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Innate immunity comprises several inflammation-related modulatory pathways which re-
ceive signals from an array of membrane-bound and cytoplasmic pattern recognition re-
ceptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC
class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anse-
rina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain con-
taining proteins) relate to a large family of cytosolic innate receptors, involved in detec-
tion of intracellular pathogens and endogenous byproducts of tissue injury. These receptors
may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated
molecular patterns (DAMPs), activating host responses against pathogen infection and
cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries,
which may either initiate the formation of inflammasomes and/or activate nuclear factor
κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and
autophagy. Disruption of those signals may lead to a number of pro-inflammatory condi-
tions, eventually promoting the onset of human malignancies. In this review, we describe
the structures and functions of the most well-defined NLR proteins and highlight their as-
sociation and biological impact on a diverse number of cancers.

NOD-like receptors
The innate immune system is our first line of defense against infections from an enormous diversity of
microbes and viruses. The human innate immunity relies on a wide range of receptors and complex down-
stream networks which respond against infectious pathogens. Activation of these immune pathways leads
to a broad range of pro- and/or anti-inflammatory signals, including the secretion of interferons, tumor
necrosis factors and cytokines [1]. Disruption in the balance of these signals may lead to chronic inflam-
matory states and directly affect cellular processes, such as cell cycle progression and apoptosis, creating
a background context for the rise of maladies, such as cancer [1,2].

In humans, innate immune receptors are classified into several families [3]. Amongst the
most well-characterized receptors are the TLRs (Toll-like Receptors) and NOD-like receptors
(NLRs) [NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 tran-
scription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1
(telomerase-associated protein), and Leucine-Rich Repeat (LRR) domain containing proteins]
[4–6]. While TLRs act as surface receptors found in cell and organelle (endosome) membranes,
the NLRs are cytosolic receptors involved in the detection of intracellular pathogens and en-
dogenous byproducts of tissue injury [7]. The NLRs are also known as a subgroup of pattern
recognition receptors (PRRs), which act as innate immunity ‘sensors’ of pathogen-associated
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molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) [8,9]. Typically, the PAMPs rec-
ognized by NLRs are bacterial cell-wall derivates [10], microbial toxins [11], viruses [12] or even whole pathogenic
microbial organisms [13]. The DAMPs are host-derived molecules released by injured cells, including extracellular
ATP [14], hyaluronan [15] and monosodium urate (MSU) [16]. Therefore, NLRs act as key activators of innate im-
mune responses which, upon detection of cell damage and infections, may lead to the expression and/or activation
of stress kinases, interferon response factors (IRFs) and inflammatory caspases [17–21].

NLR protein structure and subfamilies
A number of NLR homologs have been described in both vertebrate and invertebrate species [22]. In humans, the NLR
protein family comprises 22 members [23–25]. All NLR proteins share a typical architecture, including: (i) a centrally
located nucleotide-binding NACHT domain, which mediates self-oligomerization and is essential for ATP-dependent
NLR activation; (ii) an N-terminal effector domain, which interacts with adaptor molecules and downstream effectors
to mediate signal transduction; and (iii) a C-terminal region, comprising variable numbers of LRR domains, involved
in the recognition of molecular patterns (Figure 1) [4]. Specifically, human NLRs are divided into four subfamilies,
according to the nature of their N-terminal regions. These regions may contain (i) an acidic transactivation domain
(AD) (NLRA subfamily), (ii) a baculoviral inhibitory repeat-like domain (BIR) (NLRB subfamily), (iii) a caspase
activation and recruitment domain (CARD) (NLRC subfamily) or (iv) a pyrin domain (PYD) (NLRP subfamily)
(Figure 1) [1,4,8,17,21,24].

The NLRA subfamily comprises a sole member, namely: the Class II Major Histocompatibility Complex Trans-
activator (CIITA). Apart from the AD domain, CIITA displays four LRRs and a GTP binding domain (Figure 1).
GTP binding facilitates the protein transport into the nucleus, where it acts as a positive regulator of class II major
histocompatibility complex gene transcription (Figure 2) [26]. In this case, transcriptional activation is not achieved
through DNA binding, but via an intrinsic acetyltransferase (AT) activity [27,28]. Similarly, the NLRB subfamily com-
prises only one member, namely, the NLR Family Apoptosis Inhibitory Protein (NAIP). NAIP is an anti-apoptotic
protein which acts by inhibiting (i) the activities of Caspase (CASP) 3 (CASP3), CASP7 and CASP9 [29], (ii) the au-
tocleavage of pro-CASP9 and (iii) the cleavage of pro-CASP3 by CASP9 [30]. NAIP is a mediator of neuronal survival
in several pathological conditions, preventing apoptosis induced by a variety of signals [31].

NLRC is the second largest subfamily of NLRs, consisting of six members: nucleotide oligomerization domain 1
(NOD1) (NLRC1), nucleotide oligomerization domain 2 (NOD2) (NLRC2), NLRC3, NLRC4, NLRC5, and NLRX1.
The NLRC3, NLRC5 and NLRX1 members are classified in the NLRC subfamily due to their homology and phy-
logenetic relationships, although their N-terminal domains have not been fully characterized yet [32]. NOD1 and
NOD2 (Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2) are considered as the found-
ing NLRs as well as the two major members of the NLRC subfamily [33]. NOD1 and NOD2 recognize intra-
cellular bacterial components, which enter the cell either via direct bacterial invasion or by other cellular uptake
mechanisms [34,35]. NOD1 and NOD2 contain, respectively, one and two N-terminal oligomerization CARD do-
mains and detect distinct motifs of peptidoglycans (PGNs) [36,37]. NOD1 recognizes d-γ-glutamyl-meso-DAP
(l-Ala-γ-d-Glu-meso-diaminopimelic acid) (iE-DAP (d-γ-glutamyl-meso-DAP)) dipeptides, which are found in
PGNs from all Gram-negative and some Gram-positive bacteria, while NOD2 recognizes the muramyl dipeptide
(MDP) structure found in almost all bacterial types [33,36–38]. Therefore, NOD2 acts as a broader sensor of bacte-
rial infection, while NOD1 recognizes a more specific subset of bacterial strains.

The NLRP subfamily of receptors consist of 14 members, characterized by the presence of an N-terminal pyrin
(PYD) effector domain [39] which possesses a conserved sequence motif found in more than 20 human proteins,
with functions in apoptotic and inflammatory signaling [8,39]. Within this subfamily, at least six receptors (NLRP1,
NLRP3, NLRP6, NLRP7, NLRP12, NLRC4) have been reported to operate through formation of inflammasome com-
plexes [39]. These NLRPs recognize various ligands originated from microbial pathogens (PGN, flagellin, viral RNA,
fungal hyphae etc.), host cells (cholesterol crystals, uric acid etc.), and environmental sources (alum, asbestos, silica,
alloy particles, UV radiation, skin irritants etc.) [8]. Studies have shown that NLRP genes play important roles in
both the innate immune system and mammalian reproduction [8,40], suggesting that NLRPs might play a role in
oogenesis and early preimplantation embryogenesis [8,40].

NLR signaling and inflammasome-related pathways
NLR activation is translated through distinct subpathways to achieve pro- or anti-inflammatory responses (Figure 2).
The downstream signals involved are modulated by the type of ligands bound to the NLR and may also depend on the
cellular context. For instance, NOD1 and NOD2 receptors bind to the membrane of early endosomes in the cytoplasm,
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Figure 1. Protein structure representation of each NLR subfamily

Respective domains are indicated as follows: CARD: Caspase recruitment domain; AD: Acidic transactivation domain; NACHT:

NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from

Podospora anserina) and TP1 (telomerase-associated protein); BIR: Baculoviral inhibitory repeat-like domain; X: Unknown; PYD:

Pyrin domain. Green open circles represent LRR (Leucine-rich repeat).

specifically interacting with the actin cytoskeleton in order to maintain an inactive state [41,42]. PGNs that are trans-
ported through the membrane [43–48] are promptly recognized by these NOD receptors. Ligand-bound NOD1 and
NOD2 self-oligomerize through CARD–CARD interactions, using the endosomal membrane as a scaffold for the as-
sembly of signaling complexes [46,49]. Oligomerized NODs send signals via the serine/threonine receptor-interacting
protein 2 (RIP2) kinase [50], which, in turn, mediates ubiquitination of the nuclear factor κB (NF-κB) essential mod-
ulator (NEMO)/IKKγ complex and, consequently, activation of NF-κB and production of inflammatory cytokines
[4,51,52]. Furthermore, poly-ubiquitinated RIP2 also recruits TAB (TGF-β-activated kinase 1 and MAP3K7-binding
protein) and its associated kinase TAK1 (TGF-β-activated kinase 1) [53,54]. TAK1 is a downstream activator of stress
kinase, mitogen-activated protein kinase (MAPK) cascades, which activate JNK (c-Jun N-terminal kinase) and p38
MAPK toward activator protein 1 (AP-1) transcriptional activity [38,55,56].

Both NOD1 and NOD2 also activate the host response through an alternate pathway, independent of RIPK2
and NF-κB signaling [21]. These receptors can detect intracellular bacteria which cross the plasma membrane and
then recruit the autophagic essential adapter protein ATG16L1 to the bacterial entry site, promoting highly specific
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Figure 2. NLR signaling pathways (related to prototypical members of each subfamily) and their correlation with cancer

Lightning arrows indicate specific signaling nodes or receptor(s) for which gene mutations or alterations in expression levels have

been reported in association with major types of cancer (adjacent boxes).

lysosome-mediated degradation of the invading microbe by the autophagic machinery [21,57–59]. In addition to de-
tecting bacterial components, NOD1 and NOD2 receptors also monitor the cytoplasmic environment, responding to
cytoskeleton perturbations and ER stress [60,61], which, ultimately, activate autophagy [62–64] and NF-κB-driven
inflammation [61,65,66]. This effect allows these NOD receptors to respond to pathogens that do not produce specific
PGNs [67].

Inflammasome-forming NLRs
The inflammasome is a multiprotein intracellular complex, which is frequently formed in response to several patho-
physiological stimuli [67]. Despite its cytosolic localization, inflammasome structures are capable of launching an
effective immune response against bacteria, fungi and viruses [68]. Indeed, inflammasome activation is an essential
component of the innate response, playing a critical role in clearance of pathogenic insults and/or damaged cells [69].

In brief, the inflammasome structure includes: a sensor (NLR), an adaptor protein (ASC (apoptosis-associated
speck-like protein containing CARD)) and an effector molecule (pro- CASP1) [70]. ASC is a bipartite protein consist-
ing of a PYD and a caspase recruitment domain (CARD) [39,71]. In resting cells, caspase-1 is present in a catalytically
inactive pro-form (zymogen) called pro-caspase-1 [72]. Caspases have long been established as executioners of the
apoptotic response, also contributing to inflammasome activation [69].
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The inflammasome activation initiates through the auto-coactivation of caspase-1, resulting in cleavage of
pro-interleukin-1β (pro-IL-1β) and pro-interleukin-18 (pro-IL-18) [73,74] into their mature and active forms (IL-1β
and IL-18, respectively). The secretion of these cytokines may lead to pyroptosis, a term used to describe the inherently
inflammatory process of CASP1-dependent programmed cell death [75,76]. Inflammasome-independent sources of
IL-1β have also been suggested to contribute to inflammatory disease pathogenesis; however, very little is known
about the molecular regulation of these pathogenic pathways [77].

As previously indicated, several NLRs play a role in the formation of inflammasomes, namely: NLRP1, NLRP3
and NLRC4 [70]. Other less characterized inflammasome structures include NLRP2, NLRP6, NLRP7, NLRP12, as
well as AIM2-like receptor (ALR) proteins [78]. Interferon γ-inducible protein 16 (IFL16) has also been suggested to
assemble inflammasomes and induce caspase-1 activation in macrophages, indicating differential functions of IFL16,
depending on the type of cell infected [79].

NLRP1 was the first NLR family member reported to form an inflammasome complex [80]. NLRP1 has been
described to bind directly to its ligand MDP in vitro, with this interaction apparently being sufficient to activate the
inflammasome assembly [70]. Genetic variation in the human Nlrp1 gene has been linked to increased susceptibility
to certain autoimmune diseases [81], systemic lupus [82] and cancer [179]. Studies have also demonstrated a genetic
association of polymorphisms in Nlrp1 gene in driving the tumorigenic process, which leads to an increase in the
production of downstream mediators (i.e. CASP1 and IL-1β) in malignant melanoma [83].

NLRP1-like genes are found in most, if not all, mammalian species for which a genome has been sequenced, in-
cluding primates, rodents, ungulates and marsupials [84]. Humans express only one NLRP1 gene, while the mouse
genome contains three Nlrp1 paralogs named Nlrp1a, Nlrp1b and Nlrp1c [79]. Nlrp1a and Nlrp1b contain all do-
mains characteristic of murine NLRs, contrary to the Nlrp1c protein which is truncated so they lack the CARD
domains [85]. The murine NLRP1b is involved in the mechanism by which Bacillus anthracis infection activates
caspase-1 [86]. NLRP1b also serves as an inflammasome sensor for Toxoplasma gondii, leading to an inflammasome
response in rats and, consequently, limiting parasite load and dissemination [87]. Still, more studies are warranted to
describe the precise mechanism of T. gondii recognition by NLRP1b.

To date, NLRP3 (also known as cryopyrin and NALP3) is the most fully characterized member of the NLRs family
[88]. The NLRP3 inflammasome is activated by a number of factors, which include: Gram-positive bacteria, viruses
(such as influenza), fungi and protozoa, toxins (such as hemolysin), ATP, potassium efflux, and reactive oxygen species
(ROS) [70,89–91]. In addition to the microbial and endogenous activators mentioned above, RNA and mitochondrial
DNA have also been described as NLRP3 activators [92]. NRLP3 lacks a CARD, therefore, cannot recruit procaspase-1
without the presence of the adaptor molecule ASC [73]. NLRP3 interacts with ASC via PYD homophilic interac-
tions [73]. Some studies link various adaptor proteins, such as guanylate-binding protein (GBP) [93,94], thioredoxin
(TRX)-interacting protein (TXNIP) [89], amongst others shown to be critical for mammalian host defense. Alto-
gether, the NLRP3 inflammasome integrates multiple signals to protect the host against different forms of cellular
stress [95]. Nevertheless, the mechanisms governing the formation and activation of the NLRP3 inflammasomes, in
certain cellular contexts, still deserve further investigation.

NLRC4 is also an important sensor for the activation of caspase-1, particularly in macrophages infected with
Salmonella strains [96]. This sensor is typically activated by a more streamlined set of ligands, which includes bacte-
rial flagellin and components of the bacterial T3SS (Type 3 secretion system proteins) [97]. NLRC4 appears to detect
these ligands by recognizing pathogen derivatives, which are secreted into the host cell cytosol by certain bacterial
strains [84].

Impact of NLRs on cancer
Chronic inflammation and cancer onset
Inflammation has a dual role in cancer onset and progression. Pro-inflammatory condition has been described as a
crucial state for cancer onset, progression, angiogenesis, and metastasis [98–100], being related to chronic low-grade
activation of the immune system as a result of the production of several downstream pro-inflammatory factors [101].
On the other hand, immunosurveillance can prevent cancer onset and limit tumor growth [102,103].

Biomolecules that are produced by tumor-infiltrating immune cells, such as cytokines, proteases, reactive oxygen
and nitrogen species, can influence the microenvironment and act as intermediates in these pathological processes
[104–106]. The microenvironmental changes caused by the immune infiltrate include alterations (i) in the tumoral
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extracellular matrix and (ii) in the interaction between the different cell populations of the tissue, resulting in epige-
netic modifications, epithelial–mesenchymal transition (EMT), oncogenes expression promotion and silencing of tu-
mor suppressors [107–110]. Collectively, these alterations may orchestrate cell growth and survival, migration and/or
angiogenesis, therefore promoting tumor progression and metastasis [111–113].

One of the most prominent cascades involved in tumor promotion is NF-κB, a key pathway in innate immunity and
inflammation, which frequently appears as an interesting therapeutic target [114,115]. Directly linked to NF-κB, in-
flammasomes and their effector proteins are associated with different chronic pro-inflammatory conditions, and can
either promote tumorigenesis or act as key players in immunosurveillance [116,117]. Interestingly, NF-κB also exerts
a critical regulatory role during development. Manipulation of NF-κB members in a diverse range of animal models
results in severe developmental defects during embryogenesis, very often leading to embryonic lethality [118]. For
instance, inactivation of the NF-κB pathway in chicks induces functional alterations of the apical ectodermal ridge,
which mediates limb outgrowth [119,120]. In mice, the absence of NF-κB activity leads to prenatal death due to de-
fects in organogenesis and endoderm progression [121,122]. One major protein complex of this pathway, known as
IκB kinase (IKK (inhibitor of nuclear factor κB kinase)), directly regulates NF-κB activation also during develop-
ment of early vertebrates [123]. The IKK complex is mainly composed by two catalytic subunits (IKK1 and IKK2)
and one scaffolding molecule (NEMO). IKK2 is the major cytokine-responsive IκB kinase [124,125] and, contrarily,
IKK1 seems to be a repressor of NF-κB activity in certain biological and cell-specific conditions [123]. For instance,
Ikk1 knockdown in zebrafish embryos leads to head-to-tail malformations due to up-regulation of NF-κB-responsive
genes and NF-κB-dependent apoptosis [123]. Conversely, ikk1 overexpression leads to midline structure defects (no
tail-like phenotype) associated with the repression of NF-κB activity [126]. Mechanistically, Ikk1 seems to sequester
the non-catalytic subunit NEMO from active IKK complexes, therefore blocking NF-κB activation. Indeed, trunca-
tion of the NEMO-binding domain (NBD) in Ikk1, as well as increased availability of NEMO in vivo, is able to rescue
the Ikk1 overexpression phenotype [123]. Altogether, the significance of NF-κB during early development certainly
justifies the biological impact of this pathway in the onset and progression of various proliferative diseases, including
cancer.

Here, we briefly discuss the inflammation mechanisms driven by distinct NLRs and their association with a sub-
stantial number of relevant malignancies. A snapshot of major cancer types associated with each NLR is shown in
Figure 2, while a list of reports linking NLRs to a number of cancers is presented in Tables 1 and 2.

NLRA-associated cancers
B-cell lymphoma
B-cell lymphomas comprise approximately 85% of all non-Hodgkin’s lymphomas (NHL), amongst which the primary
mediastinal large B-cell lymphoma (PMBCL), a subtype of diffuse large B-cell lymphoma (DLBCL), sums up approx-
imately 10% of the cases [127]. The incidence of PMBCL is higher in young adults and adolescents, with a metastatic
potential to invade surrounding tissues [127]. Analysis of the CIITA sequence in PMBCL patient samples revealed
the presence of structural genomic rearrangements, missense, nonsense, and frameshift mutations in 53% of the clin-
ical cases [128]. These alterations led to decreased CIITA protein levels and, consequently, suppression of MHCII
on the cell surface [128]. A similar study described that genomic breaks in the CIITA locus were present in 38% of
the PMBCL samples and 15% of classical Hodgkin lymphoma (cHL) [129]. These alterations in CIITA sequence are
associated with the down-regulation of surface MHC II, and increased expression of ligands of the receptor molecule
programmed cell death 1, programmed death ligand 1 (PDL1) and programmed death ligand 2 (PDL2) [129]. These
data suggest that CIITA has an essential role in PMBCL progression [128,129].

NLRB-associated cancers
Breast cancer
Breast cancer is the most prevalent cancer in women, accounting for 29% of all diagnosed cancers in females [130].
Little is known about NAIP’s role in breast cancer, but NAIP mRNA levels have been well detected in tumor samples,
while no expression is observed in control tissues [131]. In addition, NAIP expression in these malignant tissues is
correlated with tumor size, but not with relapse-free survival [131]. More mechanistic studies are still warranted to
confirm whether NAIP is relevant to breast cancer biology.

Colorectal cancer
Colorectal cancer (CRC) has the third highest cancer incidence worldwide, accounting for 9% of all cases, and is the
fourth cause of death by cancer [132,133]. NAIP might also play an important role in preventing CRC onset [134].
Not only NAIP expression in colon cancer samples was found to be lower than in normal mucosa [135] but also,
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Table 1 Summary of reported associations between members of NLRs subfamilies A, B, and C, and cancer
progression

NRL
subfamily Member

Associated
cancer Associated phenotype Molecular mechanisms References

NLRA CIITA Primary
mediastinal
B-cell
lymphoma

Tumoral immune evasion Decrease in surface MHC II and increase in
CD274/PDL1 and CD273/PDL2

[128,129]

NLRB NAIP Breast Higher expression in tumor samples – [131]

Colorectal Lower expression in tumor samples; depleted
mice are more susceptible to colitis-associated
cancer

Increase in STAT3 expression and failure to
activate p53

[134,135]

Prostate Higher expression in advanced prostate cancer
submitted to androgen deprivation therapy;
possible contribution to docetaxel resistance

Expression is induced by NF-κB [138]

NLRC NOD1 Breast SNPs associates with a higher cancer risk;
inhibits ER-dependent tumor growth; deficiency
correlates with tumor growth, an increased
sensitivity to estrogen-induced cell proliferation,
and impaired Nod1-dependent apoptosis;
reduced cell proliferation and increased
clonogenic potential in vitro

Apoptosis mediated by caspase 8 in a
RIP2-dependent mechanism [142–146]

Colorectal Expression in T cells is associated with reduced
susceptibility to chemically induced colitis and
tumorigenesis; limits inflammation and its
induced tumorigenesis

Reduction of inflammation induced
tumorigenesis in an IFNγ-mediated mechanism

[150]

Gastric SNPs associated with Helicobacter pylori
infection and gastric lesions; up-regulated upon
H. pylori infection and associates with a higher
inflammatory state in GC

Activation of TRAF3 and suppression of Cdx2
[160–162]

NOD2 Breast SNPs associated with a higher cancer risk;
reduced cell proliferation and increased
clonogenic potential in vitro

–
[142,143,146]

Colorectal Deficient expression associates with higher
susceptibility to experimental models of CRC
and induced instability in the composition of gut
bacteria; limits inflammation and ts induced
tumorigenesis

Inhibition of NF-κB and MAPK pathways
through the induction of IRF4

[156,157]

Gastric SNPs associated with H. pylori infection and
gastric lesions

– [159]

NLRC3 Colorectal Reduced expression correlated with cancer
progression; suppression of cellular proliferation
and induction of cell death

Inhibition of the PI3K-mTOR signaling pathway
through interaction with PI3K, TRAF6, and
mTOR, supression of c-Myc activity, FoxO3a
and FoxO1

[148,151]

NLRC4 Breast Poor prognosis Upon obesity, expression in myeloid cells leads
to IL-1β expression and VEGFA-dependent
angiogenesis

[141]

Colorectal Reduced expression correlates with cancer
progression; mediates higher proliferantion and
apoptosis evasion during tumorigeneis in
casp-1 deficient mice

– [148]

NLRC5 Colorectal Reduced expression correlates to impaired
CD8+ T-cell activation and poor patient
prognosis; higher cancer risk

Impaired MHC I pathway
[149,153–155]

Gastric Expression associated with lymph nodes and
tumor node metastasis

– [162]

Abbreviations: Cdx2, caudal-related homeobox 2; CRC, colorectal cancer; ER, estrogen receptor; GC, gastric cancer; PDL1, programmed
death ligand 1; PDL2, programmed death ligand 2; VEGFA, vascular endothelial growth factor A.

based on a model of colitis-associated cancer, mice lacking NAIP paralogs (Naip1-6) display a higher susceptibility
for CRC in an inflammation-independent mechanism [134]. Furthermore, these knockout mice displayed increased
STAT3 expression and failed to activate p53 upon carcinogen exposure [134]. This suggests that NAIPs may act as
tumor suppressors in vivo by inducing apoptosis in carcinogen-affected cells.
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Table 2 Summary of reported associations between NLRP and atypical genes and cancer progression

NRL
subfamily Member

Associated
cancer Associated phenotype Molecular mechanisms References

NLRP NLRP1 Skin Promotes migration, IL-1β processing, evasion
of apoptosis and hyperplasia

IL-1β processing, Caspase-1 cleavage,
inhibition of caspase-2, -3/7, and -9 activities [209,210-212,214]

Prostate Up-regulated in experimental model of
inflammation by formalin injection in situ

Increase in IL-1β, IL-18, and caspase-1
expressions

[205]

Cervix SNP associated with lower oncogenesis related
to HPV infection

– [166]

NLRP3 Cervix SNP associated with lower oncogenesis related
to HPV infection, higly expressed in an
inflammatory context upon LPS treatment

Caspase-1 cleavage, IL-1β expression and
processing

[166,167]

Colorectal Expression in macrophages: promotes invasion,
migration, metastasis of tumor cells

Expression in macrophages: leads to caspase-1
cleavage, NLRP3–ASC–caspase-1 complex
formation, and IL-1β processing and secretion

[169,171,173–175]

Expression in tumor cells: promotes EMT;
depletion leads to higher tumor burden, liver
metastasis, and impariment of NK cell
maturation

Expression in tumor cells: promotes EMT in a
caspase-1 independent mechanism through
Snail1 expression; depletion leads to IL-18
impairment, and consequent IFN-γ and STAT1
inhibition

Gastric SNPs associated with higher cancer risk;
expression in macrophages was found to be
associated with aggressiveness

IL-1β secretion [190]

Glioblastoma Promotes EMT, higher migratory and invasive
potential, proinflammatory signaling, IL-1
production, ionizing radiation (IR) treatment
resistance, cellular senescence after IR,
resistance to apoptosis

IL-1β processing, AKT/PTEN pathway and
Stat3 activation [197–200]

Skin Promotes migration, IL-1β processing and
hyperplasia

IL-1β processing, Caspase-1 cleavage, NFKβ
pathway [211,212,214]

NLRP6 Colorectal Associated with self-renewal of the colon
epithelium upon injury, integrity and
homeostasis of the epithelial barrier, depletion
leads to higher tumor burden

Down-regulation of the cytokine IL-22BP in an
IL-18-dependent mechanism, promotes
inflammation through CCL-5, IL-18 and IL-6
pathway activation

[152,179,180]

NLRP7 Endometrial Correlates with depth of tumor invasion – [187]

Gastric Deficiency associated with lymph node
metastasis and poor overall survival

Senescence mediated by P21 and Cyclin D1 [191]

NLRP12 Colorectal Its depletion leads to higher tumor burden Modulation of noncanical NF-κB through TRAF3
and NIF, AKT and ERK pathways

[181,182]

Gastric SNPs associated with higher cancer risk – [189]

Atypical NWD1 Prostate Expression correlates with tumor progression Its expression is modulated by SRY [219]

Regulates PDEF expression

Its depletion reduces AR levels and
androgen-responsive genes

Abbreviations: AR, androgen receptor; HPV, human papillomavirus; IL-22BP, IL-22 binding protein; LPS, lipopolysaccharide; NK cell, natural
killer cell; PDEF, prostate-derived Ets factor; SRY, sex-determining region Y.

Prostate cancer
Prostate cancer (PCa) is the most common cancer in men [136,137]. Advanced PCa, submitted to androgen depriva-
tion therapy, displays increased NAIP expression, which may possibly contribute to docetaxel resistance [138]. One
possible explanation is that androgens generally inhibit responsive elements in NF-κB transcription factors promot-
ers, decreasing their expression [138,139]. Therefore, it was verified by chromatin immunoprecipitation (ChIP) that,
upon hormonal deprivation, NF-κB largely interacts with κB-like sites along the NAIP locus to promote its transcrip-
tion activation [138]. These data suggest that NAIP levels may correlate with drug resistance in the treatment of PCa,
but further experiments are needed to explore the role of NAIP in these mechanisms.

NLRC-associated cancers
Breast cancer
Obesity has been associated with a poor prognosis of breast cancer patients, since adipose cells stimulate angiogenesis
and synthesize estrogen, a primary female hormone that impacts tumor growth and metastatic potential [140]. For
instance, in an orthotopic model, obese mice displayed higher tumor-infiltrating myeloid cells content and higher
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tumor-angiogenesis [141]. Interestingly, myeloid cells from obese mice display increased NLRC4 expression and,
consequently, IL-1β production. Cross-talk between tumor tissue and immune infiltrates also leads to vascular en-
dothelial growth factor A (VEGFA)-mediated angiogenesis in an NLRC4-dependent manner, therefore driving dis-
ease progression [141].

A number of NOD1 and NOD2 SNPs have been associated with a higher risk of cancer development in many ma-
lignancies [142,143]. Although no tumor suppressor activity has been described for NOD2, NOD1 seems to have im-
portant tumor suppressor activity in estrogen receptor (ER)-dependent breast cancer, using an SCID mice xenograft
model [144]. In ER-positive MCF-7 cells, NOD1 deficiency correlates with tumor growth, an increased sensitiv-
ity to estrogen-induced cell proliferation and impaired Nod1-dependent apoptosis. Correspondingly, in the same
cells, NOD1 overexpression inhibited ER-dependent tumor growth and reduced estrogen proliferative response in
vitro [144]. Apparently, Nod1-dependent apoptosis is mediated by a caspase 8-cascade in an RIP2-dependent man-
ner [145]. More recently, it has been described that overexpression of either NOD1 or NOD2, in the triple negative
Hs578T cells, is able to reduce cell proliferation but increase clonogenic potential in vitro [146]. The proteomic profile
of these overexpressing cells suggests the involvement of several inflammation- and stress-related pathways (inter-
secting NF-κB, PI3K and MAPK cascades) in the modulation of protein degradation processes, cell cycle and cellular
adhesion [147]. The disruption of these critical systems suggests a functional link between NOD1/NOD2 and the
proliferation and migration of triple negative breast cancer cells [147]. Although NOD1 tumor suppressive role is
evidenced in ER-dependent tumors [144], both NOD1 and NOD2 appear to be relevant for the aggressive potential
of breast cancer in vitro.

CRC
The expression of certain NLRCs has also been found to be modulated in CRC [148–150]. A combined analysis of
TCGA (http://cancergenome.nih.gov) and Oncomine (https://www.oncomine.org) datasets, with mRNA expression
analysis of tissue samples, revealed that NOD1 and NOD2 expression is usually increased, while NLRC3 and NLRC4
expression is reduced in CRC [148]. Furthermore, TCGA data analysis revealed that NLRC3 expression inversely
correlates with the American Joint Committee CRC staging [148]. Based on this staging, CRC is classified from stage
I to IV in which (i) stage I tumors have breached beyond the inner lining of the colon, (ii) stage II tumors invaded the
muscular wall of the colon, (iii) stage III tumors have reached the lymph nodes and (iv) stage IV tumors have metasta-
sized to other organs besides the lymph nodes [148]. This correlation might be explained by recent reports describing
the link between NLRC3 and the concomitant suppression of cellular proliferation and induction of cell death through
the inhibition of the PI3K-mTOR signaling pathway in different node points [151]. Interestingly, NLRC3 knockout
mice, treated with azoxymethane and dextran sodium sulfate (colitis-associated CRC model), display an increased
C-MYC expression and FoxO3a and FoxO1 phosphorylation (effectors of the PI3K-AKT pathways) [151]. Likewise,
caspase-1-deficient mice submitted to the same treatments show increased epithelial cell proliferation in early stages
of oncogenesis, and apoptosis evasion in additional stages in an NLRC4-dependent manner [152].

NLRC deficiencies are also correlated to immunosurveillance escape-mediated tumor progression [149]. Gene
mutations, polymorphisms, loss of copy numbers, and methylation of the MHC class I transactivator NLCR5 have
been associated with MHC I pathway disruption and a higher cancer risk [149]. It is interesting to note a correlation
between reduced NLCR5 expression and higher CRC risk, especially in mismatch repair-deficient tumors [153–155].
Moreover, it has been proposed that reduced NLRC5 expression also correlates to impaired CD8+ T-cell activation
and poor patient prognosis [149].

Furthermore, NOD1 expression in T cells has been associated with a reduced susceptibility to chemically induced
colitis and subsequent tumorigenesis, by limiting inflammation-induced tumorigenesis in an IFNγ-dependent mech-
anism [150]. Similarly, NOD2 deficient mice appear to be more susceptible to experimental models of CRC [156].
Both NOD1 and NOD2 can inhibit NF-κB and MAPK pathways through induction of IRF4 [156] and, apparently,
have a role in the suppression of inflammation-induced tumorigenesis [156]. Furthermore, NOD2 deficient mice are
seemingly more prone to colitis and colitis-related cancer due to induced instability in the composition of gut micro-
biome [157]. This increased susceptibility to inflammation could be prevented by (i) microbiota transplantation, (ii)
antibiotics or (iii) anti-IL-6 neutralizing antibody treatment [157]. These findings reiterate the notion that NLRCs
also influence tissue microenvironment and suppress CRC tumorigenesis.

Gastric cancer
Helicobacter pylori infection is a strong risk factor for gastric cancer (GC) [158]. NOD1- and NOD2-specific
SNPs have been associated with H. pylori infection and gastric lesions [159]. In this context, expression of the
epithelial-specific transcription factor CDX2 is known to contribute to intestinal metaplasia (an event that precedes
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GC) and to be induced by H. pylori infection [160]. The NF-κB pathway has been implicated in induction of CDX2
expression [160]. In contrast, NOD1-dependent activation of TRAF3, a negative regulator of NF-κB, may suppress
CDX2 expression [160]. This is somewhat contradictory to the findings in which, upon H. pylori infection, NOD1
is up-regulated and associated with a higher inflammatory state in GC [161].

NLRC5 expression has been correlated with lymph nodes and tumor node metastasis in GC [162]. As a result,
NLRC5 has been considered as an independent risk factor for the prognosis of GC patients [162]. The orchestrated
expression of NLRC5, as well as of other NLRC proteins, may play an important role in GC onset, but more detailed
studies are needed to better dissect their actual contribution to GC.

NLRP-associated cancers
Amongst the NLRP subfamily members, the role of NLRP3 in cancer is the most well characterized (extensively
revised in [163]). Here, we describe some of the main findings linking NLRPs to different human malignancies.

Cervical cancer
Cervical cancer is the second most common cancer type in women [164]. It has been found that persistent Human
Papillomavirus (HPV) infection, associated with chronic inflammation, may lead to cancer onset [165]. Particularly,
polymorphisms in NLRP1, NLRP3 and IL-18 have been associated with a lower HPV persistence and associated
oncogenesis [166]. Using an inflammation model, human cervical cancer cells, positive for HPV-16 and treated with
lipopolysaccharide (LPS), have indeed displayed increased levels of NLRP3, IL-1β, processed IL-1β, and cleaved
caspase-1 [167].

CRC
Inflammation is highly associated with the onset of CRC. Inflammatory bowel disease (IBD), which comprises dis-
eases such as ulcerative colitis and Crohn’s disease, is mainly a chronic inflammatory condition which is known to
increase the overall risk of developing CRC by 4- to 20-fold [132]. NLRP3 has been proposed to be a link between
IBD and CRC (reviewed in [168]). Interestingly, high-fat diet has also been associated with NLRP3 activation and
increased tumor susceptibility [162,169]. High-fat diet leads to an increase in deoxycholic acid levels in the intestine,
which, in turn, disrupts the cell monolayer integrity by decreasing the expression of the tight junction protein ZO-1
[170]. This disruption in the mucosal barrier leads to an increased tissue inflammation, mediated by NLRP3, and
further polarization of M2 macrophages [162]. Likewise, azoxymethane-treated mice submitted to a cholesterol-rich
diet show increased tissue inflammation and higher susceptibility to tumor development [169]. In fact, cholesterol
inhibits the activity of AMPKα in macrophages, resulting in increased levels of mitochondrial ROS [169]. An oxida-
tive microenvironment may then activate NLRP3, leading to (i) inflammasome formation, (ii) caspase-1 cleavage and
(iii) IL-1β processing and secretion [169]. This cascade of events can be partially reverted by NLRP3 depletion [169].

NLRP3 expression has also been found in macrophages infiltrated in CRC tissues, and the inhibition of NLRP3
pathway leads to decreased tumor cell migration, invasion and metastatic potential [171]. These data are supported
by the evidence that treatment with a small-molecule AMPK activator (GL-V9), which acts as an anti-inflammatory
molecule on macrophages, triggers autophagy and NLRP3 degradation, providing a protective effect against colitis
and CRC [172].

Although NLRP3 expression in tissue-infiltrated macrophages has been associated with higher susceptibility to
CRC and its aggressiveness, its role in tumor cells is, at a first glance, controversial. NLRP3 has been found, for in-
stance, to be highly expressed in the SW620 mesenchymal-like CRC cell line [173]. Moreover, HCT116 and HT29
epithelial-like CRC cell lines, when submitted to EMT through the treatment with TNF-α and TGF-β1, displayed
an increase in NLRP3 expression mediated by NF-κB [173]. In contrast, NLRP3 or CASP1 deficient mice are more
susceptible to the CRC burden induced by azoxymethane-DSS-induced inflammation model [174]. This phenotype
is associated with lower IL-18 expression levels and, consequently, impairment of IFN-γ expression and suppression
of STAT1 activation [174]. In addition, NLRP3 knockout mice display augmented liver metastasis [175], which is also
due to the impairment of IL-18 signaling. This suppression affects Fas ligand (FasL) expression in natural killer cells
(NK cells), thus compromising their ability to kill FasL-sensitive tumor cells [175].

In accordance with the current data, NLRP3 expression might be explored for the prevention of CRC. One example
is its role as an effector of TRAIL (tumor necrosis factor related apoptosis-inducing ligand), an apoptosis-inducing
protein whose use for cancer treatment has been currently evaluated [176–178]. In this context, mice submitted to
the azoxymethane-DSS CRC model and treated with recombinant TRAIL displayed inhibition of macrophage re-
cruitment to the damaged mucosa, therefore diminishing acute inflammation [176]. At the same time, TRAIL pro-
moted tissue regeneration by NLRP3 activation, which induced IL-18 expression and promoted IL-1β secretion and
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caspase-1 cleavage [176]. These studies emphasize the multifunctional role of NLRP3, as well as the importance of
the cross-talk between the different resident tissue cells and the CRC outcome.

Other members of the NLRP subfamily have also been related to CRC biology. For instance, NLRP6, typically
produced by the stem-cell niche, acts on the self-renewal of the colon epithelium upon injury and, therefore, it is im-
portant for the integrity and homeostasis of the epithelial barrier [179]. Indeed, NLRP6 deficient mice show impaired
regeneration of the mucosa upon injury, and they are susceptible to colitis-associated tumor growth [179]. NLRP6 is
involved in inflammation promotion by down-regulating the IL-22 binding protein (IL-22BP) which neutralizes IL-22
in an IL-18-dependent mechanism [180]. In addition, NLRP6 promotes inflammation through microbiota-induced
activation of chemokine (C–C motif) ligand 5, IL-18 and IL-6 related pathways [69].

NLRP12 is another potential therapeutic target, since NLRP12 knockout mice looks prone to colon inflammation
and CRC, through enhanced activity of non-canonical NF-κB, ERK and AKT pathways, in both macrophages and
tumor cells [181,182]. Nevertheless, due to the dual role of inflammation in cancer development, further studies are
still warranted to better explore the clinical potential of some inflammasome-related proteins.

Endometrial cancer
The incidence rates of endometrial cancer have increased during last few decades and, nowadays, is considered the
sixth most common cancer in women [183]. Its occurrence is associated with precursor hyperplasic lesions in more
than 40% of cases [184]. Although IL-1 has been described to have an important role in endometriosis (a chronic
inflammatory condition in which endometrial tissue grows outside the uterine cavity) [185,186], little is known about
the inflammasome’s role in the development of this endometrial condition. The only available data so far refer to a
statistical correlation observed between NLRP7 and the depth of the tumor invasion in the surrounding normal tissue
[187], which is indeed promising but requires more detailed investigations.

GC
GC is the fourth most common type of cancer, and it is responsible for the second highest rate of cancer-related

deaths [188]. Specific SNPs in some NLRP subfamily members, such as NLRP3 and NLRP12, have been associated
with increased risk of H. pylori infection (one of GCs most prominent risk factors) and also to GC itself [189]. H.
pylori-challenged cells can lead to simultaneous down-regulation of NLRP9 and NLRP12 and up-regulation of the
canonical NF-κB pathway [189]. Indeed, NLRP12 is a known inhibitor of the NF-κB pathway, and its inhibition might
contribute to the maintenance of an active state of this signaling cascade [189].

NLRP3 expression in macrophages has been found to be associated with GC aggressiveness [190]. In a physiolog-
ical scenario, the microRNA miR-22 (expressed in the gastric mucosa) inhibits NLRP3 expression and suppresses
inflammation [190]. H. pylori infection suppresses miR-22, increasing NLRP3 expression which, in turn, leads to
IL-1β secretion and promotes the proliferation of epithelial cells and GC tumorigenesis [190]. Contrarily, it has been
reported that NLRP6 expression is reduced in ∼75% of the primary GC cases, and is associated with lymph node
metastasis and poor overall survival [191]. NLRP6 expression may suppress cancer cell proliferation by inducing
senescence in a mechanism mediated by p21 and cyclin D1. In fact, overexpression of NLRP6, along with the inac-
tivation of NF-κB and Mdm2, activates the p14ARF-p53 pathway and promotes senescence of GC cells [191]. This
particular mechanism may be potentially explored for the GC treatment.

Glioblastoma multiforme
Glioblastoma multiforme (GBM), also known as Grade IV astrocytoma, is the most common type of brain tumors
in adults, comprising approximately 17% of the cases [192,193]. GBMs are extremely aggressive tumors, displaying
highly infiltrative growth patterns and a very poor prognosis, with a median overall survival of 15–18 months after
diagnosis [192,194,195].

The tumor microenvironment plays a crucial role in GBM progression. In particular, the presence of activated
microglial and macrophage cells are associated with higher aggressive phenotypes (reviewed in [196]). Amongst the
soluble factors secreted by microglial cells, IL-1 is known to activate GBM cells, partially due to the activation of
TGFβ pathway, and also to alter their secretome, resulting in the up-regulation of interleukin-8 (IL-8) and C–C motif
chemokine ligand 2 (CCL2), and the down-regulation of collagen type IVα 2 chain (COL4A2) [197]. In human GBM
cell lines, NLRP3 is also responsible by IL-1β processing [198]. IL-1 production in these cells leads to activation of
the transcriptional factor Stat3, resulting in increased cellular migration and establishing a mesenchymal phenotype
[198].

NLRP3 has been positively correlated to higher histological grades in astrocytomas [199]. NLRP3 overexpression
in human GBM cells promotes invasion, migration, proliferation, resistance to apoptosis and EMT via activation
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of the AKT pathway [199]. In addition, NLRP3 expression has been linked to resistance against ionizing radiation
therapy, leading to an increased number of senescent cells after this treatment [200]. Interestingly, this phenotype is
partially reverted by NLRP3 inhibition [200]. Therefore, NLRP3 looks like a promising therapeutic target, and the
use of NLRP3 inhibitors, such as β-Hydroxybutyrate or certain miRNAs, have been considered for GBM treatment
[201,202].

PCa
Studies have shown that the presence of infiltrating immune cells in prostatic tissues is inversely correlated to PCa
progression [203,204]. Prostatic inflammation, experimentally induced by intra-prostatic injection of formalin, leads
to increased NRLP1 expression and consequent increase in IL-1β, IL-18 and caspase-1 levels [205]. Highly metastatic
PCa cells (DU145 and PC-3) secrete IL-18 binding protein (IL-18BP) after IFN-γ stimulation [206]. Coincidentally,
IL-18BP levels in patient sera have been correlated with PCa aggressiveness [206]. This suggests that IL-18 neutral-
ization might be a mechanism by which PCa cells bypass immunesurveillance and promote tumor development.

Skin cancer
Approximately 2–3 million skin cancers cases are diagnosed each year and their incidence has increased over the
last decades [207]. Skin tumors can be classified as non-melanomas (derived from keratinized epithelial cells) or
melanomas (derived from melanocytes) [190,191]. Melanoma accounts for 2% of the cases, being the most aggressive
type of skin cancer, accounting for almost 10000 deaths per year [207,208].

Although inflammation may contribute to defense mechanisms against tumor onset, chronic skin inflammation
can promote the development of benign and malignant lesions. For instance, using organotypic ex vivo skin mod-
els, treatment with IL-1 leads to an increase in epidermal thickness due to the proliferation of keratin-10- and
involucrin-positive keratinocytes in the basal layer [209]. This higher proliferation rate is accompanied by an in-
creased expression of the stress markers, S100 calcium binding proteins A8/9 (S100A8/9) and S100 calcium binding
protein A7 (S100A7), known to be highly expressed in skin cancers, suggesting that inflammasome-dependent IL-1
production may be sufficient to induce skin hyperplasia [209].

The skin typically displays high expression levels of NLRP1, and gain-of-function mutations along this gene can
lead to skin hyperplasia, including multiple self-healing palmoplantar carcinoma (MSPC) and familial keratosis
lichenoides chronica (FKLC) [209]. NLRP1 knockdown in metastatic melanoma cell lines induces lower caspase-1
activity and IL-1β production/secretion, but it also results in increased caspase-2, -3/7 and -9 activities, therefore pro-
moting apoptosis [210]. Likewise, activation of NLRP1, but not of NLRP3, decreases caspase-2, -3/7, and -9 activities
and consequent evasion from apoptosis [210].

Ultraviolet B (UVB) radiation is considered a major risk factor for skin cancer. Both NLRP1 and NLRP3 have been
implicated in the first response to UVB in human keratinocytes [211,212]. UVB induces NLRP1 and NLRP3 expres-
sion, leading to inflammation onset through extensive IL-1β secretion [211,212]. Furthermore, specific SNPs in both
NLRP1 and NLRP3 have been associated with susceptibility to nodular melanoma [213]. More recently, CRISPR in-
activation of both NLRP genes revealed that NLPR1 is, in fact, the main responsible for the cellular pro-inflammatory
response against UVB radiation [214]. Nevertheless, a compound isolated from Nigella sativa seeds, called thymo-
quinone (2-isopropyl-5-methyl benzo-1,4-quinone), was found to inhibit migration of melanoma cells through in-
hibition of NLRP3 expression and its related cascade, leading to a decrease in caspase-1 cleavage as well as IL-1 and
IL-18 levels [215]. This suggests that both NLRP proteins may be relevant for the onset and progression of skin cancer.

NLR-related proteins and cancer
PCa

Other cytosolic receptors, which are not fully categorized as NLRs but still share structural similarities, may also
be of clinical relevance in the context of cancer development. For instance, NWD1 (NACHT and WD repeat
domain-containing protein 1) is an NLR-related protein which carries a conserved NACHT domain and WD40 re-
peats instead of LRRs at the C-terminus [216]. Sequence homology analysis suggests this protein may be a novel NLR
family member [216]. NWD1 also share homology with Apaf1 (Apoptotic peptidase activating factor 1), a cytoplas-
mic receptor that also possesses WD40 repeats instead of LRRs, and it is involved in caspase 9-mediated apoptosis
[217,218]. It has been reported that NWD1 expression elevates in the course of PCa progression. In vitro experiments
demonstrated that sex-determining region Y (SRY) proteins may regulate the NWD1 expression, which in turn reg-
ulate PDEF (prostate-derived Ets factor), a transcription factor which is known to bind and modulate the androgen
receptor (AR). Furthermore, NWD1 depletion reduces AR levels and androgen-responsive genes, suggesting a role
for NWD1 in PCa via AR deregulation [219].
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Conclusion
Based on the data here described, we summarized how deregulation in the balance of NLR-related signals may lead
to the onset of several types of cancer. Despite all the knowledge accumulated regarding these cytosolic receptors,
the functional domains, ligand specificity and signal transduction events directed by each particular family member
still remain to be better elucidated. At the same time, new atypical NLR members may continue to be uncovered,
adding another layer of complexity to the studies involving innate immune sensors. A more in-depth understanding
of how these receptors signal through different pathways, and how they interact to achieve a global impact in diverse
pathologies, such as cancer, will be seminal to develop better diagnostic and prognostic tools, as well as more effective
therapeutic strategies.
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