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Abstract

Drug–drug interactions (DDIs) constitute an important concern in drug development and postmarketing pharmacovigilance.
They are considered the cause of many adverse drug effects exposing patients to higher risks and increasing public health
system costs. Methods to follow-up and discover possible DDIs causing harm to the population are a primary aim of drug
safety researchers. Here, we review different methodologies and recent advances using data mining to detect DDIs with im-
pact on patients. We focus on data mining of different pharmacovigilance sources, such as the US Food and Drug
Administration Adverse Event Reporting System and electronic health records from medical institutions, as well as on the
diverse data mining studies that use narrative text available in the scientific biomedical literature and social media. We pay
attention to the strengths but also further explain challenges related to these methods. Data mining has important applica-
tions in the analysis of DDIs showing the impact of the interactions as a cause of adverse effects, extracting interactions to
create knowledge data sets and gold standards and in the discovery of novel and dangerous DDIs.
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Introduction

Drug–drug interactions (DDIs) are a serious problem in patient
safety [1, 2]. Coadministration of two or more drugs at the same
time can affect the biological action of the implicated drugs.
The interaction can seriously affect efficacy and safety drug
profiles. The main types of DDIs include pharmacokinetic and
pharmacodynamic interactions [3]. The pharmacokinetic inter-
actions can affect important drug processes that determine bio-
availability, such as absorption, distribution, metabolism and
excretion [3]. Examples of these interactions are the administra-
tion of a medication that increases the motility of the intestine
decreasing the absorption of the other drug, competition for the
same plasma protein transporter, inhibition of the action of a
metabolizing enzyme or even interaction at excretion level

affecting the elimination of one of the drugs [4]. On the other
hand, pharmacodynamic interactions can occur at the pharma-
cological receptor level with both drugs interacting with the
same protein, at the signaling level affecting different signaling
pathways or at the effector levels causing different pharmaco-
logical responses [5]. The action can be synergistic or antagonis-
tic or a novel effect can be derived.

DDIs result in many adverse drug effects (ADEs) that can
cause severe injuries to the patients, or even be responsible for
deaths [6]. It has been reported that DDIs could be responsible for
up to 30% of the adverse effects found in the patients [7].
Hospitalizations and emergency department visits because of
coadministration of different drugs are estimated around 0.57
and 0.054%, respectively [2]. The problem is so important that in
the United States alone, DDIs are estimated to be responsible for
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up to 195 000 hospital admissions [1]. Between 7 and 22% of the
patients in primary or secondary health care are receiving com-
binations of interacting drugs [2]. This problem is emphasized in
the elderly, where this percentage rises to 22–31% [2, 8, 9].
Moreover, the numbers and statistics about DDI impact in
health care may underestimate the real public health burden
because the statistics are based on known DDIs, and unknown
DDIs may be significant. In addition, DDIs that are not serious
but have an impact on patients’ quality of life could be underre-
ported [10].

Once a DDI is well described, and depending on the danger
associated with the interaction, further actions will be con-
sidered that go from a warning notice in the label of the drugs
to the withdrawal of some drugs from the pharmaceutical mar-
ket. For instance, cerivastatin, a drug that lowers cholesterol
levels by inhibiting the enzyme HMG-CoA reductase, was with-
drawn from the pharmaceutical market worldwide in 2001
because of 52 cases of fatal rhabdomyolysis [11, 12]. The coad-
ministration of cerivastatin with other medications, such as
gemfibrozil, was responsible for the death of several patients.
Gemfibrozil reduces the metabolization of the statin, increasing
its plasma concentration and causing a higher risk of associated
adverse effects like myopathy and rhabdomyolysis [13, 14].
Another example of a drug withdrawn from the market is mibe-
fradil, a calcium channel blocker, 1 year after approval by the
US Food and Drug Administration (FDA) [15] because of risk of
deadly interactions with other drugs [16].

Prevalence of potential DDIs in primary care has been esti-
mated to be high (>60%), although the numbers are lower when
clinically significant DDIs are taken into account (3.8–12%) [17,
18]. These reports showed the importance of taking into ac-
count by prescribers and healthcare professionals, some well-
known DDIs that have a great impact in the generation of ADEs
in the patients [19]. Being aware of these dangerous combin-
ations by medical personnel and not prescribing combinations
of drugs that cause serious adverse effects is important to im-
prove health systems [20]. A more conscious knowledge of the
importance and incidence of DDIs, as well as the most danger-
ous drug combinations is a crucial feature to avoid their occur-
rence, reduce their clinical impact and collaborate in the safety
of the patients. Systems in clinical decision-making that warn
physicians about potential drug combinations are valuable tools
to improve health care. However, problems related to alert fa-
tigue, when many potential warnings are given, can undermine
the usefulness of the technology [21, 22]. Decision systems
should prioritize high-risk DDIs to make the number of alerts
manageable by the professionals. Development of a consensus
DDI list by experts and endorsement by professional societies,
agencies and regulators help to create improved health care de-
cision-making systems [23]. Moreover, avoiding possible DDIs
evaluating high-risk factors, such as age, multiple diseases or
genetic polymorphisms [24], should be a common practice ori-
ented to enhance patient care. In case multiple and complex
therapies are necessary, a better system to specify to the pa-
tients which drugs cannot be taken together would be helpful.
In this sense, enhancements in the development of tools to fa-
cilitate the administration of multiple therapies to patients are
welcome to improve clinical decision-making and patient
safety.

DDIs are difficult to detect in the different stages of drug de-
velopment and in postmarketing surveillance [1]. Some DDIs
could also be dependent and recognizable at high medication
doses [25]. Clinical trials use a limited number of patients and
include different criteria for inclusion or exclusion of the

participants, with the consequent limitations to deeply exam-
ine the effects of polypharmacy. Moreover, human variability
can affect the result of DDIs [1], and adverse effects could occur
in a certain subgroup of the population not properly repre-
sented in a clinical trial. Long-term follow-up provided by data
mining of public scientific literature and clinical pharmacovigi-
lance sources could help to overcome some obstacles derived
from short-term studies like clinical trials [26]. Improvement in
the detection of DDIs is of major interest to regulatory organiza-
tions, such as the FDA [15], pharmaceutical companies and a
broad group of researchers working in translational medicine
and drug safety. Besides a more realistic detection, methods
that provide understanding of the mechanisms or principles for
the DDIs are also needed. A more detailed description of the dif-
ferent computational and experimental techniques used to dis-
cover DDIs is provided in some articles and reviews already
published [1, 27–31].

Coadministration of multiple drugs could also be responsible
for synergistic effects, such as an increase in the efficacy of the
therapy. In fact, this is a common practice in medicine that in
some cases offers great results in efficacy, avoiding toxicity or
minimizing drug resistance [32, 33]. However, in this review, we
focused on the detection of DDIs caused by the coadministra-
tion of multiple drug regimens that are responsible for adverse
effects in the patients. We reviewed data mining studies that
use clinical databases, such as electronic health records (EHRs),
the scientific literature and social media tools. We provided a
general picture of the usefulness of the different sources and
their advantages and limitations in the extraction and detection
of DDIs. We showed multiple examples where pharmacovigi-
lance data, scientific literature and social media were used not
only in the detection of new DDIs but also to prove the import-
ant impact caused in health care and to extract DDI knowledge
crucial for the development of reference standards to evaluate
detection tools. The different topics discussed in the current
article are shown in Figure 1. As a summary, this review con-
tains different sections focusing on data mining of pharmacovi-
gilance sources, scientific literature and social media, along
with challenges and limitations of the different DDI sources.

Data mining of pharmacovigilance sources
Impact of DDIs as a cause of ADEs

DDIs are a real problem in clinical practice worldwide. There are
different pharmacovigilance studies that reflect the importance

Figure 1. Flowchart of the different steps described in the review. Applicability

of data mining using different sources: applicability showing the importance of

DDIs as the cause of ADES, in the detection of novel DDIs and in the develop-

ment of knowledge databases.
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of DDIs as the means by which patients develop ADEs. As an ex-
ample, Montastruc et al. [34] studied DDIs involved in the use of
serotonin reuptake inhibitors registered in the spontaneous re-
ports of the French pharmacovigilance system. The authors
concluded that around 40% of the reported ADEs using serotoni-
nergic reuptake inhibitors were related to the coadministration
of different drugs. Moreover, >50% of the ADEs related to DDIs
were considered serious for patients’ health. DDIs were identi-
fied using a DDI reference database extracted from different
sources, among them is the French National Drug Formulary
(Vidal). The authors compared ADEs related to DDIs with ADEs
not related to DDIs using v2 test and Student’s t-test.
Importance of DDIs in the French pharmacovigilance database
was also confirmed by Fournier et al. [35]. Interactions between
antihypertensives and nonsteroidal anti-inflammatory drugs
(NSAIDs) led to 24% of the detected ADE reports containing
NSAIDs. The most frequent ADE caused by the DDIs was acute
renal failure. Moreover, a triple combination therapy receiving
two antihypertensive treatments with NSAIDs was associated
in a nested case-control study with increased risk of acute kid-
ney injury [36]. In another study, one-third of the interactions
detected with cholinesterase inhibitors were estimated to be
the cause of adverse effects [37]. Many potential ADEs caused by
the concomitant use of drugs were also detected in the spontan-
eous reporting system (SRS) from Italy [38]. In total, >20% of the
patients exposed to potential DDIs were detected to suffer an
adverse effect. The study showed the importance of DDIs
involving anticoagulant drugs as a risk of serious adverse ef-
fects. The adverse effect bleeding was as well evaluated by
Schelleman et al. [39] in Medicaid claims data [40] carrying out
an observational case-control study. Patients on the anticoagu-
lant warfarin that initiated a concomitant therapy with some
antidepressants had a higher risk of hospitalization because of
gastrointestinal bleeding. Odds ratios for warfarin users with a
combined therapy with the drug citalopram, fluoxetine, paroxe-
tine and amitriptyline were 1.73, 1.63, 1.64 and 1.47, respect-
ively. The impact of DDIs as a cause of adverse effects was
additionally reported by Mirosevic Skvrce et al. [41] in the SRS of
the Croatian Agency for Medicinal Products and Medical
Devices [42]. Almost 40% of the reports including more than one
drug showed that potential DDIs could be responsible for ADEs,
and 7.8% of the total reports with more than one drug were
caused by actual DDIs. The distribution of the different adverse
effects caused by the DDIs is shown by Mirosevic Skvrce et al.
[41]. Moreover, DDIs have an important impact not only in the
generation of adverse effects but also in the efficacy of some of
the implicated drugs, with the associated risk for the patients.
As an example, there are studies that showed an attenuated ef-
fectiveness of antihypertensive drugs when administered
with NSAIDs [43]. There are also some excellent reviews
available in the literature that showed the impact of the ad-
verse effects caused by DDIs in the health system and clinical
care [2, 44].

Mining pharmacovigilance sources to discover DDIs

The FDA [15] receives reports of suspected adverse effects from
health care professionals, consumers and manufacturers. The
FDA facilitates drug surveillance providing access to the FDA’s
Adverse Event Reporting System (FAERS) [45]. FAERS is useful
for ADEs surveillance as well as the analysis and detection of
potential DDIs. Reports in FAERS contain patient, drug and ad-
verse effect information and include many medications with
the suspected drug and concomitant drugs (drugs are labeled as

primary suspect being the cause of the adverse effect, second-
ary suspect, etc.).

Data mining algorithms (DMAs), such as reporting odds ratio
[46] or Multi-item Gamma Poisson Shrinker (MGPS) [47], have
been used to generate and rank the different drug-ADE associ-
ations or signals found in pharmacovigilance data. Calculations
of some algorithms are based on two-dimensional contingency
tables (see Figure 2 with a summary of some DMAs).
Multivariate modeling, such as logistic regression, has also been
used to analyze the effects of drugs [48]. There are in the litera-
ture some reviews [49–51] that explain with more detail the dif-
ferent data mining algorithms described in the published
studies.

Besides FAERS, there are other pharmacovigilance data sour-
ces, such as the World Health Organization’s (WHO) VigiBase
[52], that is used for similar purposes. VigiBaseTM is the largest
SRS for adverse effects in the world. It contains >12 million re-
ports from >100 member countries compiled since 1968.
Moreover, observational data in EHRs can complement adverse
event reporting systems in the detection of ADEs and DDIs. In
fact, there are several examples describing potential DDIs with
reporting sources and completing the study through a valid-
ation performed in EHRs [53, 54]. In many cases, the analysis
looking for DDIs is based on structured data, although unstruc-
tured information that resides in the clinical notes taken by the
medical personnel in the EHRs can also be useful. There are
some examples that showed that coded data may be insuffi-
cient to describe some steps in pharmacovigilance procedures
and that the combination with narrative data can yield better
results, such as building patient cohorts [55, 56]. The combin-
ation of structured and unstructured data can be exploited to
detect DDIs and ADEs with higher confidence [57]. In this sense,
increasing access to medical records may facilitate the detec-
tion and validation of adverse effects caused by the use of con-
comitant drugs.

Spontaneous reporting systems
There are different studies that showed in early stages the po-
tential of SRS in the identification of DDIs [58–61]. Some studies
are designed to analyze an individual adverse effect in small
sets of drug combinations, such as ‘delayed withdrawal
bleeding’ using itraconazole with oral contraceptives [62], or the
increased risk of hypothermia associated with the combination
of topiramate and valproic acid [63]. The ability to detect four
known DDIs by multiplicative and additive models was also

Figure 2. Common DMAs extracted from 2 � 2 contingency tables.
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evaluated using FAERS [64]. Nevertheless, there are some stud-
ies mining large data sets with the aim of looking for many di-
verse potential DDIs. As an example of these studies, a DDI
signal detection algorithm was published by Tatonetti et al. [53].
The authors divided FAERS into two data sets: reports with only
one drug (training) and reports with two drugs (prediction), and
constructed eight clinically significant adverse event models. In
each model, they described a drug as a profile of the adverse ef-
fect frequencies extracted from FAERS and through a logistic re-
gression classifier differentiated between drugs that cause the
clinically significant adverse event under study and drugs that
do not cause the adverse event. Then, predictions in drug com-
binations were made for each model. The electronic medical re-
cords (EMRs) of the Stanford Hospital, Vanderbilt Hospital and
Partners HealthCare were used to provide validation for some
drug interaction hypothesis. Their DDI method pointed out that
pravastatin and paroxetine could contribute to elevated blood
glucose levels, and the possible interaction was assessed in ex-
perimental assays [65]. A similar method was applied to identify
DDI signals for the prolongation of the QT interval in FAERS and
validate the predictions using electrocardiogram laboratory
data in EHRs at Columbia University Medical Center [66]. The
authors trained a model to detect adverse effect fingerprints
with risk of long QT/torsades de pointes for single drugs and
applied the predictor to an independent test of combinations of
drugs. Their system outperformed an alternative direct evi-
dence model. Novel DDIs related to QT prolongation were pro-
vided for further investigation. As an example, ceftriaxone and
lansoprazole could prolong the QT interval. Laboratory data
measuring the hERG channel block are in agreement with this
DDI [67].

Other pharmacovigilance reporting systems were also used
in the detection of potential DDIs, such as the WHO database
[52]. Norén et al. [68] developed a shrinkage observed-to-
expected ratio to identify DDIs in individual case safety reports
(ICSRs). The study proposed a disproportionality measure based
on an additive risk model. The authors also performed a DDI
screening of the whole WHO database showing the feasibility of
their approach. A different study of drug hepatic safety [69] after
coadministration of multiple medications was also carried out
in the WHO VigiBaseTM. Identification of DDIs was carried out
through empirical Bayes geometric mean values [47]. Liver
event terms were created using the Medical Dictionary for
Regulatory Activity [70]. Co-reported therapies were associated
with changes in the frequency of hepatic events. All these stud-
ies reflect the importance of reporting systems as a source of
analysis and follow-up to discover novel DDIs.

Electronic health records
Besides the utilization of EHRs as a source to validate DDI sig-
nals extracted from other sources, EHRs were also used as a
source of DDI signal generation. There are examples of studies
evaluating the effects of a particular DDI, such as the combin-
ation between clarithromycin and colchicine in patients with
renal insufficiency [71], studies evaluating classes of drugs in a
selected cohort of patients, such as potential DDIs between
antiretrovirals and hepatitis C virus (HCV) direct acting anti-
virals in a cohort of HIV/HCV coinfected patients [72] and other
studies focused on the inspection of big data and discovery of
diverse sets of DDIs. For instance, Iyer et al. [73] used unstruc-
tured data to identify DDI signals from >50 million clinical notes
available in the EHRs (data sets from Stanford Translational
Research Integrated Database Environment and Palo Alto
Medical Foundation). The authors used disproportionality ratios

to identify DDIs for 1165 drugs and 14 ADEs. In the 2� 2 contin-
gency table, the exposed group considered patients on both
drugs and the nonexposed group considered patients on one of
the implicated drugs or no drugs. The association score was
AOR025 (lower bound of the 95% CI of the adjusted odds ratio).
The results were validated with a gold standard of DDIs along
with a complementary study in FAERS extracting DDIs with
MGPS algorithm [47]. The study also estimated the rate of ad-
verse effects for the patients on multiple drugs, useful for alert
prioritization in DDI surveillance and clinical decision-making.
The mentioned study uses an opposite strategy to other publi-
cations mining first EHRs and validating the detected DDIs
using FAERS.

The clinical data warehouse of the Hôpital Européen
Georges-Pompidou (HEGP) was also mined to detect DDIs caus-
ing acute kidney injury [74], defined as an increase of� 50% of
creatinine basis. The authors tested their algorithm in single
drugs (nephrotoxic and non-nephrotoxic), and the system was
applied to 45 pairs of non-nephrotoxic drugs finding some com-
binations interesting to further study. A different approach was
described by Pathak et al. [75] that used Semantic Web and
Linked Data techniques to study DDIs including cardiovascular
and gastroenterology drugs in the EHRs of the Mayo Clinic. They
represented patient data as labeled graphs in a Resource
Description Framework. Another example of mining adverse ef-
fects caused by DDIs using Semantic Web technologies is pro-
vided by Jiang et al. [76]. They performed a case study with
cardiovascular drugs in FAERS and carried out a signal enrich-
ment using data extracted from medical records. Other ex-
amples that demonstrate the usefulness in DDI detection of
patient electronic data along with temporal association meth-
odologies are provided in the literature [77].

The development of improved methods to score the DDIs
studied in the pharmacovigilance data is important to eliminate
possible false-positive cases and prioritize the candidates for
further investigation. Banda et al. [78] developed a method to
score a set of potential DDIs extracted from EHR (data extracted
from a previous study [73]: 5983 DDIs including 345 drugs and 10
ADEs). They used four information sources to score the DDI
candidates: public databases, spontaneous reports, literature
and non-EHR DDI prediction methods. Their assumption is
that DDIs supported by different sources or methods are more
probable to be true-positive signals. Our research group
also provided alternative systems to prioritize DDIs extracted
from clinical data through molecular and biological profile
similarity [79].

High-order drug interactions
Most studies focus on the analysis of DDIs caused by the coad-
ministration of two drugs. However, there are some examples
of studies where relationships between high-order drug inter-
actions are described. High-order interactions refer to drug
interactions because of the administration of more than two
drugs to the patients, including multiple drug combinations.

High-order methods can be useful when multiple medica-
tions are prescribed to the patients, a common situation in clin-
ical practice. Du et al. [80] mined directional effects of high-
order drug interactions causing myopathy in EHRs. They esti-
mated individual risk for each new drug added to the treatment.
Moreover, they generated a visualization system of the multiple
directional interaction effects. A companion paper was also
published where the authors developed a mixture model be-
tween constant risk and dose (number of drug combinations)-
response risk models [81]. The study identified high-order drug
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combinations, between two to six, associated with myopathy
and detected that the risk increased with the drug order.
Previous studies with multiple high-order drug combinations in
FAERS were published by Harpaz et al. [82, 83]. The authors
applied a method known as association rule mining to generate
multiple drug combinations associated with multiple adverse
effects. These methods can be computationally expensive be-
cause of the big amount of data and possible multidrug combin-
ations necessary to process. To overcome this problem, Xiang
et al. [84] generated ADE–multidrug associations using frequent
closed itemset mining and filtering. Their method eliminated
redundant data and reduced computational cost. All the men-
tioned analysis showed the potential of data mining pharmaco-
vigilance databases to detect novel and serious DDIs with
clinical significance [85].

Table 1 shows a summary of some studies provided in the
section ‘Mining pharmacovigilance sources to discover DDIs’
that take into account SRS and EHRs in the detection of novel
DDIs. Table 1 is useful to compare the different conclusions and
statistics.

Data mining of the scientific literature

Information about drug interactions in the scientific literature
is increasing rapidly. The knowledge hidden in the scientific lit-
erature could be analyzed to find connections between articles.
For this reason, this resource to extract and discover DDIs has
been exploited lately in different studies. Data mining has appli-
cations in the construction of knowledge databases extracted
from the literature as well as a method to detect novel potential
DDIs. Techniques related to information retrieval and natural
language processing (NLP) are commonly used to develop these
tasks.

Extraction of DDIs

Reviewing the biomedical literature looking for DDIs is time-
consuming by the researchers and professionals. For this rea-
son, there is an increasing need to develop novel automatic
strategies to extract DDI information from texts. From this point
of view, progress on information extraction tools to automatic-
ally extract biomedical knowledge from the literature can save
time and resources [86, 87]. Moreover, these automatic tools are
essential in the construction of more complete drug knowledge
databases [86, 87]. Generally, in DDI extraction, methods extract
the data as a classification problem providing semantic infor-
mation to differentiate between DDIs and non-DDIs. The main
systems to extract relationships from texts include co-
occurrence-based, rule-based and machine learning approaches
[88]. Co-ocurrence-based methods are simpler and establish a
relationship between two entities based on co-ocurrence. Rule-
based methods use linguistic to understand the meaning of a
certain relationship. Linguistic rule-based approaches were
used to extract DDIs from biomedical texts [89]. On the other
hand, machine learning-based methods, such as the shallow
linguistic kernel approach [90], can also offer great assistance in
DDI extraction from biomedical literature [91]. With the expo-
nential growth of public availability of unstructured biomedical
texts, methods based on machine learning have acquired an im-
portant role in data extraction tasks. There are mainly two types
of machine learning systems: feature-based [92], representing
each data instance as a feature vector, and kernel-based meth-
ods [91], which exploit structural representations of data in-
stances. Chowdhury et al. [93] applied machine learning

approaches including both feature-based and kernel-based
methods. Ensemble learning methods based on majority voting
schemes are also useful tools with good DDI extraction perform-
ance [94]. Moreover, convolutional neural networks exhibited
potential in NLP through the extraction of DDIs [95]. In another
effort of automatic knowledge extraction, He et al. [96] de-
veloped a stacked generalization-based approach. Their method
is based on the combination of feature-based, graph and tree
kernels. Their approach showed good performance in the DDI
Extraction 2011 challenge task [97]. Moreover, other machine
learning hybrid systems using feature and kernel-based meth-
ods showed good performance in DDI extraction challenges [98].
More examples of applicability of machine learning in the ex-
traction of DDIs from scientific texts are available in the litera-
ture [99–102]. The general goal of these studies and challenges
is oriented toward the extraction and classification of DDIs and
not the extraction of experimental evidence to predict novel
interactions. Moreover, another edition of the DDI extraction
challenge task was carried out in 2013 [103]. These tasks, and
the annotated DDI corpus [104] with >5000 DDIs, have contrib-
uted in a relevant way in the extraction and detection of DDIs
from the literature [105]. The objective of the new DDI 2013 chal-
lenge was the detection and classification of DDIs along with
the recognition of pharmacological substances. Fourteen teams
participated in the challenge that attracted great interest from
the scientific community [103].

Improvements in ontology and well-annotated corpus facili-
tate the training and development of methodologies for DDI ex-
traction and detection. Besides that, annotated corpora
contribute to establish a stable criteria or gold standard of well-
known DDIs, an important step to facilitate the assessment of
the data mining methods and hence, their performance and re-
liability. To help in this process, important DDI ontologies, such
as DINTO [106] and DIDEO [107], have been of great contribution
in the description and categorization of DDIs. Efforts have also
been made for the development of models to represent poten-
tial DDI knowledge and evidence [108]. Wu et al. [88, 109] con-
structed a comprehensive pharmacokinetic ontology including
in vitro and in vivo experiments related to drug metabolism and
transportation. A pharmacokinetic corpus was also constructed
as a valuable resource to text mining drug interactions using
pharmacokinetic parameters. Following this line of work, Ayvaz
et al. [110] combined in a unique data set 14 different sources of
potential DDIs including clinical information sources, NLP cor-
pora and bioinformatics and pharmacovigilance information
sources. Future work will include the development of new
methods to map and integrate the interactions in the different
sources and making the final data accessible as Semantic Web
Linked Data.

Extraction of information from the biomedical literature is
an important field that among other tasks contributes to the de-
velopment of knowledge databases with applications in DDI as-
sessment [97, 103].

Text mining in the detection of novel DDIs

Besides extraction of DDIs from the literature to help in the con-
struction of knowledge databases, applicability of data mining
approaches also involves the detection of potential novel DDIs
with associated risk to patients. Prediction and detection in a
cost-effective manner is a useful feature that can be exploited
through the use of these methodologies. Data mining methods
applied to the biomedical literature can provide scientific evi-
dences of possible molecular mechanism of action of the
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Table 1. Summary of the studies described in the section ‘Mining pharmacovigilance sources to discover DDIs’

Authors Year Pharmacovigilance data Method Conclusion

Van Puijenbroek EP
et al. [58]

2000 Reporting system of the
Netherlands Pharmacovigilance
Foundation Lareb (9822 reports)

Logistic regression analysis, odds ratio Decreased efficacy of diuretics
combined with NSAIDs

Ellis RJ et al. [61] 2000 FAERS (64 cases) and University of
Kansas Medical Center (two
cases)

Statistical comparison, Fisher’s exact
test

Ciprofloxacin–warfarin
coagulopathy

Van Puijenbroek EP
et al. [62]

1999 Reporting system of the
Netherlands Pharmacovigilance
Foundation Lareb (5503 reports)

Logistic regression analysis, odds ratio Delayed withdrawal bleeding using
itraconazole and oral
contraceptives

Knudsen JF et al. [63] 2008 FAERS MGPS algorithm: empirical Bayes geo-
metric mean values

Hypothermia using topiramate
and valproic acid

Thakrar BT et al. [64] 2007 FAERS (study of four known DDIs
and four non-DDIs)

Multiplicative and additive model,
proportional reporting

Potential to recognize four known
DDIs

Tatonetti NP et al.
[65]

2011 FAERS (adverse event profiles with
12 627 reports for 37 drugs)

Latent signal detection algorithm,
analysis of covariance

Paroxetine and pravastatin in-
crease blood glucose levels

Lorberbaum T et al.
[66–67]

2016 FAERS and EHRs (1.8 million re-
ports, 1.6 million electrocardio-
grams from 380 000 patients in
EHR)

Model to identify an adverse effect fin-
gerprint for risk of torsades de
pointes

Ceftriaxone and lansoprazole
could prolong QT interval

Noren GN et al. [68] 2008 ICSRs, WHO database Shrinkage observed-to-expected ratio,
disproportionality measure based
on an additive risk model

Development of a method to detect
DDIs

Suzuki A et al. [69] 2015 WHO VigiBaseTM (2275 co-reported
drugs with four drugs that cause
hepatotoxicity)

Empirical Bayes geometric mean algo-
rithm, logistic regression

Co-reported medications were
associated with changes in liver
event reporting frequency

Hung IFN et al. [71] 2005 Care teaching hospital: 116 pa-
tients on clarithromycin and
colchicine

Fisher’s exact test, Student’s t-test,
Mann–Whitney U test, calculation
of relative risk and P-values

Clarithromycin increases colchi-
cine toxicity

Poizot-Martin I et al.
[72]

2015 HIV-coinfected or HCV-coinfected
patients in French Dat’AIDS co-
hort (2511 HIV-coinfected or
HCV-coinfected patients)

Pearson’s v2 test, t-test, two-tailed sig-
nificance testing

Potential DDIs between direct act-
ing antivirals with
antiretrovirals

Iyer SV et al. [73] 2014 EHRs (9 million notes with 1 mil-
lion patients, over 50 million
clinical notes with 1.2 million
patients; 1165 drugs and 14 ad-
verse effects)

Adjusted disproportionality ratios
(2 � 2 contingency table)

Potential of textual notes from
EHRs to detect DDIs

Girardeau Y et al. [74] 2015 Data warehouse of the HEGP
(training with 10 nephrotoxic
and 10 non-nephrotoxic drugs
and test with 45 drug pairs)

Logistic regression model, unadjusted
odds ratio and P-values

Potential DDIs causing kidney
injury

Pathak J et al. [75] 2013 EHRs of the Mayo Clinic (6758 pa-
tients, drugs included clopidog-
rel, warfarin and protein pump
inhibitors)

Semantic Web and Linked Data tech-
niques. Patient data as labeled
graphs in a Resource Description
Framework.

Potential DDIs including cardiovas-
cular and gastroenterology
drugs

Jiang G et al. [76] 2015 FAERS and EMR data (601 DDIs
with warfarin, clopidogrel and
simvastatin)

Semantic Web technologies Potential DDIs including cardiovas-
cular drugs

Banda JM et al. [78] 2016 EHR (5983 drug–drug-event associ-
ations with 345 drugs and 10 ad-
verse events)

Adjusted disproportionality ratios (2 �
2 contingency table), priorization of
DDIs providing evidence from com-
plementary sources

Priorization of DDIs from EHRs
using four sources of
information

Du L et al. [80] 2015 Indiana Patient Care Data (INPC)
(case-control data set with
125 275 case events and
6 263 399 control events, 212
drugs)

Odds ratios, frequent itemset mining
algorithm

High-order drug interactions caus-
ing myopathy

Zhang P et al. [81] 2015 INPC (top 20 most frequently dis-
tributed drugs)

A mixture dose–response model and
an empirical Bayes method

High-order drug interactions caus-
ing myopathy

Harpaz R et al. [82] 2010 FAERS (162 744 reports of sus-
pected ADEs, the method identi-
fied 1167 DDIs)

Association rule mining, relative re-
porting ratios

Multiple potential DDIs

Xiang Y et al. [84] 2014 FAERS (data in the study contain-
ing 134 508 records)

Frequent closed itemset mining and
filtering

Method to study high-order DDIs
with reduced computational
cost
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potential DDIs. Moreover, as certain degree of disagreement
was observed between different DDI resources [111], providing
scientific evidences for DDIs can help in the verification of
some discrepancies observed in the different DDI compendia.
As an example of DDI discovery, Tari et al. [112] proposed an ap-
proach that integrates text mining with automated reasoning.
Their approach extracts DDIs explicitly mentioned in texts
but also detect potential novel DDIs by a reasoning approach
based on drug metabolism. Their system takes into account in-
duction or inhibition of the enzymes responsible for the metab-
olization of the implicated drugs. A manual review of the
potential novel DDIs showed that >80% of them were in agree-
ment with supporting evidences. Their approach has implica-
tions not only in detection but in the explanation of the
mechanism of the DDI. Similar approaches could be extended
toward transporter-based information. Moreover, degree of
drug metabolization by a particular enzyme constitutes inter-
esting information to be considered in the development of this
type of predictors.

A different approach but with applicability in both DDI de-
tection and explanation of the pharmacokinetic molecular
mechanism has been proposed by Duke et al. [54]. They pre-
dicted an initial set of 13 197 potential DDIs from the literature
localizing substrates and inhibitors of cytochrome P450

(CYP450) enzymes. In vitro pharmacology data published in the
literature were used. However, in some cases, it is not possible
to extrapolate in vitro effects into clinically significant DDIs with
serious associated adverse effects. In this sense, the authors
narrowed the data with a study carried out in an EMR data
source. The initial DDI set was reduced to 3670 drug pairs con-
comitantly prescribed in the EMR. Among them, text mining
identified 196 drug combinations with published clinical DDI
testing (123 were confirmed as in vivo DDIs). Special attention in
the study was paid to the drug combinations with increased
risk of myopathy. The method showed the potential of incorpo-
rating data mining of biomedical literature with large clinical
sources to predict significant interactions.

Percha et al. [113] exploited the concept that two drugs can
interact with the same gene product causing a DDI. The study
describes the use of text mining to identify gene–drug relation-
ships available in the literature and create a system to predict
DDIs. The authors mined Medline abstracts to extract genes,
drugs and the type of relationship, such as metabolize, inhibit,
etc., to create a semantic network and infer novel DDIs. They
trained a random forest classifier in a set of well-known DDIs
using the features extracted from the literature. Mechanistic ex-
planations about the new DDIs were also provided using the se-
mantics of the gene–drug relationships.

Table 2. Summary of the studies focused on detection of novel DDIs described in the section ‘Text mining in the detection of novel DDIs’

Authors Year Text data Method Conclusion

Tari L et al. [112] 2010 Medline abstracts (�17 million) 265
drugs, extraction of 170 explicit
drug interactions and extraction
of implicit DDIs: 4154 direct in-
hibition/induction interactions
and 979 interactions based on
indirect inhibition or induction
of enzymes

Text mining (natural language
extraction) and automated
reasoning

The approach can identify promis-
ing enzyme-based DDIs

Duke JD et al. [54] 2012 PubMed abstracts and EMR data
(Indiana Network for Patient
Care: 817 059 patients) Among
1492 drugs, 232 drugs were iden-
tified as CYP substrates or in-
hibitors. 13 197 potential DDIs
(3670 drug pairs concomitantly
prescribed in the EMR)

Automatic literature mining to
predict DDIs based on associated
metabolism enzymes. Logistic
regression for DDIs causing my-
opathy, calculation of relative
risk and P-values

DDI detection and explanation of
the pharmacokinetic molecular
mechanism. Potential combin-
ations with increased risk of
myopathy

Percha B et al. [113] 2012 Medline abstracts (17.5 million ab-
stracts and 88 million sen-
tences). In total, 1806 entities
were included in a network:
1061 drugs, 532 genes, 172 con-
text terms and 41 relations

Text mining to extract genes,
drugs and their relationships
(metabolize, inhibit, etc.), and
generation of semantic network
to infer novel DDIs. Random
forest classifier

Identification of DDIs based on
gene–drug relationships provid-
ing mechanistic explanations

Yan S et al. [114] 2013 DrugBank DDI data for training.
Medline abstracts (from 2006 to
2010, >3.6 million abstracts)

Fingerprints (drug targets and
molecular structure). Extraction
from Medline: genes, disease
names and MeSH concepts. Drug
entities: Drug-Entity-Topic
model. Drug–drug relations:
logistic regression model

Development of structured mod-
els, including molecular struc-
ture, target information and text
data models A complex model
combining all types of data
showed the best results in DDI
detection

Kolchinsky A et al.
[115–116]

2013, 2015 PubMed pharmacokinetics-related
abstracts (1213 abstracts)

Six different linear classifiers:
Variable Trigonometric
Threshold, SVM, logistic regres-
sion, binomial Naive Bayes, lin-
ear discriminant analysis (LDA)
and a ‘diagonal’ version of LDA

Performance of several classifiers
to distinguish relevant abstracts
from PubMed containing phar-
macokinetic DDI evidence
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As commented in the section related to pharmacovigilance
data mining, structure and unstructured data can be combined
to generate a more complex model with better performance. As
an example, Yan et al. [114] developed different structured mod-
els, introducing molecular structure and target information,
along with text data models extracting concepts like genes, dis-
eases and Medical Subject Headings (MeSH) terms. In this study,
a complex model combining all types of data showed the best
results in DDI detection. The authors showed that unstructured
text data can improve domain knowledge in the detection of
DDIs. To extract or detect DDIs from the literature, it is import-
ant to evaluate the ability of the system in the identification of
relevant documents related to DDIs. Kolchinsky et al. [115] as-
sessed performance of several classifiers, such as logistic re-
gression, support vector machines (SVMs) or discriminant
analysis, among others, to distinguish relevant abstracts from
PubMed containing pharmacokinetic DDI evidence. Their ap-
proach is also useful to associate causal mechanisms to the po-
tential DDIs. The study showed also the influence of using
different data reduction techniques and including dictionaries
and named entity recognition tools. The efficacy of data mining
to identify PubMed abstracts with DDI pharmacokinetic evi-
dence and extract such evidence was assessed by the same au-
thors in an additional study [116]. Their goal is not only
identifying DDIs but also extracting experimental evidence of
possible drug interactions.

As mentioned previously, improvements in ontology and
annotated corpora facilitate the training of the data mining
models and establish a criteria of known DDIs helpful to assess
performance and reliability of the methods. A summary of the
studies focused on detection of novel DDIs and explained in this
section is provided in Table 2 to compare statistics and
conclusions.

Data mining of social media resources

Besides pharmacovigilance data and the scientific literature, so-
cial media provides different promising resources with large-
scale data that can be useful in the identification of ADEs and
DDIs. Social media offers the possibility of analyzing big data
from a great number of users who post comments about drug
outcomes. Moreover, social media sources are useful in biomed-
ical research in the study of interactions between drugs and
natural products[117]. Some drug–natural products interactions
are poorly explored, and new possibilities are opened because
of the use of social media tools. Social media could also be a
helpful tool to study some conditions or pathologies with social
disapproval that can be underreported using other sources
[117].

Different social media platforms offer great potential to
monitor public health in the analysis of drugs effects. The po-
tential of social media in pharmacovigilance has been shown
through the study of ADEs using sources like Twitter [118–120].
The social platform had already been used to study other health
issues, such as influenza and Ebola virus outbreaks [121–123].
Lately, Carbonell et al. [124] studied the mentions of drugs in
Twitter to explore the potential of social media in the detection
of ADEs and DDIs. The study collected a list of 1242 substances
(8368 drug names) and 27 246 DDIs and matched the down-
loaded mentions in Twitter with the initial drug names. After a
filtering process, 99 485 tweets were retained for analysis.The
authors downloaded in a period of 3 weeks, 1 456 961 mentions
of drugs that matched with 946 drugs and 2406 drug names pre-
viously collected. The authors used time series to analyze

coevolution of drug mentions and evaluated the correspond-
ency with a set of collected known DDIs. Another example of
applicability of Twitter in the identification of DDIs is provided
by Hamed et al. [125]. They computed associations between key-
words in the same tweet and associations between keywords
and hashtags also co-occurring in the same tweet for the con-
struction of association networks. The study developed a new
network mining algorithm to detect connections between pairs
of drugs. The mentioned studies demonstrate that Twitter is a
promising tool to monitor the effects of drugs in the population,
including effects caused by DDIs.

Other platforms such as Facebook or Instagram can also
offer great opportunities to analyze drug effects. A study was re-
cently published that identifies DDIs and ADEs in Instagram,
a platform with >300 million users. Correia et al. [117] analyzed
Instagram focusing on drugs that treat depression. They col-
lected a database of posts from Instagram users (complete time-
lines contain 5 329 720 posts for 6927 users) from 2010 to 2015 to
study associations between drugs that treat depression and
symptoms. Four different dictionaries, including drugs,
pharmacology and adverse effect terminologies, were used
to collect the data. The analysis was carried out using co-
mentions of drugs in three periods, monthly, weekly and
in daily basis. The posts were tagged with the terms in the
dictionaries to find matches, and symmetric cooccurrence
graphs for the different time windows were computed.
Proximity graphs were used to obtain associations between
sets of terms and measure the probability that two terms
are mentioned in the same period. Their study showed the
potential of Instagram and complex network analysis as an im-
portant tool to monitor public health care using large-scale
quantitative analysis. Instagram users discuss health problems,
including diagnosis, drugs prescribed and effects caused by
drugs through photos and comments. This is an important and
alternative source of valuable information that can be decodi-
fied through data analysis to explore new effects caused by
drugs.

Nevertheless, besides health care information retrieved
from social media platforms, Internet and specific Web sites
can be useful to monitor adverse effects. White et al. [126]
showed that the search logs provided by Internet users have po-
tential to study ADEs. Moreover, there are health care social
media online sites, such as MedHelp [127] or DailyStrength
[128], that are useful to study drug outcomes. Consumers and
professionals use health care Web sites to provide or seek infor-
mation. In fact, millions of people use MedHelp every month to
find medical answers to their problems. Some of these Web
sites could be a good alternative to administrative systems to
report adverse effects caused by drugs and DDIs. Different stud-
ies showed that health care Web sites provide reliable data to
detect ADEs [129, 130] and DDIs [131–133]. A study published in
2013 proposed the detection of DDIs through association mining
of online health Web sites [131]. The authors analyzed three
DDIs and used measurements such as leverage, lift and inter-
action ratio. Later, the authors proposed the detection of DDIs
by mining a heterogeneous network extracted from health care
Web sites [132]. After calculating topological features to the net-
work, a logistic regression model was developed for DDI identi-
fication. Combination of weighted heterogeneous network from
health care Web sites with supervised learning techniques was
also used by the same authors to explore DDIs [133]. Taking ad-
vantage of these sources could be important to discover medical
knowledge and provide more evidences of health-related
problems.
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Social media offers new possibilities to analyze the informa-
tion provided by million of users. For this reason, Web sites and
platforms are currently alternative sources for the study of
drugs’ actions, including adverse effects caused by DDIs. In the
literature, there are many examples of the potential of social
media in the identification of ADEs. However, the examples of
detection of DDIs using social media are more limited.
More studies are necessary to really prove and understand the
potential of social media resources and their role in
pharmacovigilance.

Challenges in DDI detection using data mining

Detection of DDIs in developmental drug stages and postmar-
keting surveillance is challenging. Although FDA is interested in
assessing DDIs in development stages and clinical trials [134], it
is not feasible to evaluate all possible drug combinations. Many
potential DDIs go undetected, and for this reason, improvement
in the methods is necessary to provide a better assistance to the
patients. Data mining DDIs can provide a useful benchmark to
detect novel DDIs. However, information about drugs has to be
available in the clinical or scientific literature data, which
means that data mining has limited applications in the discov-
ery of new DDIs for experimental drugs still in the discovery
and development processes and with no available data in the
different sources. Moreover, new DDI safety signals detected by
data mining efforts constitute novel hypotheses that need fur-
ther experimental evaluation or surveillance studies to estab-
lish more evidences that corroborate the discovery.

A crucial step in the recognition of DDIs is the normalization
of drug names and development of standardized vocabularies
[135]. Tools such as RxNorm [136] provided by the National
Library of Medicine has become important to support operabil-
ity between drug vocabularies. RxNorm proposes standard and
multipurpose terminology for the representation and identifica-
tion of drugs. The tool generates normalized names for clinical
drugs and also links the names with other medication vocabula-
ries. The idea is to group equivalent terms and codes from dif-
ferent vocabularies into a RxNorm Concept Unique Identifier.
Terminologies that code drug properties, such as the National
Drug File-Reference Terminology [137], are also integrated in
RxNorm. There are related tools useful in drug standardization
such as RxTerms, RxNav or MyMedicationList [135]. Our re-
search group has also used NLP systems, such as MedLEE [138],
to map drugs to UMLS codes and then RxNorm to obtain generic
drug names [57, 139]. Improvements in the normalization of
drug names and clinical entities are crucial to correctly identify
drugs that can be implicated in DDIs.

Pharmacovigilance data including observational health care
databases, such as FAERS, and EHRs are valuable sources to
study possible ADEs in the population [1, 140]. However, there
are also some challenges in SRS as FAERS that limit their appli-
cation, such as reporting bias or sampling variance [49, 141,
142]. Methodologies using data as FAERS are based on direct evi-
dence between an adverse effect and the exposure of drugs, and
many unexpected events or associations can be unreported [53].
Low reporting numbers could artificially increase the risk esti-
mates for drugs causing false positives. Although some meth-
ods try to reduce the false-positive fraction, their capacity to
detect adverse effects is at the same time compromised [53].
Besides underreporting, other phenomena include overreport-
ing or reporting duplicity, limited demographic data or failing to
provide the number of patients treated with a particular drug
[142, 143]. There are also some reports that include a high

number of drugs where spurious associations are more likely to
be generated. Those facts have influence in the detection of ad-
verse effects caused by drug combinations.

On the other hand, data in EHRs allow real-time surveillance
that can transform health care [144]. EHRs are useful to evaluate
and improve many processes important for the hospital func-
tionality, to make better decisions and provide more coordi-
nated health care [145]. However, extraction and analysis of
adverse effects and DDIs have to be adapted to overcome some
limitations. Data from EHRs are complex, and many records
provide unstructured narrative [146]. In some cases, the lack of
accuracy or even missing data further complicate the analysis.
Moreover, confounding factors are an important and
challenging problem when using EHRs [147]. Besides associ-
ations between drugs as the cause of the adverse effects, indir-
ect associations or confounding associations can be obtained
from other events. Signals can be confounded by co-
medication, indication and comorbidities. Patients at the hos-
pital often take multiple drugs and have different comorbidities,
and this fact complicates the analysis and leads to more con-
founding. Another limitation is sparse data, and in some cases,
a larger number of patients taking both drugs is needed to gen-
erate robust signals [148]. Ontology problems and heterogeneity
of the information can limit also the analysis and the reproduci-
bility of the results. More precise vocabularies defining con-
cepts, such as drugs, diseases or processes, could help in the
analysis and validation. Other limitations in EHRs include re-
stricted public access to medical records to ensure patient priv-
acy [149] and need for external experts to evaluate the
importance of the signals in the analysis. Because of these limi-
tations, pharmacovigilance methods are subject to an import-
ant number of false-positive cases that reduce their
applicability and limit their success [147]. In this sense, initia-
tives such as OHDSI [150] and the common data model, where
drug–condition information is standardized, could facilitate ac-
cess to large volumes of data and methods, and improve qual-
ity, accuracy and reproducibility in data mining of
pharmacovigilance resources.

Methods that extract DDIs from the scientific literature
showed good performance in different extraction challenges
[97, 103]. Co-ocurrence-based methods yield good recall, but the
precision is low with many false positives. The precision is im-
proved with rule-based methods, although limitations emerge
with complex sentences. Machine learning approaches showed
the best performance [88]. However, machine learning needs
training with big learning sets, and well-annotated corpora are
important for their success. One of the limitations of training
models in the detection of DDIs is the absence of true negative
examples, i.e. drug pairs that are known to do not interact. In
many occasions, the non-DDIs are extracted from drug pairs
when the interaction is not described [113, 114]. Moreover, ana-
lysis and detection of DDIs in the biomedical texts can be
challenging because of the nature of the unstructured data.

Exponential growth of the scientific literature makes diffi-
cult the analysis of such amount of data [151]. Computational
tools have great applicability to help in the extraction, analysis
and classification of the biological information described in all
the publications. In fact, during the past years, there have been
important advances in biomedical language processing [151].
However, development and improvement of methods to ana-
lyze the great amount of information are still an important ob-
jective in research- and literature-based discovery. The
National Center for Biotechnology Information is constantly im-
proving the PubMed Web service. Moreover, different Web tools
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that provide literature search service have been developed [152]
to help users to make efficient searches and collect relevant
data.

Although there are multiple resources of DDIs that can be
useful as knowledge databases or gold standards to evaluate
methods’ performance, i.e. DrugBank [153], Micromedex [154]
and DDI Corpus [97], they showed low consistency and overlap-
ping between them [110]. As it has been discussed previously,
improvements in pharmacokinetic ontology and well-
annotated corpora along with unified criteria for gold standards
could be a crucial step to develop more realistic models to de-
tect novel DDIs. Although we have shown multiple studies
demonstrating the applicability of using different sources of
data to validate the DDIs, it is also necessary to be cautious
when comparing and implementing diverse data sets with dif-
ferent bias and limitations.

Besides pharmacovigilance sources, scientific literature
and social media, there are other sources with potential to ex-
plore DDIs, such as biomedical images [155]. In the past years,
there has been an increasing interest about extracting biomed-
ical information from images. In fact, there are public data
sources containing biomedical image data sets extracted from
a variety of research projects that can be analyzed from the
point of view of data mining. For this reason, there is a need
for the development of retrieval systems and platforms that
facilitate the extraction of the information from images [155].
There are different technologies with applicability in data
mining of biomedical figures: approaches to analyze heteroge-
neous images or approaches focused on domain-specific
images. A more complete description and comparison of the
different technologies, development state, accuracies, advan-
tages and limitations have already been discussed in the lit-
erature [155]. There are some examples about extraction of
text and image based information to study protein-protein
interactions [155]. Although no implications in DDIs have been
reported, extraction of information through these technolo-
gies applied to images could provide important insights for
the analysis of DDIs.

Integrative approaches that combine data from the different
described resources, including pharmacovigilance data, scien-
tific literature, social media or biomedical images, could be
helpful toward the development of more robust models to pre-
dict DDIs. Moreover, integration of other type of bioinformatics
models, based on protein–protein interaction networks [156] or
exploiting similarity between DDIs [157], could represent an ex-
cellent strategy to take advantage of all possible resources in
the detection of DDIs.

Conclusions

DDIs are the cause of many adverse effects in the patients, and,
hence, they have an important impact in health care.
Improvements in systems related to clinical decision-making
are necessary to decrease the negative impact caused by DDIs
in the clinical practice. On the other hand, improvements in the
methods used to detect novel DDIs are also needed to discover
interactions that are causing harm to the population earlier.
Data mining of pharmacovigilance data, such as SRS or EHRs,
have shown potential to prove the impact of DDIs as a cause of
adverse effects as well as in the detection of novel DDIs.
Moreover, data mining can be applied in the scientific literature
to extract DDIs and construct powerful knowledge databases
useful for the assessment of additional methods. As it was
shown by different studies, the biomedical literature can be a

source to detect novel DDIs through data mining. There are also
examples of the potential of social media as a promising re-
source for the study of drugs’ actions, including adverse effects
caused by DDIs. Although the multiple sources to study DDIs
through data mining present some challenges and limitations,
they have shown real applicability to study multiple drug com-
bination effects from different perspectives.

Key Points

• Methods to discover and follow-up DDIs are a primary
aim of drug safety researchers.

• The study of DDIs through data mining can be applied
in pharmacovigilance sources, the scientific biomedical
literature and social media.

• Data mining has important applications in the ana-
lysis of DDIs: showing the impact in the generation of
adverse effects, creating knowledge data sets and gold
standards and discovering novel DDIs.
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