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ABSTRACT
Single-walled carbon nanotubes (SWNTs), especially their semiconducting type, are promising
thermoelectric (TE) materials due to their high Seebeck coefficient. In this study, the in-plane
Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) of sorted
semiconducting SWNT (s-SWNT) free-standing sheets with different s-SWNT purities are
measured to determine the figure of merit ZT. We find that the ZT value of the sheets
increases with increasing s-SWNT purity, mainly due to an increase in Seebeck coefficient
while the thermal conductivity remaining constant, which experimentally proved the super-
iority of the high purity s-SWNT as TE materials for the first time. In addition, from the
comparison between sorted and unsorted SWNT sheets, it is recognized that the difference
of ZT between unsorted SWNT and high-purity s-SWNT sheet is not remarkable, which
suggests the control of carrier density is necessary to further clarify the superiority of SWNT
sorting for TE applications.
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1. Introduction

As wearable sensors gain in demand, flexible, com-
pact, lightweight, low-cost power supplies that can be
used without charging are in great need [1]. In such
a wearable battery, thermoelectric (TE) conversion is
convenient because it is simple in principle and less
limited in energy source [2]. The efficiency of TE
conversion is defined by the figure of merit (ZT),
which is calculated as ZT = (σS2/κ)T, where S, σ, κ,

and T are the Seebeck coefficient (V K−1), electrical
conductivity (S m−1), thermal conductivity
(W m−1 K−1), and absolute temperature (K), respec-
tively [3]. Thus, improving TE conversion efficiency
requires materials with higher Seebeck coefficient and
electrical conductivity as well as lower thermal con-
ductivity. Although conventional TE materials such
as bismuth, tellurium, and antimony have high ZT
values over 1.0 at room temperature [4,5], these
materials are relatively toxic, rare, and difficult to
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process [6], which hinders their applications in wear-
able and flexible TE devices.

Recently, various conductive polymers [7] such as
poly(3,4-ethylenedioxythiophene) doped with poly-
styrene sulfonate (PEDOT/PSS) [8], and acid-doped
polyaniline [9–11], together with carbon nanotubes
(CNTs) [12] have attracted attention as TE materials
due to their electrical conductivity, lightness, flexibil-
ity, low toxicity, abundance, and production scalabil-
ity [13]. In particular, semiconducting single-walled
carbon nanotubes (s-SWNTs) have attracted strong
attention as a promising TE material because of their
large Seebeck coefficient over 1000 μV K−1 at room
temperature [14–17], which is much higher than
inorganic semiconducting materials [18]. In reality,
most SWNTs are produced as a 1:2 mixture of metal-
lic (m-) and s-SWNTs [19,20] and need to be
extracted or sorted to use s-SWNTs. Recently, various
methods such as gel chromatography [21], polyfluor-
ene (PFO)-based polymer wrapping [22,23], DNA
recognition [24], density gradient ultracentrifugation
(DGU) [25,26] and two-phase separation [27,28]
allow us to obtain s-SWNTs and to study their TE
properties including their Seebeck coefficient, electri-
cal conductivity, and thermal conductivity. Nakai
et al. prepared s-SWNT sheet (thickness; 50–130 μm)
using DGU technique and found that the s-SWNT
sheet with 100% s-SWNT purity1 had a large Seebeck
coefficient of 170 μV K−1, which was much higher
than that of m-SWNT sheet (<25 μV K−1) and com-
parable to that of inorganic semiconducting materials
[29]. They revealed that the Seebeck coefficient was
increased as the purity of s-SWNT increased [29],
which was also systematically studied by Piao et al.
[30]. For the s-SWNT sheets, it was demonstrated
that Seebeck coefficient was further increased by opti-
mizing the doping level chemically [14,16,31,32] or
electrochemically [33–35] and, quite importantly, the
higher purity of s-SWNT leads to a larger increase of
Seebeck coefficient [29], thus the value reached to
2000 μV K−1 [14].

On the other hand, the electrical conductivity of
s-SWNT was much lower than that of m-SWNT, and
the electrical conductivity decreased as the s-SWNTs
purity increased [36]. Such a negative correlation
between Seebeck coefficient and electrical conductiv-
ity cannot be ruled out even under changing the
carrier density; namely, the increase of electrical con-
ductivity of the s-SWNT network from 103 to
106 S m−1 by chemical doping resulted in the large
decrease of the Seebeck coefficient [14,31,32]. Thus,
the power factor (PF) of the s-SWNT network,
defined as σS2, has a maximum value when the elec-
trical conductivity is around 104–105 S m−1

[14,31,32]. It has been revealed that the maximum
PF can be improved by optimizing 1) the diameter of
SWNT [14], 2) the morphology of the SWNT

network including the bundle size, SWNT length
[37–39], and 3) removal of dispersant [31,32]. Thus,
the maximum PF of s-SWNT network can exceed
500 μW m−1 K−2 [31], which was much greater than
that of m-SWNT network (<10 μW m−1 K−2) [29].
Although the dependences of Seebeck coefficient,
electrical conductivity and PF on the s-SWNT purity
and carrier density have been investigated as dis-
cussed above, ZT value has not been systematically
studied, and the thermal conductivity was merely
discussed for these samples. This lack of measure-
ments might originate from difficulties in measuring
thermal conductivity for thin SWNT network sam-
ples cast on a substrate. Besides, such measurements
typically require a different setup than that used for
evaluating Seebeck coefficient and electrical conduc-
tivity, and fall out of scope of many studies. Hence,
reports on ZT in s-SWNTs are limited to selected
samples [14,31,32] and present no systematic
research as a function of s-SWNTs purity.

Here we investigated the ZT values of the s-SWNT
sheets depending on the purity of s-SWNTs for the
first time, where thermal conductivity was measured
using free-standing s-SWNT sheets. In addition, to
study the advantage of s-SWNT sheets for TE appli-
cation, we also measured the TE properties of
unsorted SWNT sheet to find out the effect of the
sorting process.

2. Experimental section

2.1. Materials

s-SWNTs (98% IsoNanotubes-S), m-SWNTs (98%,
IsoNanotubes-M), and raw SWNTs (PureTubes, arc
discharge) were purchased from NanoIntegris.
Sodium dodecyl benzenesulfonate (SDBS) was pur-
chased from Tokyo Chemical Industry, and acetone
and methanol were purchased from Kanto Chemical.
All the chemicals were used as received. Milli-Q
water with a resistivity higher than 18 MΩ cm was
used.

2.2. Measurements

The in-plane electrical conductivity and in-plane Seebeck
coefficient were measured using a ZEM-3 (ADVANCE
RIKO, Japan) under a helium atmosphere at ~0.01 MPa
from 30 to 100 °C. The specific heat capacity (Cp) was
measured by differential scanning calorimetry (DSC)
using an EXSTAR DSC 6200 (SII Nanotechnology,
Japan) at a heating rate of 10Kmin−1.A certified sapphire
crystal (Al2O3)was used as the reference sample. In-plane
thermal diffusivities (α) were measured using
a Thermowave Analyzer TA (Bethel, Japan). The density
of the sheets (ρ) was calculated from their weight and
volume. The thermal diffusivitywas evaluated byperiodic
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heating (a non-steady-state method) and thermal con-
ductivity κ was calculated as κ = Cp∙α∙ρ. Optical absorp-
tion and Raman spectroscopy were performed using
a V-670 Spectrophotometer (JASCO) and a RAMAN
RXN (Kaiser Optical Systems), respectively. A 785-nm
laser was used as the excitation in Raman spectroscopy.
Scanning electron microscopy (SEM) was carried out
using SU-9000 (Hitachi High Technologies, 5.0 kV accel-
eration voltage). Atomic forcemicroscopy (AFM) images
were recorded using SPM-9600 system (Shimadzu
Corporation).

2.3. Preparation of SWNT free-standing sheets

s-SWNTs and m-SWNTs were sonicated in an SDBS
water solution (0.5%) using a bath sonicator
(BRANSON, 5510) for 1 h and a probe sonicator
(TOMY, UD-200) for 20 min. The total amount of
s-SWNTs and m-SWNTs were controlled to be
3.0 mg, and the ratio of s-SWNTs and m-SWNTs
depended on the final purity of the s-SWNT sheets.
The dispersion was filtered through a mixed cellulose
ester membrane (pore size of 0.2 μm, ADVANTEC),
and the membrane was removed by dipping it in fresh
acetone four times. The obtained sheet was dipped in
water and methanol and then dried overnight.
Unsorted SWNT sheet and s-SWNT sheets with
s-SWNT purities of 98% and 2% were prepared using
raw SWNTs, 98% s-SWNTs, and 98% m-SWNTs,
respectively. s-SWNTs with purities of 80%, 67%, and
33% were prepared by mixing 98% s-SWNTs and
98% m-SWNTs in ratios of 4:1, 2:1, and 1:2, respec-
tively. The thickness of the sheets was 20–30 μm.

3. Results and discussion

3.1. Preparation of s-SWNT sheets

Figure 1 shows the temperature dependences of the
Seebeck coefficient (Figure 1(a)), electrical conductiv-
ity (Figure 1(b)), and PF (Figure 1(c)) of the raw
SWNT, m-SWNT, and s-SWNT sheets. These

samples showed no obvious temperature dependence
in this temperature range. The s-SWNT sheet showed
higher Seebeck coefficient than the raw SWNT sheet
due to the higher s-SWNT purity than the raw
SWNT sheet, while the m-SWNT sheet showed
a lower Seebeck coefficient due to its lower s-SWNT
purity compared with raw SWNT sheet, which agrees
well with the reported results [29]. In the Raman
spectra (Supporting information, Figure S1), a large
decrease of Breit-Wigner–Fano (BWF) peak (near
1560 cm−1) originated from m-SWNT was observed
for s-SWNT sheet, which proved the validity of our
samples [40,41].

On the other hand, the m-SWNT sheet showed
lower electrical conductivity than the raw SWNT
sheet (Figure 1(b)). We assumed that an introduction
of defects and shortening of the SWNTs during DGU
sorting caused the lowering of the conductivity as
pointed out previously [42], which is also supported
by our Raman spectra (Supporting information,
Figure S1) and AFM images (Supporting information,
Figure S2). Such a lowering of the electrical conduc-
tivity is supported by the theoretical simulation as
well [43].

To study the TE properties of the sorted s-SWNT
sheets without considering the effects of DGU sort-
ing, we prepared s-SWNT sheets with 2%, 33%, 67%,
80% and 98% s-SWNT purities by mixing the sorted
s-SWNTs and m-SWNTs in various ratios. Figure 2
(a) shows the UV-vis-NIR absorption spectra of the
SWNT dispersions with various s-SWNT purities.
The broad absorption peaks centred at around
1800 nm (s-SWNT, S11 band) and 1000 nm
(s-SWNT, S22 band) decreased in intensity as the
s-SWNT purity decreased, while the peak at around
700 nm (m-SWNT, M11 band) increased in intensity.
It is known that S11 peak is more sensitive to the
doping level than S22 peak [44], therefore, the linear
decrease of S11 intensity as the increase of s-SWNT
purity suggested that the doping level of s-SWNT in
these samples are almost identical. The ratio between
S22 and M11 was utilized to estimate the purity of the

Figure 1. In-plane (a) Seebeck coefficient, (b) electrical conductivity, and (c) PF of the as-purchased raw SWNT sheet (black),
s-SWNT sheet (red), and m-SWNT sheet (blue) from 30 to 100 °C in a helium atmosphere at 0.01 MPa.
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s-SWNTs [30], where the linear relationship between
S22/(S22+M11) and s-SWNT purity as plotted in
Figure 2(b) indicates a good control of s-SWNT pur-
ity and guarantees the validity of the estimated purity
(Supporting information, Table S1). From the SEM
observations, the sheets were formed by SWNT bun-
dles with a diameter around 20 nm of the SWNTs
(Supporting information, Figure S3). SWNTs are
bundled and entangled in the sheets, and hence
their length is hard to measure precisely. From the
AFM images, we evaluated the average length of
isolated s-SWNTs, m-SWNTs and raw SWNTs as
1.1 ± 0.4, 0.9 ± 0.3 and 1.3 ± 0.6 μm (Figure S2).

The density of the s-SWNT sheets with 2%, 33%,
67%, 80% and 98% purity was determined to be
0.46, 0.56, 0.64, 0.56, and 0.55 g cm−3, respectively,
similar to the other report [16].

3.2. TE properties of s-SWNT sheets

Figure 3 summarizes the Seebeck coefficient, electrical
conductivity, and PF of s-SWNT sheets at 30 °C as
a function of s-SWNT purity. The unsorted SWNT
sheet was also prepared using the raw SWNT in the
same way to discuss the effect of the sorting process
for TE properties. Inset in Figure 3(a) is the
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photograph of 98% s-SWNT sheet, which shows that
all the samples used for measurements are free-
standing sheets. As shown in Figure 3(a), the
Seebeck coefficient of the s-SWNT sheets linearly
increased with the increasing s-SWNT purity, which
showed the same trend as previously reported [30],
and reached 76.0 μV K−1 at 98% s-SWNTs. The
trend was close to the serial model [45,46] given by
S ≈ α2Sss + (1 – α2)Smm, where Sss, Smm and α
represents Seebeck coefficient of s-SWNT/s-SWNT
junction, Seebeck coefficient of m-SWNT/m-SWNT
junction and fraction of s-SWNT (α: 0 ~ 1), respec-
tively [29] (76.0 and 11.9 μV K−1 was used as Sss and
Smm, respectively). Lower Seebeck coefficient of the
98% s-SWNT sheets (76.0 μV K−1) compared to the
reported value (~150 μV K−1) [29] for the comparable
s-SWNT purity may come from the difference of the
other parameters such as SWNT diameter [14,17], the
bundle size of SWNTs [31,32,47], and the doping
level [16,32,35]. The previously reported Seebeck
coefficient values of s-SWNT sheets are summarized
in Table S2 as a reference.

Meanwhile, as shown in Figure 3(b), the electrical
conductivity of the sheets decreased as the s-SWNT
purity increased, reaching 1.04 × 104 S m−1 for the
98% s-SWNT sheet. On the other hand, the Seebeck
coefficient and electrical conductivity show a negative
correlation (Figure 3(c)), which is the same as pre-
vious report [14,31,32]. As a result, the PF (=σS2)
increased as the s-SWNT purity increased (Figure 3
(d)). Interestingly, we recognized that the PF values
were decreased with the increasing electrical conduc-
tivity as plotted in Figure 3(e). The trend is opposite
from the trend for PF changes upon carrier doping as
firstly reported by Nakai et al. [29]; namely, an
increase of the electrical conductivity led to the
increase of PF at low electrical conductivity region
(<104 S m−1) [14,29,31,32]. Although the reason was
not discussed, Nakai et al. also reported the similar
trend with our result; namely, the increase of PF as
the decrease of the electrical conductivity in the

comparison between m-, s-SWNT and their mixture
[29]. Above results suggested that S2 is dominant for
PF when the s-SWNT purity is controlled, whereas σ
is dominant when carrier density is controlled.

Notably, we recognized the PF of the unsorted
SWNT sheet (61.6 μW m−1 K−2) was almost compar-
able to that of the 98% s-SWNT sheet
(60.3 μW m−1 K−2) as plotted in Figure 3(d). This
result occurred because the unsorted SWNTs had
much higher electrical conductivity than s-SWNT
sheets (Figure 3(b)) since unsorted SWNTs was less
damaged than sorted SWNTs as discussed above
[42,48–50]. Indeed, in the Raman spectra of the
s-SWNT sheet, the D-band intensity at 1307.4 cm−1

normalized by the G-band intensity at 1592.4 cm−1

was higher than that of the unsorted SWNT sheet
(Supporting Information, Figure S4) [51].

Figure 4(a) shows thermal conductivity of the
sheets as functions of s-SWNT purity (for thermal
diffusivity, see Supporting Information, Figure S5).
We found that the thermal conductivity of the
s-SWNT sheets remained constant as the s-SWNT
purity changed, which is in accordance with the the-
oretical calculation of a single m- and s-SWNT [52]
and experimental result [42] of m- and s-SWNT thin
films. In thermal conduction of SWNTs, it was
proved that the phonon transport mainly contributed
to the thermal conductivity and electron transport
could be ignored in room temperature [52]. The in-
plane thermal conductivity of SWNT sheets varied
within two orders of magnitude in the literatures as
summarized in Table S3. Therefore, the difference of
the thermal conductivity range between our results
(9.16–17.9 W m−1 K−1) and reported values
(80–370 W m−1 K−1) was probably due to the differ-
ence of either SWNT diameter [53], length [54,55],
bundle size [56], anisotropy [57,58], defect density
[43], mass density [59] of SWNTs or measurement
accuracy [42,60–62]. We also recognized that the
s-SWNT sheets had lower thermal conductivity than
that of the unsorted SWNT sheet. Similar to the

(a)

Unsorted

0 20 40 60 80 100
1

10

100

Z
T

01
X(

-4
)

s-SWNT purity %

(b)

Unsorted

0

5

10

15

20

25

30

0 20 40 60 80 100

m
W(

ytivitcudnocl
a

mreh
T

-1
K

-1
)

s-SWNT purity %

Figure 4. In-plane (a) thermal conductivity and (b) ZT of s-SWNT sheets as a function of the s-SWNT purity (red circles). The TE
values of the unsorted SWNT sheet are also plotted (black squares). The blue dotted lines were added as eye guide.

Sci. Technol. Adv. Mater. 20 (2019) 101 W. HUANG et al.



electrical conductivity, it can also be explained by the
introduction of defects (Supporting Information,
Figure S4) or the shortening of SWNTs upon sorting,
which leads to additional phonon scattering in the
defective regions of SWNTs and the SWNT junctions
inside the sheets as predicted by theoretical simula-
tions [43,63,64].

3.3. ZT values of s-SWNT sheets

Based on the above measurements, the in-plane ZT
values of the s-SWNT sheets were calculated (Figure
4(b)). We found that ZT value was increased with the
increasing s-SWNT purity and reached 1.91 × 10−3 at
98% s-SWNT. This value is 14 times higher than the
ZT at 2% s-SWNT (1.36 × 10−4), which clearly
demonstrates that higher purity of s-SWNTs is ben-
eficial for TE materials. In addition, ZT of the 98%
s-SWNT sheet was higher than that of the unsorted
SWNTs (1.04 × 10−3), supporting the significance of
s-SWNT sorting for TE applications. However, it is
also important to recognize that difference between
98% s-SWNT and unsorted SWNT sheets in ZT was
not remarkable similarly to the difference of PF
between 98% s-SWNT sheet and unsorted SWNT
sheet. On the other hand, Hayashi et al. reported
the sorted s-SWNT provided higher Seebeck coeffi-
cient compared with the unsorted SWNT when the
carrier doping was controlled [16], which demon-
strated the superiority of s-SWNTs over the unsorted
SWNTs. Therefore, to further verify the superiority of
s-SWNT for TE application, it is necessary to system-
atically study the ZT value of high purity s-SWNT
sheets depending on their carrier doping level
[14,16,31,32]. It is known that the carrier doping
can control the Fermi level of s-SWNT sheets
[14,31,32]. Since Seebeck coefficient depends on the
Fermi level position, maximizing of the Seebeck coef-
ficient of the SWNT sheets is possible by carrier
doping [14,31,32], which provides a larger ZT value.
Previously, Ferguson et al. systematically studied PF
values and achieved ~700 μW m−1 K−2 for high-
purity s-SWNT networks by chemical carrier doping
[14,31,32]. With the proper characterizations of ther-
mal conductivity, it is possible to systematically study
the ZT for high purity s-SWNTs to determine opti-
mal ZT.

4. Conclusions

We measured the TE properties of s-SWNT free-
standing sheets with various s-SWNT purities to sys-
tematically evaluate their ZT values. Measurements of
the Seebeck coefficient, electrical conductivity and ther-
mal conductivity with the same samples enabled such
a systematic evaluation. We confirmed the previous
theoretical prediction that the thermal conductivity of

s-SWNT sheets does not depend on the s-SWNT purity.
As a result, we found that ZT value increased with the
increasing s-SWNT purity mainly due to the increase in
the Seebeck coefficient, which is important for TE appli-
cations of SWNTs. Since the higher purity of s-SWNT
leads to a larger increase of Seebeck coefficient upon
controlling of carrier density, systematic studies of ZT
value of s-SWNT sheets as a function of the carrier
doping level are necessary. In addition, experimental
investigations on the TE properties between sorted and
unsorted SWNTs are also useful to determine the effects
of defects induced by sorting process.

Note

1. Purity means the content of s-SWNTs in SWNTs.
100% s-SWNT purity indicates that there is no m-
SWNTs.
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