ovarian ↑

Pancreatic ↑

Uterine ↑

Inflammation

Collagenous colitis ↓ [231]

Hereditary diseases [186]

Cystic fibrosis ↓

Bacterial toxins
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TJ protein Disease TJ protein
expression

Described mechanism References

Clostridium 
perfringens 
enterotoxin

↓ [240]

CLDN7 Cancer ERK/MAPK signaling Wnt signaling 
Integrin/FAK signaling

[211, 217, 218, 232, 241, 243, 244]

Breast ↓

Cervical ↑

Colon ↑

Gastric ↑

Liver ↑

Lung ↑

Nasopharyngeal ↑

Ovarian ↑

Pancreatic ↑

Prostate ↑

Thyroid neoplasma ↑

Inflammation

Crohn's disease - [239]

Ulcerative colitis ↓

Celiac disease -

CLDN11 Cancer TGF- , ERK, p38 signaling [88]

Gastric ↑

CLDN16 Cancer [245, 246, 247]

Breast ↑

Ovarian ↑

Renal ↑

Hereditary diseases [248]

Familial 
hypomagnesemia

Mutation

CLDN20 Cancer [249]

Breast ↑

OCLN Cancer PI3K signaling
MAPK signaling

[218, 221]

Thyroid neoplasma Diverse 
expression

Infjammaflon ↓ [231, 239, 250]

Crohn's disease ↓

Ulcerative collitis ↓

Celiac Disease

Hereditary diseases [186]

Cystic fibrosis ↑

Vision loss

Diabetic eye disease: 
diabetic retinopathy

↑ [251]

ZO-1 Cancer PI3K signaling
MAPK signaling

[207, 221]

Breast ↓
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TJ protein Disease TJ protein
expression

Described mechanism References

Inflammation

Inflammatory bowel 
disease: Morbus 
Crohn

↓ [230]

Vision loss

Diabetic eye disease: 
diabetic retinopathy

↑ [251]
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Table 2.
Perturbation of tight junction protein expression in gastrointestinal and liver disease.

Examples of perturbed CLDN and ZO protein expression in gastrointestinal and liver disease as well as the 

underlying mechanism are shown. CLDN: claudin, miR: micro- RNA, TJ: tight junction, ZO: zona occludens

Disease/Cell type TJ protein expression Described mechanism References

Gastric cancer CLDN4↑ Loss of repressive histone methylation (H3K27m3, H4K20m3) [65, 66]

CLDN11↓ DNA hypermethylation miR-421 [64] [90]

CLDN18↓ miR-1303 [92]

Intestinal bowel disease-
associated carcinoma

CLDN1↑
CLDN2↑

β-catenin activation [39]

Colorectal cancer CLDN1↑ miR-155 Histone deacetylase-mediated binding of human antigen 
R and tristetraprolin to CLDN1 mRNA Increased Notch and Wnt 
signaling

[37, 59, 69, 70]

CLDN2↑ Increased Notch and Wnt signaling [37, 59]

CLDN7↓ DNA hypermethylation [34]

ZO-1 ↑ β-catenin activation [59]

Hepatocellular carcinoma CLDN1↑ Reactive oxygen species-mediated activation of heat shock factor 1 
(HSF1)

[156, 157]

CLDN11↓ miR-99 [153]
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Table 3.
Preclinical and clinical development of antibodies directed against tight junction proteins.

The respective target, names of monoclonal antibodies (that have at least reached preclinical stage of 

development), clinical indication, and stage of development are shown. CLDN: claudin, HCV: hepatitis C 

virus, OCLN: occludin

Targets Monoclonal
antibodies

Clinical indication Stage of
development

References

CLDN1 OM-7D3-B3 and HCV infection Preclinical [120]

H3L3 [168]

3A2 HCV infection Preclinical [169]

6F6 Colorectal cancer Preclinical [11]

CLDN2 xi-1A2 Cancer Preclinical [165]

CLDN3 and CLDN4 KM3907 Cancer Preclinical [252]

5A5 Cancer Preclinical [253]

CLDN4 KM3900 Pancreatic and ovarian cancers Preclinical [254]

CLDN6 IMAB027 Ovarian cancer Phase I/II NCT02054351

CLDN18.2 IMAB362 (claudiximab) Gastroesophageal cancer Phase II NCT01630083

OCLN 1-3 and 37-5 HCV infection Preclinical [132]
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