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ABSTRACT

High-throughput transcriptomic (HTTr) technologies are increasingly being used to screen environmental chemicals in vitro
to identify molecular targets and provide mechanistic context for regulatory testing. Here, we describe the development
and validation of a novel gene expression biomarker to identify androgen receptor (AR)-modulating chemicals using a
pattern matching method. Androgen receptor biomarker genes were identified by their consistent expression after
exposure to 4 AR agonists and 4 AR antagonists and included only those genes that were regulated by AR. The 51 gene
biomarker was evaluated as a predictive tool using the fold-change, rank-based Running Fisher algorithm. Using 158
comparisons from cells treated with 95 chemicals, the biomarker gave balanced accuracies for prediction of AR activation or
AR suppression of 97% or 98%, respectively. The biomarker correctly classified 16 out of the 17 AR reference antagonists
including those that are “weak” and “very weak”. Predictions based on microarray profiles from AR-positive LAPC-4 cells
treated with 28 chemicals in antagonist mode were compared with those from an AR pathway model which used 11 in vitro
HT assays. The balanced accuracy for suppression was 93%. Using our approach, we identified conditions in which AR was
modulated in a large collection of microarray profiles from prostate cancer cell lines including (1) constitutively active
mutants or knockdown of AR, (2) decreases in availability of androgens by castration or removal from media, and (3)
exposure to chemical modulators that work through indirect mechanisms including suppression of AR expression. These
results demonstrate that the AR gene expression biomarker could be a useful tool in HTTr to identify AR modulators.

Key words: androgen receptor; gene expression profiling; prostate cancer cell line; biomarker; toxicogenomics; LAPC-4 cell line.

High-throughput screening (HTS) assays are an important com-
ponent of chemical safety evaluation programs carried out by
the EPA ToxCast screening program (http://epa.gov/ncct/tox-
cast/; last accessed August 10, 2018) and the cross-agency
Tox21 program (http://www.ncats.nih.gov/tox21; last accessed
August 10, 2018). There are approximately 700 HTS Tier 1
assays representing approximately 350 molecular targets that
have been used to screen more than 1800 chemicals (Judson
et al. 2014). Although the data have proven useful in prioritizing
chemicals for further testing, it is recognized that the assays do

not sufficiently cover all potentially important pathways that
could be perturbed by environmental chemicals (Cox et al. 2014;
Filer et al. 2014). High-throughput transcriptomic (HTTr) tech-
nologies have the potential to examine many more pathways
simultaneously and in the near future could be used in testing
programs as “Tier 0” assays defined as assays that are carried
out prior to Tier 1 screening. The putative chemical targets
identified could then be validated by selected in vitro HTS
assays. Ideally, the assays would assess both the parent chemi-
cal and metabolites.
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For HTTr screening to become practical, there needs to be a
shift from the use of conventional microarrays to new methods
that can be adapted to HTS. These include emerging technolo-
gies that can assess the expression of most, if not all, of the pro-
tein coding genes from chemically treated cells. A number of
promising techniques are now available that have been adapted
to HTS to allow measurement of expression of targeted genes
from lysates of treated cells (Larman et al. 2014; Yeakley et al.
2017). Parallel computational methods need to be developed to
simultaneously predict modulation of molecular targets that
can be linked to the network of adverse outcome pathways
(AOPs) relevant to chemical-induced toxicity (Edwards et al.
2015). Machine learning methods have been used to predict
phenotypic endpoints such as cancer (Waters et al. 2010), but
rarely have they been used to predict chemical-induced effects
on specific targets (eg, Kleinstreuer et al. 2014; Oshida et al.
2015a,c). Methods that evaluate pathway level perturbations are
generally useful for hypothesis generation, but none appear to
have been validated as tools for prediction. Gene set enrichment
analysis has been used with some success both in relation to
identification of potential drugs to treat diseases (Lamb et al.
2006) and to toxicology (Smalley et al. 2010), but the approach
has not been fully exploited in terms of prediction of modula-
tion of specific targets.

Exposure to endocrine disrupting chemicals (EDCs) is a risk
factor for oncogenesis and disruption of the development of
many organ systems in humans and wildlife (Diamanti-
Kandarakis et al. 2009). Increased recognition in the 1990s that
man-made chemicals may interfere with endocrine functions
in wildlife and humans led to legislation in the United States,
eventually resulting in a mandate that the US EPA develop a
screening program for potential EDCs. In this program, approxi-
mately 10,000 existing chemicals would be evaluated for their
potential to disrupt the estrogen, androgen, and thyroid signal-
ing systems (The Endocrine Disruptor Screening Program
[EDSP]). Under these guidelines, a battery of Tier 1 in vitro and
short-term in vivo screening assays, including those that assess
nuclear receptor activity, were developed for chemical hazard
screening, to be followed by longer term, more definitive in vivo
Tier 2 tests for endocrine disrupting activity. One mechanism
by which potential EDCs can interfere with normal endocrine
signaling is via inappropriate activation or repression of a sub-
group of nuclear receptors for androgen, estrogen, and thyroid
hormones. These receptors include 2 estrogen receptors (ERa

and ERb), the androgen receptor (AR), and 2 thyroid hormone
receptors (TRa, TRb). The receptors act as ligand-binding tran-
scription factors that can be activated or repressed by xenobiotic
chemicals, resulting in altered gene expression in susceptible tis-
sues. The EPA’s vision for the EDSP in the 21st Century (EDSP21)
includes utilization of in vitro HTS assays, coupled with computa-
tional modeling, to prioritize chemicals and to eventually replace
or provide alternatives to some or all of the current EDSP Tier 1
screening assays (https://www.federalregister.gov/articles/2015/
06/19/2015-15182/use-of-high-throughput-assays-and-computa-
tional-tools-endocrine-disruptor-screening-program-notice; last
accessed August 10, 2018). Within the ToxCast battery, there are
18 and 11 HTS assays that have been used to evaluate the ability
of chemicals to modulate ER and AR, respectively. Computational
models based on the results of these assays have been developed
to allow accurate prediction of chemicals that target ER (Judson
et al. 2015) and AR (Kleinstreuer et al. 2017).

In a previous study (Ryan et al. 2016), we developed methods
for the accurate identification of ER agonists and antagonists in
microarray profiles from human breast cancer cell lines. Here,

we determined if this same approach could be used to identify
chemicals that modulate the activity of AR. A biomarker of AR-
regulated genes was built from a set of experiments applying
chemical and genetic perturbations known to affect AR. The 51
AR biomarker genes, used in the context of a pattern matching
algorithm, were found to be accurate at identifying both AR ago-
nists and antagonists in a large gene expression compendium
developed from microarray profiles generated in human pros-
tate cancer cell lines. We found that our AR biomarker could ac-
curately predict the antiandrogenicity of the same compounds
when compared with the AR pathway model that may be used
to assess antiandrogenicity of compounds through HTS screen-
ing programs (Judson et al. 2015; Rotroff et al. 2014).

MATERIALS AND METHODS

Culture and treatment of LAPC-4 cells. The LAPC-4 cell line
expresses a wild-type AR that is not amplified (Klein et al. 1997;
Watson et al. 2015). LAPC-4 cells were cultured in IMDM media
(GIBCO) supplemented with 5% FBS (Omega Scientific) and 1�
penicillin/streptomycin/glutamine (GIBCO). An initial range
finding experiment (data not shown) was conducted to deter-
mine the optimal concentration of the positive control com-
pound, R-1881 (also called metribolone; Sigma Chemicals), to
allow detection of both agonism and antagonism. Cells were
plated at 7.5� 105 cells per well in 1 ml media in 24-well plates.
After 48 h, media was replaced with dosing solutions containing
DMSO (0.05%), R-1881 (0.16, 0.33, or 0.50 nM) alone or with 1 mM
cyproterone acetate, 0.5 mM androstenedione, 5 mM bicaluta-
mide, or 10 mM flutamide. After 6 h of exposure, media were re-
moved; cells were rinsed with PBS and frozen in Buffer RLT
(Qiagen). (It should be noted that the range finding microarray
comparisons were not used to build the biomarker.) In a second
experiment, cells were exposed, as described above, to 28 chem-
icals (see Table 1 for exposure conditions) in the presence of R-
1881 (0.33 nM). Both experiments were conducted in triplicate (3
individual experiments performed on separate days). Chemical
concentrations were selected based on observed activity in the
ToxCast AR pathway assays (Kleinstreuer et al. 2017) and to
minimize cytotoxicity (Judson et al. 2015). In general, concentra-
tions were chosen that were above predicted AC50 values for
agonism or antagonism (when available) and below any pre-
dicted cytotoxicity levels. Exposure to the strongest agonists
(AC50 values in sub micromolar range) were at 0.5 mM, whereas
others were at 10 mM. Antagonist exposures were performed at
10 or 20 mM. Concentrations for non-AR modulators were se-
lected to be below the predicted cytotoxicity threshold (based
on ToxCast data; Judson et al. 2016) and to be similar to those of
the AR modulators (10–20 mM). All chemicals came from the
ToxCast chemical inventory (kindly provided by Dr Ann
Richard).

Gene expression microarrays. Global gene expression was evalu-
ated by microarray analysis (Figure 1A). Total RNA was isolated
and purified with the RNeasy MinElute column protocol (Qiagen
GmbH, Hilden, Germany), evaluated for integrity using an
Agilent RNA 6000 Nano chip on an Agilent 2100 Bioanalyzer
(Agilent Technologies GmbH, Berlin, Germany), and quantitated
using the NanoDrop spectrophotometer (NanoDrop
Technologies, Wilmington, Delaware). After randomization,
samples were hybridized in a blinded manner onto Human HT-
12 v4 Expression BeadChip arrays (Illumina, San Diego,
California) in the NHEERL Genomics Research Core Laboratory
using standard Illumina protocols. Arrays were scanned, and
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raw data (.idat files) were obtained using Illumina iScan software
(v3.3.28) and analyzed using Illumina GenomeStudio and Partek
Genomics Suite Software. Array data are publicly available at
Gene Expression Omnibus (GEO), accession number GSE109021.

Identification of differentially expressed genes in the LAPC-4 experi-
ment. Raw gene expression intensities were quantile-normalized
using Illumina GenomeStudio. ANOVA analysis was performed
in Partek Genomics Suite, with a p� .05 for significance. All fil-
tered gene lists were uploaded into BaseSpace Correlation Engine
(BSCE). Heat maps were generated using Eisen Lab Treeview soft-
ware (http://rana.lbl.gov/EisenSoftware.htm; last accessed August
10, 2018).

Identification of differentially expressed genes in BSCE microarray
datasets. All differentially regulated genes that were part of each
bioset were identified using the criteria in the data analysis pipe-
line in BSCE (https://www.illumina.com/products/by-type/infor-
matics-products/basespace-correlation-engine.html; last accessed
August 10, 2018; previously called NextBio) and are described in
detail in Kupershmidt et al. (2010) and Ryan et al. (2016).

Assembly of a compendium of microarray experiments carried out in
prostate cancer cell lines. Information in the BSCE database was
used to build an annotated compendium of gene expression
biosets derived from experiments carried out in human prostate

tissue, including prostate cancer cell lines. The BSCE database
contains over approximately 21,600 highly curated, publically
available, omic-scale studies across 15 species including ap-
proximately 134,000 lists of statistically filtered genes (as of
October 2017). Annotated information from BSCE about human-
derived biosets was used to populate a master file with informa-
tion about each bioset including Biodesign, Biosource, Chemical
Name, Gene, Gene Mode, Phenotype, Tissue, and Study ID (last
update, August 17, 2017). The table was then filtered for biosets
derived from prostate cancer cell lines or prostate tissue, and
these biosets were used to populate a separate table. Each bioset
was annotated for category and name of the perturbant exam-
ined based on the name of the bioset. For example, the bioset
called “LNCaP cells þRTI-6413-018 6 hr_vs_ vehicle 6 hr” is in the
category “Chemical” and the specific perturbant is “RTI-6413-
018”. The bioset called “Prostate cancer VCaP cells—androgen
receptor siRNA_vs_ control siRNA” is in the category “Gene” and
the specific perturbant is “AR”. Biosets that examined more
than 2 perturbants at 1 time (eg, exposure to 3 chemicals vs con-
trol) or that could not be interpreted were not used in any fur-
ther analyses. The final compendium contained approximately
2510 biosets. Information about the biosets examined in the
study is found in Supplementary File 1.

Identification of AR biomarker genes. Lists of statistically filtered
genes were used to derive a consensus gene expression bio-
marker for AR (Figs. 1 and 2A). Biosets in BSCE database used to
create the biomarker included those from cells treated with 4
agonists (R-1881, androstenedione, dexamethasone, RTI-6413-
018) or 4 antagonists (bicalutamide, triticonazole, tubuconazole,
vinclozalin) or from cells either expressing a constitutively ac-
tive form of AR or in which AR expression was knocked down
by shRNA or siRNA (Table 2). Biosets were selected because they
exhibited robust gene expression changes (>210 statistically al-
tered genes for each bioset), the chemicals were structurally di-
verse, at least for the antagonists and included both well-
known agonists and antagonists. Although all of the agonists
are considered strong or moderately potent, antagonists were
classified as strong (bicalutamide), moderate/weak (vinclozolin),
or weak (triticonazole, tebuconazole) (Kleinstreuer et al. 2017).
Genetic biosets were selected because of well characterized
effects on AR. The AR (F876L/T877A) and AR (W741C/T877A)
mutants each contain 2 amino acid changes in the ligand-bind-
ing domain (LBD) of AR; the F876L mutation was isolated from
the AR in LNCaP cells resistant to the growth inhibition effects
of the AR antagonist enzalutamide (Korpal et al. 2013). The
W741C mutant was shown to confer an agonist switch specific
for bicalutamide (Hara et al. 2003). The T877A mutation is found
in LNCaP cells and confers resistance to hydroxyflutamide
(Veldscholte et al. 1992). The V7 mutant lacks the LBD due to
splicing of “intronic” cryptic exons to the upstream exons
encoding the AR DNA-binding domain (Cottard et al. 2013; Hu
et al. 2009). All 3 mutants confer androgen-independent AR acti-
vation (Cottard et al. 2013; Korpal et al. 2013; Veldscholte et al.
1992). The 3 experiments consisting of siRNA or shRNA against
AR versus controls resulted in decreases in the expression of
the AR protein (Gonit et al. 2011; Li et al. 2014; Zhu et al. 2012).

The top 5000 genes with the greatest degree of overlap be-
tween all biosets were identified by the “meta-analysis” func-
tion in BSCE database, and all data were exported. There were 3
filters that were manually implemented (Figure 2A). First, genes
which exhibited consistent expression behavior across the 4
agonists were selected, ie, genes had to consistently exhibit ei-
ther up or down regulation in at least 2 of 4 comparisons.

Table 1. Exposure Conditions for LAPC-4 Cells Examined in
Antagonist Mode

Chemical Name CASRN Dose (mM) Classificationa

4-Androstenedione 63-05-8 10 Agonist
Apigenin 520-36-5 20 Antagonist
Atrazine 1912-24-9 20 Inactive
Bicalutamide 90357-06-5 20 Antagonist
Bisphenol A 80-05-7 20 Antagonist
Cyproterone acetate 427-51-0 20 Both
p,p0-DDE 72-55-9 20 Antagonist
Dehydroepiandrosterone 53-43-0 20 Antagonist
Dexamethasone sodium

phosphate
2392-39-4 10 Agonist

5a-Dihydrotestosterone 521-18-6 0.5 Agonist
Fenitrothion 122-14-5 20 Antagonist
Finasteride 98319-26-7 20 Inactive
Flutamide 13311-84-7 20 Antagonist
Hydroxyflutamide 52806-53-8 20 Antagonist
Iprodione 36734-19-7 20 Inactive
Linuron 330-55-2 20 Antagonist
Methyl testosterone 58-18-4 0.5 Agonist
Mifepristone (RU-486) 84371-65-3 10 Antagonist
Norethindrone 68-22-4 0.5 Agonist
Prochloraz 67747-09-5 20 Antagonist
Procymidone 32809-16-8 20 Antagonist
Progesterone 57-83-0 10 Agonist
Spironolactone 52-01-7 20 Antagonist
Tebuconazole 107534-96-3 20 Antagonist
Testosterone

propionate
57-85-2 0.5 Agonist

17b-Trenbolone 10161-33-8 0.5 Agonist
Triticonazole 131983-72-7 10 Antagonist
Vinclozolin 50471-44-8 20 Antagonist

All exposure conditions were carried out in the presence of 0.33 nM metribolone

(R1881).
aClassification was based on the AR pathway model.
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Second, genes which exhibited opposite regulation by antago-
nists were selected and had to consistently exhibit either up or
down regulation by at least 2 of the 4 comparisons. Thus, genes
with increased expression after chemical exposure by agonists
were decreased by antagonists, and genes with decreased ex-
pression after agonist exposure were increased by antagonists.
In the genetic filter, genes were selected that exhibited features
of AR dependence by responding in the predicted direction by
either expression of a constitutively active AR or by knocking
down expression with siRNA or shRNA targeted against AR. To
pass this filter, the gene needed to be altered by the constitutive
AR in the same direction as an AR agonist and/or altered by the
AR knockdown in the same direction as an AR antagonist in at
least 1 out of the 6 comparisons. Genes with inconsistent regu-
lation were removed. Genes which did not exhibit robust ex-
pression across the agonist treatments (ie, absolute fold-change
<1.5) were removed. The final list consisted of 51 genes. An av-
erage fold-change across all agonist treatments was calculated
for each gene. The average fold-change values and gene abbre-
viations were imported into BSCE database without any further

filtering. Pathway analysis was performed on the biomarker
genes using ingenuity pathway analysis (IPA) (Qiagen
Bioinformatics, Redwood City, California).

Identification of AR target genes. To determine putative target
genes that may be directly regulated by AR in our biomarker gene
list, we analyzed chromatin immunoprecipitation coupled with
DNA sequencing (ChIP-seq) datasets derived from multiple hu-
man prostate cell lines including LNCaP, VCaP, and PC3 express-
ing wild-type AR under a CMV promoter (Chng et al. 2012; Guseva
et al. 2012; Lin et al. 2009; Massie et al. 2011; Wilson et al. 2016; Zhu
et al. 2012). Genomic coordinates derived from these datasets
were updated to human genome build GRCh38/hg38 using
LiftOver (performed October 17, 2017; https://genome.ucsc.edu/
cgi-bin/hgLiftOver; last accessed August 10, 2018). Coordinates
were annotated by closest gene feature using the R Bioconductor
3.6 package function “ChIPpeakAnno” (Zhu et al. 2012). To in-
crease the likelihood of selecting regions that were AR bound, we
further searched these bound regions for the presence of an an-
drogen responsive element (ARE; Supplementary File 1)
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Figure 1. Assembly, characterization, and testing of the AR biomarker. A, AR biomarker development and characterization. Experiments used to identify AR-regulated

genes included 4 biosets from agonist exposed cells, 4 biosets from antagonist exposed cells, 3 biosets from cells expressing constitutively active AR mutants (caAR),

and 3 biosets from cells in which AR expression was knocked down by siRNA. See Table 2 for description of the individual biosets used. Differentially expressed genes

were identified as described in the Methods. Biomarker genes were identified from the differentially expressed genes after applying several filtering steps. Post hoc

analysis on genes in the biomarker was performed by IPA for canonical pathway enrichment and potential transcription factor regulators. Identification of primary tar-

gets of AR was supported through queries of chromatin immunoprecipitation coupled with DNA sequencing (ChIP-seq) datasets and by examining expression of the

biomarker genes following genetic perturbation. B, Biomarker testing and screening. The AR biomarker was imported into the BSCE database, in which internal proto-

cols rank-ordered the genes based on their average fold-change. Screening of a human prostate tissue compendium was carried out by comparison of the biomarker to

each bioset in the BSCE database using a pair-wise rank-based algorithm (the Running Fisher test). The results of the test, including the direction of correlation and

p-value for each bioset in the compendium, were exported and used to populate a master table containing bioset experimental details. A test of the accuracy of the bio-

marker predictions was carried out using treatments that are known agonists and antagonists for AR. The figure was adapted from Ryan et al. (2016).
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previously defined by a position site specific model using AR
ChIP-seq data (AR 2.0) (Wilson et al. 2016). These regions were
evaluated using the R BioStrings v2.40.2 package function
“matchPWM” (https://www.rdocumentation.org/packages/
Biostrings/versions/2.40.2/topics/matchPWM; last accessed

August 10, 2018). Matches were based on a minimum of 80% re-
latedness (defined as min.score). The evaluation of evidence
for linkage of AR binding in association with target genes was a
post hoc analysis and served to support, but not develop, the
composition of the biomarker.
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Figure 2. Weight of evidence approach to identify AR-regulated genes. A, Filters used to identify biomarker genes. Biomarker genes were identified using 2 chemical fil-

ters and 1 genetic filter: Genes (1) were consistently regulated by 4 AR agonists from 3 studies, (2) were consistently regulated in an opposite manner by 4 antagonists

from 2 studies, and (3) exhibited dependence on AR by selecting genes responsive to perturbations of AR gene activity in 3 biosets in which mutations in the ligand-

binding domain result in constitutive activation and/or in 3 biosets in which AR expression was decreased by shRNA or siRNA targeting AR. The genes in the biomarker

are shown. B, (Top) Heat map of the fold-change expression of 51 biomarker genes across the biosets used to make the biomarker. (Bottom) Correlation between the AR

biomarker and the biosets. The AR biomarker was compared with the biosets using the Running Fisher test. The significance of the correlation is indicated by the

–log(p-value). Biosets with positive or negative correlation to the biomarker are indicated as positive or negative numbers, respectively. The name of the compounds

used in the treatments or the type of AR modulation is shown.

Table 2. Biosets Used to Create the AR Biomarker

Bioset Name Mode Perturbant Exposure Time Cell Line Study

LNCaP androgen receptor positive prostate cancer cells
1nM R1881 treated 24hr _vs_ EtOH

Agonist R1881 24 h LNCaP GSE50936

LNCaP cells þ RTI-6413-018 6hr _vs_ vehicle 6hr Agonist RTI-6413-018 6 h LNCaP GSE4636
Androstenedione (10uM) versus DMSO Agonist Androstenedione 6 h LAPC-4 Present study
Dexamethasone (10uM) versus DMSO Agonist Dexamethasone 6 h LAPC-4 Present study
DHT-stimulated LNCaP cells þ bicalutamide _vs_ DHT-

stimulated control
Antagonist Bicalutamide 18 h LNCaP GSE7708

R1881þTriticonazole (10 mM) versus R1881 Antagonist Triticonazole 6 h LAPC-4 Present study
R1881þVinclosalin (20 mM) versus R1881 Antagonist Vinclosalin 6 h LAPC-4 Present study
R1881þTebuconazole (20 mM) versus R1881 Antagonist Tebuconazole 6 h LAPC-4 Present study
Prostate cancer LnCaP cells control (DMSO) 24 h—over-

expressing AR (F876L/T877A) _vs_ empty vector
Genetic AR (F876L/T877A) NA LNCaP GSE44924

Prostate cancer LnCaP cells control (DMSO) 24 h—over-
expressing AR (W741C/T877A) _vs_ empty vector

Genetic AR (W741C/T877) NA LNCaP GSE44924

Prostate adenocarcinoma LNCaP cells transduced 72 h
with ligand-independent AR-V7_vs_ AR-wildtype

Genetic AR-V7 NA LNCaP GSE71334

LNCaP prostate cancer cells�AR shRNA transfec-
tedþvehicle treated _vs_ control shRNAþvehicle

Genetic AR shRNA NA LNCaP GSE22483

Prostate cancer VCaP cells�androgen receptor siRNA
_vs_ control siRNA

Genetic AR siRNA NA VCaP GSE32892

Prostate cancer LNCaP cells grown in regular media�AR
siRNA for 48hr_vs_ control siRNA

Genetic AR siRNA NA LNCaP GSE49287

NA, not applicable.
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Comparison of the AR biomarker to biosets in the compendium. The
strategy for comparison of a biomarker to collections of biosets
has been described in previous studies (Oshida et al. 2015a,b,c).
Using the Running Fisher algorithm, the AR biomarker was
compared with each derived bioset in the BSCE database. The
method allows an assessment of the overlap in regulated genes
between the biomarker and each bioset, and whether those
overlapping genes are significantly regulated in a similar or op-
posite manner. Biosets which exhibited expression of biomarker
genes that were significantly positively correlated with the bio-
marker would be predicted to exhibit AR activation. The activa-
tion could be due to direct agonism or occur through other
mechanisms. Biosets which exhibited expression of biomarker
genes that were significantly negatively correlated to the bio-
marker would be predicted to exhibit AR suppression through
direct or indirect mechanisms. The p-value and direction of the
correlation were exported. p-Values were converted to �log(p-
value)s, and those with negative correlations were converted to
negative numbers. The final list of �log(p-value)s were used to
populate the table containing the study characteristics of each
bioset. This final master table enabled the determination of
effects on AR by categories of perturbants (eg, chemical) as well
as individual perturbants (eg, atrazine). To determine if the level
of AR expression affects the expression of biomarker genes, bio-
sets from experiments involving AR modulation in prostate
cancer cell lines were examined. Specifically, the expression
level (fold change) of the 51 biomarker genes was determined in
the 6 biosets used to derive the biomarker, as well as biosets de-
scribed below.

Predictive accuracy of AR function. Predictive accuracy was carried
out with 2 datasets. The first set consisted of 158 biosets, all
from prostate cancer cell lines, including well characterized AR
agonists and antagonists (Supplementary File 1). The number of
agonist and antagonist biosets was matched with an equal
number of biosets from chemically treated AR-negative PC3
cells, which are not responsive to AR modulators. The dataset
consisted of 95 chemicals from 39 studies and included a set of
18 antagonists from our study (Table 1). Some of the other bio-
sets of antagonists were run in antagonist mode with either R-
1881 or DHT as the AR agonist. Biosets used to create the bio-
marker were not included in this analysis. The second dataset
consisted of 28 chemicals run in antagonist mode in LAPC-4
cells and is described below in comparison to the AR pathway
model. All statistically filtered gene lists were examined for sta-
tistically significant correlation to the AR biomarker genes using
the Running Fisher algorithm in BSCE database. Prior studies
with gene expression biomarkers for xenobiotic receptors
showed that a cutoff p-value �10�4 after a Benjamini Hochberg
correction of a¼ 0.001 resulted in a balanced accuracy for activa-
tion of 95%, 97%, and 98% for AhR, CAR, and PPARa, respectively
(Oshida et al. 2015a,b,c). The values for predictive accuracy were
calculated as follows: Sensitivity (true positive rate) ¼TP/
(TP þ FN); specificity (true negative rate) ¼TN/(FP þ TN); positive
predictive value (PPV) ¼TP/(TP þ FP); negative predictive value
(NPV) ¼TN/(TN þ FN); balanced accuracy ¼(sensitivity þ
specificity)/2.

Comparison of biomarker predictions to the AR pathway model.
Comparisons were made between the predictions using the AR
biomarker and predictions from the AR pathway model
(Kleinstreuer et al. 2017) in which the results of 11 in vitro HTS
assays were used to score chemicals for AR agonism or antago-
nism. These 11 assays included endpoints for receptor binding,

receptor dimerization, reporter gene assays, and cell growth,
implemented in a variety of cell types and assay readout for-
mats. The rationale for using this battery of assays was to ac-
count for a variety of assay artifacts and assay interference
issues that can arise when screening a diverse set of chemicals,
as well as testing chemicals up to concentrations at which cell
stress and cytotoxicity can occur. A mathematical model was
used to derive pathway-level concentration-response profiles
for either agonism or antagonism. Efficacy values were normal-
ized to antagonist activity of hydroxyflutamide. Agonist and an-
tagonist scores were calculated as the area under the
concentration-response curves (AUC) for the chemical relative
to the positive control. Thus, the higher the AUC, the higher
was the predicted AR activity (combined potency and efficacy)
for that chemical. Assay interference (eg, technological,
cytotoxicity-driven) was considered when evaluating the HTS
data. Assay results were compared with the results of 35 cyto-
toxicity assays by the calculation of a Z-score, ie, the number of
median absolute deviations between AR pathway activity and
the median cytotoxic concentration (Kleinstreuer et al. 2017).
For the comparisons in this paper, chemicals were classified as
active if their AUC �0.1. Of the 1855 chemicals examined in the
Kleinstreuer et al. (2017) study 28 chemicals were evaluated in
antagonist mode by transcript profiling in LAPC-4 cells de-
scribed above. Predictive accuracy was calculated with and
without the 3 biosets used to create the biomarker.

RESULTS

Assembly and Functional Characterization of an AR Biomarker
To assemble a biomarker predictive of AR modulation, gene ex-
pression comparisons (called biosets) were utilized from chemi-
cally treated prostate cancer cell lines (Figure 1). As described in
Materials and Methods section, the biomarker was built from
biosets known to perturb AR activity in 3 steps (Figure 2A). First,
genes which exhibited consistent regulation by 4 AR agonists
were identified. Genes were then filtered for those that only
exhibited opposite regulation by 4 AR antagonists. Finally, a ge-
netic filter was used to exclude those genes that were not also
regulated by modulation of AR activity. The genetic filter used
biosets from cells expressing constitutively active mutants of
AR or those in which the expression of AR was knocked down. A
total of 51 genes (39 with increased expression and 12 with de-
creased expression) were identified. Figure 2B (top) shows the
consistent expression of the genes in the biomarker across the
chemical and genetic perturbations. The full list of genes in the
biomarker is found in Supplementary File 1.

The biomarker genes were examined for evidence that they
are direct targets of AR regulation, using published chromatin
immunoprecipitation coupled with DNA sequencing (ChIP-Seq)
experiments. Of the 51 AR biomarker genes, 46 of these were as-
sociated with the AR-bound ChIP-seq regions in at least 1 data-
set, with an average of 3 datasets per gene (Supplementary File
1). To strengthen the evidence that AR likely directly binds these
regions, we scanned for AREs (based on previously published
ChIP-seq analysis (Wilson et al. 2016) in silico. We observed 17
biomarker genes associated with AR ChIP-seq regions that con-
tained this motif (bolded entries in Supplementary File 1), and
all 17 genes were upregulated in the biomarker. Direct gene tar-
gets of AR were expected given that we selected genes exhibit-
ing regulation consistent with either constitutive activation or
suppression of AR. Overall, the results of the ChIP-Seq indicate
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that most (46/51) of the genes in the AR biomarker are likely un-
der direct transcriptional control of AR.

The 51 AR biomarker genes were examined for functional
class enrichment by IPA. No canonical pathways were signifi-
cantly enriched based on overlap of 3 or more genes in a path-
way. The upstream analysis function of IPA identified 2
transcription factors predicted to regulate the biomarker genes
with significant Z-scores (�2.0). AR was the top hit (Z-
score ¼2.7) and the glucocorticoid receptor (GR) was the other
hit (Z-score ¼2.4). The results are consistent with AR and GR be-
ing structurally similar members of the nuclear-receptor super
family, sharing recognition of similar DNA-response elements,
and recruiting the same coactivators to their target genes
(Claessens et al. 2017).

Behavior of the Biomarker in a Prostate Cancer Cell Line
Compendium
The ability of the 51-gene biomarker to identify chemicals that
modulate AR was examined in a compendium of biosets derived
from prostate cancer cell lines assembled as described in
Materials and Methods section. The compendium contains ap-
proximately 2510 biosets of gene expression differences be-
tween control and experimental states. There are 1610 biosets
from cells treated with 1152 chemicals. Most chemical treat-
ments came from the Broad Connectivity Map 2.0 dataset in
which screening was carried out in the AR-negative PC3 cell
line.

The Running Fisher algorithm (Kupershmidt et al. 2010), a
fold-change rank-based pattern matching strategy, was used to
identify chemicals that modulate AR. The algorithm calculates
the significance of the correlation between the biomarker and
individual biosets in the database. By way of demonstration,
Figure 2B, bottom shows the �Log(p-value)s of the correlations
between the AR biomarker and the biosets used to build the bio-
marker. As expected, the biosets from agonist treated cells
exhibited statistically significant positive correlation to the bio-
marker (p-values �10�20), and the biosets from treatments with
the antagonists exhibited significant negative correlation to the
biomarker (p-values �10222). The biosets from cells with consti-
tutive activation of AR exhibited significant positive correlation
(p-values �10210), and biosets from cells in which AR expression
was knocked down exhibited significant negative correlation (p-
values �1025).

We surveyed the ability of different prostate cancer cell lines
to serve as potential screening models for the identification of
AR modulating chemicals. Cell lines were divided into those
that express an active or inactive AR. The active cell lines in-
cluded LAPC-4, LNCaP, and VCaP; the 1 AR negative cell line was
PC3, which represented the majority of the biosets. Figure 3A
shows the distribution of �Log(p-value)s for each of the chemi-
cally treated cell lines. The AR active cell lines exhibited a wide
distribution of �Log(p-value)s including many >j4j, the cutoff
for significance. These results indicate that the 3 cell lines are
responsive to both AR activators and suppressors, as expected.
In contrast, the PC3 cell line �Log(p-value)s were mostly be-
tween 4 and �4. There were 2 instances in which chemical
treatment appeared to lead to activation of AR in PC3 cells (ie,
�Log(p-value) � 4; Figure 3A, inset). One was from PC3 cells sta-
bly expressing an exogenous wild-type AR and exposed to R-
1881 (from GSE54104). The other was a false positive from cells
exposed to the antihistamine drug chloropyramine (from the
CMAP dataset). None of the other approximately 1300 chemicals
in the PC3 CMAP dataset had significant effects on AR. Cell lines
derived from tissues other than prostate were examined in a

human compendium of approximately 37,000 biosets as poten-
tial screening models. However, due to lack of biosets in which
cells were exposed to AR agonists and antagonists, the useful-
ness of the cell lines for screening could not be evaluated (data
not shown). However, the biomarker appears to be useful as a
screening tool in AR-positive prostate cancer cell lines.

We next determined if the biomarker could be used to show
consistent activation or suppression by prototypical agonists or
antagonists of AR across multiple studies. There were 30 or 24
biosets from AR-positive cells treated with DHT or R-1881, re-
spectively. Almost all of the biosets exhibited positive correla-
tion to the biomarker and all but 8 exhibited significant (�Log(p-
value) �4) positive correlation to the biomarker (Figure 3B).
There were no obvious reasons why those treatments that did
not achieve significance did not modulate the biomarker genes.
In 1 bioset, treatment was for only 3 h which may not be long
enough to trigger a full AR-dependent response. There were 5 or
15 biosets from cells treated with the antagonists bicalutamide
or enzalutamide (MDV3100), respectively, treated by themselves
or examined in antagonist mode. All biosets exhibited signifi-
cant (�Log(p-value) � �4). Overall, treatment with these refer-
ence compounds across multiple studies generated gene
expression responses consistent with the biomarker for activa-
tion or suppression of AR.

The Biomarker Accurately Predicts Chemical Modulation of AR
To determine if our microarray approach could be used as an al-
ternative Tier 0 screening model to identify AR modulators, a
classification analysis was performed on 158 biosets from pros-
tate cancer cells that were treated with 95 chemicals with
known effects on AR based on the literature and AR pathway
model, including those discussed above. Classification of activa-
tion or suppression required a threshold p-value �1024. For pre-
diction of activation, the AR biomarker had a sensitivity of 94%
and a specificity of 100%, with a balanced accuracy of 97%
(Figure 4; Table 3). For prediction of suppression, the AR bio-
marker had a sensitivity of 96% and a specificity of 100%, with a
balanced accuracy of 98%.

Behavior of the Biomarker Genes Upon Perturbation of AR Gene
Activity or Androgen Depletion
We determined the extent to which expression of the biomarker
genes was influenced by the level of AR activation. Gene expres-
sion was examined in cells which either express 1 of the 4
mutants of AR from 1 study that exhibited constitutive
chemical-independent activation, or 5 comparisons from 3
studies in which the expression of the endogenous AR gene was
knocked down by siRNA or shRNA. It should be noted that these
biosets do not include those that were used to construct the bio-
marker. Figure 5A (left) shows that constitutive activation of AR
leads to consistent effects on the AR biomarker genes, similar to
chemical treatment with strong agonists. Knockdown of AR
showed generally consistent effects on the biomarker genes
with decreased expression of the up-regulated genes and in-
creased expression of the down-regulated genes, similar to an-
tagonist exposures (Figure 5A, right). There were 2 biosets after
knockdown of AR which did not result in a significant bio-
marker p-value for unknown reasons (GSE40050, GSE11428); the
cell lines used (C4-2B, LNCaP) are AR-positive. The GSE11428
study but not the other study demonstrated decreases in AR
protein expression. Overall, the biomarker could be used to
identify conditions that affect AR activity by gene perturbation.

We hypothesized that the biomarker would be able to iden-
tify biosets in which there were differences in the levels of
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androgens. The hypothesis was tested by examining compari-
sons between (1) prostate cancer cell line xenografts in cas-
trated mice versus intact mice, (2) cells grown under androgen
deprivation for up to 12 months versus no deprivation, (3) cells
grown in charcoal stripped media in which steroids were de-
pleted versus regular media, and (4) human prostate tissue
from patients undergoing androgen ablation therapy consisting
of AR antagonists and androgen synthesis inhibitors versus be-
fore ablation therapy. In each case, all biosets exhibited sup-
pression of AR with most of them achieving significance
(Figure 5B). These results indicate that the biomarker can detect
perturbation of AR by androgen depletion.

Comparison of AR Biomarker Predictions With AR Reference
Chemicals
An earlier study found that environmental chemicals were
more likely to be AR antagonists than agonists (Kleinstreuer
et al. 2017). To generate an appropriate microarray dataset to

compare to reference chemicals and the AR pathway model,
LAPC-4 cells were exposed to 28 chemicals in antagonist mode.
Preliminary experiments identified a concentration of 0.33 nM
of R-1881 that could be used to identify antagonists (data not
shown). Testing conditions are found in Table 1. Biosets were
compared with the biomarker and evaluated in the context of
annotated reference chemicals.

Biomarker predictions were compared with classifications of
OECD AR reference chemicals as summarized in Lynch et al.
(2017). None of the 6 agonists were classified as antagonists us-
ing the biomarker (Table 4). There were 13 overlapping chemi-
cals classified as antagonists and all but 2 were correctly
identified using the biomarker. The 2 antagonists not identified,
progesterone and cyproterone acetate, were marginally active
as antagonists (�Log(p-value)s ¼�3 or �3.7). Apigenin and atrazine
were the only reference chemicals negative for AR modulation.
Using the biomarker, atrazine was negative for AR activity, and api-
genin was classified as an AR antagonist. Apigenin was found to be

Figure 3. Continued

highest �Log(p-value)s from chemically treated PC3 cells. The top 2 biosets passed the cutoff for significance. (Lower) Heat map showing the fold-change expression of

genes in the AR biomarker. B, biomarker. B, Effects of prototypical AR agonists and antagonists on biomarker activity. (Upper) �Log(p-values) of correlations between

the AR biomarker and biosets from AR-positive cell lines treated with the agonists R-1881 or dihydrotestosterone or the antagonists bicalutamide or enzalutamide

(MDV3100). Cells were exposed to antagonists either by themselves or in antagonist mode. The GEO accession numbers from which the biosets were derived are indi-

cated. (Lower) Expression of the biomarker genes is shown. B, biomarker.
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an AR antagonist in the Kleinstreuer et al. (2017) study. In sum-
mary, 18 out of 21 OECD classifications (86%) were correctly classi-
fied by the biomarker with the 2 false negatives marginally active.

Additional AR reference chemicals were classified based on
a systematic literature review in the Kleinstreuer et al. study, a
number of which overlapped with the chemicals examined in
the LAPC-4 experiment (Table 4). There were 17 overlapping
chemicals with antagonist classifications (active or inactive). All
chemicals were correctly classified except the false negative cy-
proterone acetate which was marginally active as an antagonist
(�Log(p-value) ¼�3). The chemicals correctly classified included
“weak” (p,p0-DDE) and “very weak” (procymidone) antagonists.
Overall, 16 out of the 17 reference chemicals (94%) from
Kleinstreuer et al. were correctly classified.

Comparison of AR Biomarker Predictions With Those From an AR
Pathway Model
We compared the predictions from an AR pathway model to
predictions based on microarray profiles of environmental
chemicals generated in our laboratory. The AR pathway model
is based on the results of 11 in vitro HTS assays that examined

activity at different points in the AR pathway (receptor binding,
coregulator recruitment, gene transcription, and protein pro-
duction); the model was used to predict AR modulation by 1855
chemicals (Kleinstreuer et al. 2017). Agonist and antagonist
scores were calculated as the AUC for the chemical relative to
the positive control. The higher the AUC, the greater the pre-
dicted AR activity (combined potency and efficacy) for that
chemical.

Figure 6 shows a comparison of the antagonist predictions
based on the –log(p-value)s from the LAPC-4 study and the AR
AUC from the Kleinstreuer et al. study for the 28 overlapping
chemicals. The –log(p-value)s of the biomarker predictions were
rank ordered. Color bars show the classifications of each bioset
for prediction of antagonism. There was 1 false positive and 1
false negative. The false negative, cyproterone acetate
approached significance (�Log(p-value) ¼�3). The false positive
was the 5-a-reductase inhibitor, finasteride. Using the AR path-
way model as the reference dataset, the AR biomarker gave a
balanced accuracy of 93% for prediction of suppression
(Table 5). The predictive accuracy of the methods was similar
(92%) when the 3 biosets used to create the biomarker were re-
moved from the analysis.

The Biomarker can Identify Chemicals That Suppress AR by Diverse
Mechanisms
We examined additional chemicals not discussed above that
had predicted effects on AR activity. A number of chemicals not
commonly known as AR modulators were found to act as AR
suppressors (Figure 7). Treatment by the HDAC inhibitor, tri-
chostatin A, led to gene expression indicative of AR suppression
in 2 studies carried out in LNCaP cells (GSE8645, GSE20433) but
not in PC3 cells (GSE5258). Trichostatin A suppressed AR gene
expression in prostate cancer cell lines (Rokhlin et al. 2006;
Welsbie et al. 2009). Treatment with the HSP90 inhibitor 17-(ally-
lamino)-17-demethoxygeldanamycin (also known as
Tanespimycin; 17-AAG) was found to impair AR chromatin
binding and nuclear localization of AR (Centenera et al. 2015).
Treatment with the retinoic acid receptor–related orphan recep-
tor (ROR) c-specific antagonists, XY011 and SR2211, suppressed
AR in C4-2B cells (GSE72483). These RORc antagonists suppress
the expression of AR and regulated genes in prostate cancer cell
lines and tumors (Wang et al. 2016). Treatment of VCaP cells by
“Compound 30” suppressed AR (from GSE32892). Compound 30
was found to be a potent AR antagonist (Zhu et al. 2012).
Urolithin A, derived from walnut pedunculagin, was found to
suppress AR at 24 h in LNCaP cells using the biomarker
(GSE65527). In another study, urolithin A induced apoptosis in
LNCaP cells, most likely through a p53-dependent response and
decreased expression of AR mRNA and protein
(Sanchez-Gonzalez et al. 2016). Finally, whereas not a chemical,
the sequence-specific DNA binding “polyamine 1” which
blocks the ability of AR to bind to AREs in target genes
(Nickols and Dervan 2007) acted like an antagonist. We note the
possibility that some of the compounds identified as putative
AR modulators may be false positives due in part to the large
number of gene expression changes induced upon exposure, es-
pecially for trichostatin A. Further work is needed to validate
these findings.

DISCUSSION

High-throughput transcriptomic (HTTr) technologies have the
potential to identify EDCs in in vitro screens of environmental
chemicals. Our group has previously determined that a bio-
marker approach can be used to accurately identify ER modula-
tors in a large compendium of microarray profiles derived from
chemically treated human breast cancer MCF-7 cells (Ryan et al.
2016). In the present study, we used similar computational
methods to determine if our approach can also identify modula-
tors of AR, one of the most important and well-studied EDC tar-
gets. A weight of evidence approach was taken to identify genes
that were consistently regulated under chemical exposure and
genetic modulation conditions expected to either activate or
suppress AR activity. The 51-gene biomarker used in conjunc-
tion with a pattern matching approach could readily identify, in
a large gene expression prostate cancer cell line compendium,
chemical and genetic perturbation experiments known to mod-
ulate AR. These included (1) numerous comparisons in which
cells were exposed to AR agonists (DHT, R-1881) or AR antago-
nists (bicalutamide, enzalutamide), (2) genetic modulation of
the AR gene, and (3) depletion of androgens. The approach was
found to be very predictive in identifying AR modulators with
accuracies of 97% or 98% for activation or suppression, respec-
tively. In independent experiments the AR-positive LAPC-4 cell
line was exposed to 28 chemicals in antagonist mode to deter-
mine if we could replicate the predictions of an AR pathway
model (Kleinstreuer et al. 2017). Our methods gave a balanced

Table 3. Summary of the Sensitivity and Specificity of the AR
Biomarker

Activation Suppression

True positives 49 20
True negatives 106 137
False positives 0 0
False negatives 3 1
Sensitivity 0.942 0.952
Specificity 1 1
Positive predictive value 1 1
Negative predictive value 0.973 0.993
Balanced accuracy 0.971 0.976

The biomarker was compared with biosets that are known positives or negatives

for AR activation. Separate tests for AR activation (androgenicity) and AR sup-

pression (antiandrogenicity) were carried out. Biosets used in the analysis are

found in Supplementary File 1.
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accuracy of 93% for suppression. The results indicate that our
approach could be reliably used as a Tier 0 screen in the context
of a larger HTTr profiling effort similar to those ongoing in the
ToxCast screening program (Shah et al. 2018).

To provide an appropriate cellular context for chemical
screening, a compendium of gene expression comparisons (also
called biosets) was assembled from experiments carried out in
human prostate cancer cell lines. More than 1500 biosets were
identified and annotated from curated studies found in a com-
mercially available gene expression database (BSCE). The final
compendium contains over 1600 biosets from chemically
treated cells, most of which came from the CMAP 2.0 study car-
ried out in the AR-negative PC3 cell line (Lamb et al. 2006).
Approximately 205 biosets came from studies using LNCaP and
VCaP cell lines which have been extensively used as models for
characterization of prostate cancer treatment strategies and to
identify AR modulating chemicals. These cell lines are not ideal
models for chemical screening. The LNCaP cell line expresses
an AR that contains a mutation in the LBD leading to promiscu-
ous activation by some chemicals (Veldscholte et al. 1992), and
the VCaP cell line contains �10-fold receptor mRNA and protein
than LNCaP cells because of amplification of the AR locus
(Makkonen et al. 2011). For our chemical screening, we chose the

LAPC-4 cell line which expresses a wild-type AR with no evi-
dence of amplification (Watson et al. 2015). Prior to our study,
only 1 chemical had been profiled in this cell line and found in
our compendium (from GSE78201). We profiled 28 chemicals
with known activities to AR in LAPC-4 cells and determined that
our biological model and computational techniques were a use-
ful combination for screening. To our knowledge, the present
study is the first to utilize full genome arrays to identify AR
modulators. A previous study used a targeted set of 27 genes to
screen approximately 2500 chemicals in LNCaP cells to identify
AR suppressors (Hieronymus et al. 2006). Our compendium will
be a useful database for future studies to link chemical exposure
to molecular initiating events and key events that can help to
populate predictive models for adverse outcomes within a net-
work of AOPs (Edwards et al. 2015). The development of methods
to identify chemicals that modulate an important MIE linked to
endocrine disruption and cancer is one application of this
compendium.

Our biomarker selection procedures identified bona fide pri-
mary target genes of AR. The biomarker genes were selected in
an unbiased manner using several filters (Figure 2A). These in-
cluded a chemical filter that selected genes commonly
regulated by 4 agonists. In addition to the well-known agonists

Figure 5. Continued

from 4 types of experiments in which androgens were depleted: (1) prostate cancer cell line xenografts in castrated mice versus intact mice (xenografts), (2) cells under

extended (up to 12 months) androgen deprivation versus untreated, (3) cells grown in charcoal stripped serum (CSS) in which steroids were depleted versus regular me-

dia (CSS media), and (4) human prostate tissue from patients undergoing androgen ablation therapy in which patients were treated with AR antagonists and androgen

synthesis inhibitors versus before ablation therapy (androgen ablation). The heat map shows the expression of genes in the biomarker. GEO accession numbers of the

studies are indicated.

Table 4. Comparison of Biomarker Predictions to AR Reference Chemicals

Chemical CAS No. OECD
Classification from
Lynch et al. (2017)

Potency—Reference
Antagonist Classification

From Kleinstreuer et al. (2017)

AR Biomarker �Log(p-value)s
for Chemicals Run in

Antagonist Mode

AR Classification
Based on

Biomarker

17-b-Trenbolone 10161-33-8 Agonist 0 Inactive
Androstenedione 63-05-8 Agonist Negative 0.761452 Inactive
Dexamethasone 50-02-2 Agonist 4.886057 Agonist
5-a-Dihydrotestosterone 521-18-6 Agonist 4 Agonist
Methyl testosterone 58-18-4 Agonist Negative 1.138466 Inactive
Testosterone propionate 58-22-0 Agonist Negative 1.924453 Inactive
Bicalutamide 90357-06-5 Antagonist Strong �37.9208 Antagonist
Bisphenol A 80-05-7 Antagonist Moderate/weak �38.0458 Antagonist
Finasteride 98319-26-7 Antagonist �24.0706 Antagonist
Flutamide 13311-84-7 Antagonist Moderate/weak �28.7447 Antagonist
Linuron 330-55-2 Antagonist Moderate/weak �23.5229 Antagonist
Prochloraz 67747-09-5 Antagonist Moderate/weak �32.2924 Antagonist
Procymidone 32809-16-8 Antagonist Very Weak �40.2147 Antagonist
Progesterone 57-83-0 Antagonist �3.69897 (*) Inactive
Vinclozolin 50471-44-8 Antagonist Moderate/weak �52.699 Antagonist
Cyproterone acetate 427-51-0 Both Moderate �3 (#) Inactive
Hydroxyflutamide 52806-53-8 Both Strong �16.0605 Antagonist
Mifepristone 84371-65-3 Both Strong/Moderate �10.5686 Antagonist
Spironolactone 52-01-7 Both Strong/Moderate �6.76955 Antagonist
Apigenin 520-36-5 Negative �18.4559 (*) Antagonist
Atrazine 1912-24-9 Negative Negative 0 Inactive
Fenitrothion 122-14-5 Strong �38.9586 Antagonist
p,p0-DDE 72-55-9 Weak �15.699 Antagonist

Twenty-three reference chemicals with known AR activities were examined for correlation between the AR biomarker and biosets derived from LAPC-4 cells exposed

in antagonist mode to the indicated chemicals. The OECD classifications refer simply to whether the chemical is an agonist, antagonist, both an agonist and antago-

nist, or negative for activity. Blank cells are chemicals that were not classified in the OECD analysis. The column for reference antagonists from the Kleinstreuer et al.

(2017) analysis specifies the relative potencies. Chemical classifications based on the microarray experiment that do not agree with OECD classifications (*) or both

OECD and Kleinstreuer et al. classifications (#) are indicated after the �Log(p-value)s.
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R-1881, androstenedione and dexamethasone, we included the
strong agonist RTI-6413-018 identified in a screen for com-
pounds that induce an “activating” conformational change in
the receptor structure but that do not facilitate a high-affinity
intermolecular interaction between the amino and carboxyl ter-
mini; compounds identified in this manner behaved as partial
agonists of AR-mediated transcription in a variety of assays
(Sathya et al. 2003). The agonist screen was followed by selection
of genes that were regulated in an opposite manner by 4 struc-
turally diverse antagonists (bicalutamide, triticonazole, tubuco-
nazole, and vinclozalin). A genetic filter was used to further
filter genes that were the most likely targets of AR and would be
less likely to be involved in secondary responses after AR modu-
lation, eg, modulation of cell growth. The genetic filter capital-
ized on available biosets from chemical-independent
comparisons either between mutants in the LBD of AR that ex-
hibit constitutive activity versus wild-type AR or between
knockdown of expression of AR versus controls. Most (90%) of
the resulting 51 genes in the biomarker were found to be direct
targets of AR as determined by ChIP-Seq experiments, with 42%
of the associated ChIP-seq regions falling within 10 kb of the
transcription start site of the biomarker genes (Supplementary

File 1). Some of these regions bound by AR contain an ARE motif
indicating this interaction is due to direct binding of AR to the
promoter or enhancer regions (Supplementary File 1). Most of
the genes exhibited altered expression in the expected direction
when compared with additional biosets when AR expression or
activity was genetically modulated (Figure 5A). The biomarker
genes exhibited expected changes in expression after chemical
exposure in 3 AR-positive cancer cell lines (LAPC-4, LNCaP,
VCaP) but not in an AR-negative prostate cancer cell line (PC3).
Taken together, our procedures identified AR-regulated genes
that could be useful in classifying chemicals for AR modulation.

To screen for chemicals that modulate AR, the biomarker
was compared with individual biosets in the prostate compen-
dium using the fold-change, rank-based nonparametric
Running Fisher algorithm (Kupershmidt et al. 2010). The ap-
proach finds, in an unsupervised manner, biosets with expres-
sion patterns of biomarker genes with statistically significant
positive or negative correlation corresponding to activation or
suppression of AR. Agonist activity can be detected in biosets
from cells treated with DHT or R-1881 versus control cells
(Figure 3B). Antagonist-like activity can be most reliably
detected by examination of chemical effects in the presence of
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a strong AR agonist compared with agonist alone (antagonist
mode). In our preliminary studies, exposure of LAPC-4 to antag-
onists by themselves did not affect the AR-dependent bio-
marker genes (data not shown). Rather, their detection required
the assay to be run in antagonist mode. We had determined
through a titration of R-1881 transcriptional effects that a con-
centration of 0.33 nM of R-1881 was sufficient to readily detect 3
known antagonists. In contrast, antagonist activity of bicaluta-
mide or enzalutamide was often detectable in LNCaP or VCaP
cells without running the assay in antagonist mode. This antag-
onism can be explained by their ability to suppress the back-
ground level of AR activation. We hypothesize that this
background AR activation is due in part to the level of andro-
gens in the media. LNCaP cells are typically cultured in 10% fetal
calf serum supplemented media which contains 55�98 pM of
total testosterone (Sedelaar and Isaacs 2009). LNCaP cells con-
centrate and metabolize testosterone to produce a physiological
(ie, approximately 10 nM) level of intracellular DHT which stim-
ulates the growth of these cells in vitro (Sedelaar and Isaacs
2009) and likely contributes to the background level of AR acti-
vation. Thus, LNCaP cells (but not LAPC-4 cells) might be useful
to screen for both agonists and antagonists simultaneously (in
the absence of the required exposure to a reference agonist),
similar to what we showed for MCF-7 cells which when cultured
in complete media can be used to simultaneously identify both
agonists and antagonists of ER (Ryan et al. 2016).

The use of our methods resulted in excellent predictive ac-
curacy to identify AR active compounds. Using 158 biosets from
cells treated with 98 chemicals with known AR activity, a test
for prediction of activation or suppression resulted in balanced
accuracies of 97% or 98%, respectively (Figure 4). This high level
of accuracy demonstrated the robustness of the computational
procedures to identify AR modulators even though the biosets
were derived from experiments with various exposure condi-
tions carried out in different laboratories that queried gene ex-
pression using different microarray platforms (data not shown).
The accuracy is consistent with our past experience identifying
chemical modulators of other transcription factors in the mouse
liver (Oshida et al. 2015a,b,c) and MCF-7 cells (Ryan et al. 2016).
The computational approach used in these studies will be use-
ful for the future assessment of chemical modulation of other
transcription factors and could be adapted to predict key events
downstream of MIE modulation such as cell proliferation.

The biomarker predictions were compared with the predic-
tions from an AR pathway model based on 11 in vitro HTS
assays which examined different endpoints of AR activity car-
ried out as part of the EDSP HTS program (Kleinstreuer et al.
2017). Remarkably, accuracy tests for AR suppression gave a bal-
anced accuracy of 93% (Figure 6). The biomarker was able to
identify chemicals that were classified as “weak” (p,p0-DDE) or
“very weak” (procymidone) antagonists. There was 1 false posi-
tive and 1 false negative. The false negative cyproterone acetate
approached significance. The false positive was the 5a-reduc-
tase inhibitor finasteride. Finasteride is an OECD reference an-
tagonist for the rodent Hershberger assay, and was identified as
an antagonist in the 2 Tox21 AR antagonist assays (Lynch et al.
2017). Although further work is needed, the results indicate that
under some screening conditions, blocking 5a-reductase activity
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Figure 7. The biomarker correctly identifies treatments that indirectly affect AR

activity. See text for descriptions of how the treatments suppress AR activity.

Table 5. Summary of the Sensitivity and Specificity of the AR
Biomarker Predictions for Antagonism Compared With the AR
Pathway Model

Suppression-
All Biosets

Suppression-
Without

Biomarker Biosets

True positives 16 13
True negatives 10 10
False positives 1 1
False negatives 1 1
Sensitivity 0.941 0.930
Specificity 0.909 0.909
Positive predictive value 0.941 0.929
Negative predictive value 0.909 0.909
Balanced accuracy 0.925 0.919

The biomarker-based predictions from LAPC-4 chemical treatment biosets were

compared to the results of the AR pathway model for 28 or 25 chemicals

(Kleinstreuer et al. 2017).
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may indirectly suppress AR by decreasing the levels of the more
potent AR activator DHT compared with testosterone.
If finasteride is considered a true positive for antagonism, then
the balanced accuracy increases to 95%.

Examination of additional chemicals in the prostate cancer
cell compendium indicated that our methods can identify
chemicals that affect AR activity indirectly. Four chemicals (tri-
chostatin A, XY011, SR2211, urolithin A) were identified as po-
tential antagonists (Figure 7). All 4 were shown in previous
studies to decrease the expression of the AR gene (Rokhlin et al.
2006; Sanchez-Gonzalez et al. 2016; Wang et al. 2016; Welsbie
et al. 2009). XY011 and SR2211 are antagonists of RORc which
positively regulates AR expression (Wang et al. 2016). The mech-
anism by which trichostatin A suppresses AR expression is un-
known (Rokhlin et al. 2006; Welsbie et al. 2009). Thus, our
screening methods identified 4 conditions in which AR was
modulated: Agonism, antagonism, suppression of AR expres-
sion, and depletion of androgens in the media. It should be
noted that the ability of our methods to identify chemicals that
modulate AR activity through other mechanisms such as inhibi-
tion of 5a-reductase and steroidogenesis remains to be
determined.

In summary, we applied gene expression-based computa-
tional procedures to screen chemicals for AR activity that
closely replicate the results of 11 HTS assays. High-throughput
transcript profiling in an AR positive prostate cancer cell line
such as LAPC-4 cells for AR modulators could complement the
current screening paradigm by serving as a Tier 0 screen which
could be followed by more targeted assays to uncover the un-
derlying mechanism of action.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.

ACKNOWLEDGMENTS

This study was carried out as part of the EPA High
Throughput Testing project within the chemical safety for
sustainability (CSS) program. The information in this docu-
ment has been funded in part by the U.S. Environmental
Protection Agency. This research was supported in part by a
postdoctoral appointment (for Rooney) to the Research
Participation Program for the U.S. Environmental Protection
Agency, Office of Research and Development, administered
by the Oak Ridge Institute for Science and Education
through an interagency agreement between the U.S.
Department of Energy and EPA. The views expressed in this
paper are those of the authors and do not necessarily reflect
the statements, opinions, views, conclusions, or policies of
the United States EPA. The authors declare they have no ac-
tual or potential competing financial interests. This study
has been subjected to review by the National Health and
Environmental Effects Research Laboratory and approved
for publication. Approval does not signify that the contents
reflect the views of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use. We thank Dr Caitlin Lynch for the
results from the Tox21 HTS AR assays, Mr Chuck Gaul for as-
sistance in making the figures, the NHEERL Genomics Core
for processing the Illumina arrays, Drs Chad Deisenroth and
Keith Houck for critical review of the manuscript, Dr Ann

Richard for the ToxCast chemicals, Drs James Flynn and Joe
Delaney for assistance with BSCE, and Dr Robert Reiter for
the LAPC-4 cells.

REFERENCES
Centenera, M. M., Carter, S. L., Gillis, J. L., Marrocco-Tallarigo, D.

L., Grose, R. H., Tilley, W. D., and Butler, L. M. (2015). Co-tar-
geting AR and HSP90 suppresses prostate cancer cell growth
and prevents resistance mechanisms. Endocr. Relat. Cancer
22, 805–818.

Chng, K. R., Chang, C. W., Tan, S. K., Yang, C., Hong, S. Z., Sng, N.
Y., and Cheung, E. (2012). A transcriptional repressor
co-regulatory network governing androgen response in pros-
tate cancers. EMBO J. 31, 2810–2823.

Claessens, F., Joniau, S., and Helsen, C. (2017). Comparing the
rules of engagement of androgen and glucocorticoid recep-
tors. Cell. Mol. Life Sci. 74, 2217–2228.

Cottard, F., Asmane, I., Erdmann, E., Bergerat, J. P., Kurtz, J. E.,
and Ceraline, J. (2013). Constitutively active androgen recep-
tor variants upregulate expression of mesenchymal markers
in prostate cancer cells. PLoS One 8, e63466.

Cox, L. A., Popken, D., Marty, M. S., Rowlands, J. C., Patlewicz, G.,
Goyak, K. O., and Becker, R. A. (2014). Developing scientific
confidence in HTS-derived prediction models: Lessons
learned from an endocrine case study. Regul. Toxicol.
Pharmacol. 69, 443–450.

Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C.,
Hauser, R., Prins, G. S., Soto, A. M., Zoeller, R. T., and Gore, A.
C. (2009). Endocrine-disrupting chemicals: An Endocrine
Society scientific statement. Endocr. Rev. 30, 293–342.

Edwards, S. W., Tan, Y. M., Villeneuve, D. L., Meek, M. E., and
McQueen, C. A. (2015). Adverse outcome pathways-
organizing toxicological information to improve decision
making. J. Pharmacol. Exp. Ther. 356, 170–181.

Filer, D., Patisaul, H. B., Schug, T., Reif, D., and Thayer, K. (2014).
Test driving ToxCast: Endocrine profiling for 1858 chemicals
included in phase II. Curr. Opin. Pharmacol. 19, 145–152.

Gonit, M., Zhang, J., Salazar, M., Cui, H., Shatnawi, A., Trumbly,
R., and Ratnam, M. (2011). Hormone depletion-insensitivity
of prostate cancer cells is supported by the AR without bind-
ing to classical response elements. Mol. Endocrinol. 25,
621–634.

Guseva, N. V., Rokhlin, O. W., Bair, T. B., Glover, R. B., and Cohen,
M. B. (2012). Inhibition of p53 expression modifies the specif-
icity of chromatin binding by the androgen receptor.
Oncotarget 3, 183–194.

Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N.,
Kusaka, M., and Miyamoto, M. (2003). Novel mutations of an-
drogen receptor: A possible mechanism of bicalutamide
withdrawal syndrome. Cancer Res. 63, 149–153.

Hieronymus, H., Lamb, J., Ross, K. N., Peng, X. P., Clement, C.,
Rodina, A., Nieto, M., Du, J., Stegmaier, K., Raj, S. M., et al.
(2006). Gene expression signature-based chemical genomic
prediction identifies a novel class of HSP90 pathway modula-
tors. Cancer Cell 10, 321–330.

Hu, R., Dunn, T. A., Wei, S., Isharwal, S., Veltri, R. W.,
Humphreys, E., Han, M., Partin, A. W., Vessella, R. L., Isaacs,
W. B., et al. (2009). Ligand-independent androgen receptor
variants derived from splicing of cryptic exons signify
hormone-refractory prostate cancer. Cancer Res. 69, 16–22.

Judson, R., Houck, K., Martin, M., Knudsen, T., Thomas, R. S.,
Sipes, N., Shah, I., Wambaugh, J., and Crofton, K. (2014). In vi-
tro and modelling approaches to risk assessment from the

160 | AN ANDROGEN RECEPTOR GENE EXPRESSION BIOMARKER

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfy187#supplementary-data


U.S. Environmental Protection Agency ToxCast programme.
Basic Clin. Pharmacol. Toxicol. 115, 69–76.

Judson, R., Houck, K., Martin, M., Richard, A. M., Knudsen, T. B.,
Shah, I., Little, S., Wambaugh, J., Setzer, R. W., Kothiya, P.,
et al. (2016). Analysis of the effects of cell stress and cytotox-
icity on in vitro assay activity across a diverse chemical and
assay space. Toxicol. Sci. 153, 409.

Judson, R. S., Magpantay, F. M., Chickarmane, V., Haskell, C.,
Tania, N., Taylor, J., Xia, M., Huang, R., Rotroff, D. M., Filer, D.
L., et al. (2015). Integrated model of chemical perturbations of
a biological pathway using 18 in vitro high-throughput
screening assays for the estrogen receptor. Toxicol. Sci. 148,
137–154.

Klein, K. A., Reiter, R. E., Redula, J., Moradi, H., Zhu, X. L.,
Brothman, A. R., Lamb, D. J., Marcelli, M., Belldegrun, A.,
Witte, O. N., et al. (1997). Progression of metastatic human
prostate cancer to androgen independence in immunodefi-
cient SCID mice. Nat. Med. 3, 402–408.

Kleinstreuer, N. C., Ceger, P., Watt, E. D., Martin, M., Houck, K.,
Browne, P., Thomas, R. S., Casey, W. M., Dix, D. J., Allen, D.,
et al. (2017). Development and validation of a computational
model for androgen receptor activity. Chem. Res Toxicol. 30,
946–964.

Kleinstreuer, N. C., Yang, J., Berg, E. L., Knudsen, T. B., Richard, A.
M., Martin, M. T., Reif, D. M., Judson, R. S., Polokoff, M., Dix, D.
J., et al. (2014). Phenotypic screening of the ToxCast chemical
library to classify toxic and therapeutic mechanisms. Nat.
Biotechnol. 32, 583–591.

Korpal, M., Korn, J. M., Gao, X., Rakiec, D. P., Ruddy, D. A., Doshi,
S., Yuan, J., Kovats, S. G., Kim, S., Cooke, V. G., et al. (2013). An
F876L mutation in androgen receptor confers genetic and
phenotypic resistance to MDV3100 (enzalutamide). Cancer
Discov. 3, 1030–1043.

Kupershmidt, I., Su, Q. J., Grewal, A., Sundaresh, S., Halperin, I.,
Flynn, J., Shekar, M., Wang, H., Park, J., Cui, W., et al. (2010).
Ontology-based meta-analysis of global collections of high-
throughput public data. PLoS One 5, e13066.

Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel,
M. J., Lerner, J., Brunet, J. P., Subramanian, A., Ross, K. N., et al.
(2006). The connectivity map: Using gene-expression signa-
tures to connect small molecules, genes, and disease. Science
313, 1929–1935.

Larman, H. B., Scott, E. R., Wogan, M., Oliveira, G., Torkamani, A.,
and Schultz, P. G. (2014). Sensitive, multiplex and direct
quantification of RNA sequences using a modified RASL as-
say. Nucleic Acids Res. 42, 9146–9157.

Li, L., Chang, W., Yang, G., Ren, C., Park, S., Karantanos, T.,
Karanika, S., Wang, J., Yin, J., Shah, P. K., et al. (2014).
Targeting poly(ADP-ribose) polymerase and the c-Myb-regu-
lated DNA damage response pathway in castration-resistant
prostate cancer. Sci. Signal 7, ra47.

Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H., Yi, D.,
Utleg, A. G., Fang, X., Schones, D. E., et al. (2009). Integrated
expression profiling and ChIP-seq analyses of the growth in-
hibition response program of the androgen receptor. PLoS
One 4, e6589.

Lynch, C., Sakamuru, S., Huang, R., Stavreva, D. A., Varticovski,
L., Hager, G. L., Judson, R. S., Houck, K. A., Kleinstreuer, N. C.,
Casey, W., et al. (2017). Identifying environmental chemicals
as agonists of the androgen receptor by using a quantitative
high-throughput screening platform. Toxicology 385, 48–58.

Makkonen, H., Kauhanen, M., Jaaskelainen, T., and Palvimo, J. J.
(2011). Androgen receptor amplification is reflected in the

transcriptional responses of Vertebral-Cancer of the Prostate
cells. Mol. Cell Endocrinol. 331, 57–65.

Massie, C. E., Lynch, A., Ramos-Montoya, A., Boren, J., Stark, R.,
Fazli, L., Warren, A., Scott, H., Madhu, B., Sharma, N., et al.
(2011). The androgen receptor fuels prostate cancer by regu-
lating central metabolism and biosynthesis. EMBO J. 30,
2719–2733.

Nickols, N. G., and Dervan, P. B. (2007). Suppression of androgen
receptor-mediated gene expression by a sequence-specific
DNA-binding polyamide. Proc. Natl. Acad. Sci. USA. 104,
10418–10423.

Oshida, K., Vasani, N., Jones, C., Moore, T., Hester, S., Nesnow, S.,
Auerbach, S., Geter, D. R., Aleksunes, L. M., Thomas, R. S.,
et al. (2015a). Identification of chemical modulators of the
constitutive activated receptor (CAR) in a gene expression
compendium. Nucl. Recept. Signal 13, e002.

Oshida, K., Vasani, N., Thomas, R. S., Applegate, D., Gonzalez, F.
J., Aleksunes, L. M., Klaassen, C. D., and Corton, J. C. (2015b).
Screening a mouse liver gene expression compendium iden-
tifies modulators of the aryl hydrocarbon receptor (AhR).
Toxicology 336, 99–112.

Oshida, K., Vasani, N., Thomas, R. S., Applegate, D., Rosen, M.,
Abbott, B., Lau, C., Guo, G., Aleksunes, L. M., Klaassen, C.,
et al. (2015c). Identification of modulators of the nuclear re-
ceptor peroxisome proliferator-activated receptor alpha
(PPARalpha) in a mouse liver gene expression compendium.
PLoS One 10, e0112655.

Rokhlin, O. W., Glover, R. B., Guseva, N. V., Taghiyev, A. F.,
Kohlgraf, K. G., and Cohen, M. B. (2006). Mechanisms of cell
death induced by histone deacetylase inhibitors in androgen
receptor-positive prostate cancer cells. Mol. Cancer Res. 4,
113–123.

Rotroff, D. M., Martin, M. T., Dix, D. J., Filer, D. L., Houck, K. A.,
Knudsen, T. B., Sipes, N. S., Reif, D. M., Xia, M., Huang, R., et al.
(2014). Predictive endocrine testing in the 21st century using
in vitro assays of estrogen receptor signaling responses.
Environ. Sci. Technol. 48, 8706–8716.

Ryan, N., Chorley, B., Tice, R. R., Judson, R., and Corton, J. C.
(2016). Moving toward integrating gene expression profiling
into high-throughput testing: A gene expression biomarker
accurately predicts estrogen receptor alpha modulation in a
microarray compendium. Toxicol. Sci. 151, 88–103.

Sanchez-Gonzalez, C., Ciudad, C. J., Izquierdo-Pulido, M., and
Noe, V. (2016). Urolithin A causes p21 up-regulation in pros-
tate cancer cells. Eur. J. Nutr. 55, 1099–1112.

Sathya, G., Chang, C. Y., Kazmin, D., Cook, C. E., and McDonnell,
D. P. (2003). Pharmacological uncoupling of androgen
receptor-mediated prostate cancer cell proliferation and
prostate-specific antigen secretion. Cancer Res. 63, 8029–8036.

Sedelaar, J. P., and Isaacs, J. T. (2009). Tissue culture media sup-
plemented with 10% fetal calf serum contains a castrate level
of testosterone. Prostate 69, 1724–1729.

Shah, I., Harrill, J., Setzer, R. W., Haggard, D., Karmaus, A.,
Martin, M. T., and Thomas, R. S. (2018). Predicting chemical
mechanisms of action using high-throughput transcriptomic
data. Toxicologist 162, 1689.

Smalley, J. L., Gant, T. W., and Zhang, S. D. (2010). Application of
connectivity mapping in predictive toxicology based on
gene-expression similarity. Toxicology 268, 143–146.

Veldscholte, J., Berrevoets, C. A., Ris-Stalpers, C., Kuiper, G. G.,
Jenster, G., Trapman, J., Brinkmann, A. O., and Mulder, E.
(1992). The androgen receptor in LNCaP cells contains a mu-
tation in the ligand binding domain which affects steroid

ROONEY ET AL. | 161



binding characteristics and response to antiandrogens. J.
Steroid Biochem. Mol. Biol. 41, 665–669.

Wang, J., Zou, J. X., Xue, X., Cai, D., Zhang, Y., Duan, Z., Xiang, Q.,
Yang, J. C., Louie, M. C., Borowsky, A. D., et al. (2016). ROR-
gamma drives androgen receptor expression and represents
a therapeutic target in castration-resistant prostate cancer.
Nat. Med. 22, 692–496.

Waters, M. D., Jackson, M., and Lea, I. (2010). Characterizing and
predicting carcinogenicity and mode of action using conven-
tional and toxicogenomics methods. Mutat. Res. 705, 184–200.

Watson, P. A., Arora, V. K., and Sawyers, C. L. (2015). Emerging
mechanisms of resistance to androgen receptor inhibitors in
prostate cancer. Nat. Rev. Cancer 15, 701–711.

Welsbie, D. S., Xu, J., Chen, Y., Borsu, L., Scher, H. I., Rosen, N.,
and Sawyers, C. L. (2009). Histone deacetylases are required

for androgen receptor function in hormone-sensitive and
castrate-resistant prostate cancer. Cancer Res. 69, 958–966.

Wilson, S., Qi, J., and Filipp, F. V. (2016). Refinement of the andro-
gen response element based on ChIP-Seq in androgen-
insensitive and androgen-responsive prostate cancer cell
lines. Sci. Rep. 6, 32611.

Yeakley, J. M., Shepard, P. J., Goyena, D. E., VanSteenhouse, H. C.,
McComb, J. D., and Seligmann, B. E. (2017). A trichostatin A
expression signature identified by TempO-Seq targeted
whole transcriptome profiling. PLoS One 12, e0178302.

Zhu, Z., Shi, M., Hu, W., Estrella, H., Engebretsen, J., Nichols, T.,
Briere, D., Hosea, N., Los, G., Rejto, P. A., et al. (2012). Dose-de-
pendent effects of small-molecule antagonists on the geno-
mic landscape of androgen receptor binding. BMC Genomics
13, 355.

162 | AN ANDROGEN RECEPTOR GENE EXPRESSION BIOMARKER


	kfy187-TF1
	kfy187-TF2
	kfy187-TF3
	kfy187-TF4
	kfy187-TF5
	kfy187-TF6

