Skip to main content
. 2019 Mar 26;17:454–462. doi: 10.1016/j.csbj.2019.03.013

Table 1.

Methods for the prediction of MoRFs and related binding regions including SLiMs (short linear motifs that bind proteins) and disordered protein-binding regions (DPBRs). The methods sorted by the publication year in the ascending order within each group. The ‘Type’ column indicates whether a given method is available as the online webserver (WS) and/or standalone source code (SC); NA means that neither webserver nor source code is available. The ‘URL’ column gives the page where the method can be found as of January 7, 2019. The ‘Citations Total’ column gives the number of citations collected from Google Scholar on March 20, 2019. To avoid duplicate counting of citations for methods that are published in multiple articles, we use the one with the highest number of citations. The ‘Citations Annual’ column gives an average number of citations per year since a given method was published. The ‘Predictive model’ column categorizes the models into two groups: those generated with machine learning (ML) algorithms and those that rely on a scoring function (SF) generated either by an empirical formula or using an alignment score. The machine learning models include neural network (NN), support vector machine (SVM), naïve Bayes (NB), and logistic regression (LR).

Target of predictions Method name Ref. Year published Predictive model Meta predictor Availability
Citations
Type URL Total Annual
MoRF regions α-MoRFpred [40,96] 2005 ML (NN) No NA NA 454 32
retro-MoRFs [98] 2010 SF (alignment) No NA NA 27 3
MoRFpred [86,87] 2012 ML (SVM) No WS http://biomine.cs.vcu.edu/servers/MoRFpred/ 194 28
MFSPSSMpred [102] 2013 ML (SVM) No WS + SC The website does not work as of January 2019 32 5
MoRFCHiBi [88] 2015 ML (SVM) No WS + SC https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 37 9
DISOPRED3 [90] 2015 ML (SVM) No WS + SC http://bioinf.cs.ucl.ac.uk/disopred 218 54
fMoRFpred [9] 2016 ML (SVM) No WS http://biomine.cs.vcu.edu/servers/fMoRFpred/ 36 12
MoRFCHiBiLight [89] 2016 ML (NB) No WS + SC https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 23 8
MoRFCHiBiWeb [89] 2016 ML (NB) Yes WS + SC https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 23 8
Predict-MoRFs [103] 2016 ML (SVM) No SC https://github.com/roneshsharma/Predict-MoRFs 6 2
Fang et al. [101] 2018 ML (SVM) No NA NA 0 0
MoRFPred-plus [104] 2018 ML (SVM) No SC https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus 8 8
OPAL [91] 2018 ML (SVM) Yes WS + SC http://www.alok-ai-lab.com/tools/opal/ 9 9
OPAL+ [100] 2018 ML (SVM) Yes WS + SC http://www.alok-ai-lab.com/tools/opal_plus/ 0 0
DPBRs DisoRDPbind [94,95] 2015 ML (LR) No WS http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 47 12
ANCHOR [39,41,93] 2009 SF No WS + SC http://anchor.enzim.hu 395 39
SLiMs PepBindPred [105] 2013 ML (NN) No WS http://bioware.ucd.ie/~compass/biowareweb/Server_pages/pepbindpred.php 17 3
SLiMPred [106] 2012 ML (NN) No WS http://bioware.ucd.ie/~compass/biowareweb/Server_pages/slimpred.php 55 8
Semi-disorder SPINE-D [107] 2013 ML (NN) No WS + SC http://sparks-lab.org/SPINE-D/ 32 5
SPOT-Disorder [108] 2017 ML (NN) No WS + SC http://sparks-lab.org/server/SPOT-disorder/ 47 23