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Abstract

Motivation: The length of the 30 untranslated region (30 UTR) of an mRNA is essential for many biolo-

gical activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and

translation efficiency. Moreover, correlation between diseases and the shortening (or lengthening) of 30

UTRs has been reported in the literature. This length is largely determined by the polyadenylation

cleavage site in the mRNA. As alternative polyadenylation (APA) sites are common in mammalian

genes, several tools have been published recently for detecting APA sites from RNA-Seq data or per-

forming shortening/lengthening analysis. These tools consider either up to only two APA sites in a

gene or only APA sites that occur in the last exon of a gene, although a gene may generally have more

than two APA sites and an APA site may sometimes occur before the last exon. Furthermore, the tools

are unable to integrate the analysis of shortening/lengthening events with APA site detection.

Results: We propose a new tool, called TAPAS, for detecting novel APA sites from RNA-Seq data. It

can deal with more than two APA sites in a gene as well as APA sites that occur before the last

exon. The tool is based on an existing method for finding change points in time series data, but

some filtration techniques are also adopted to remove change points that are likely false APA sites.

It is then extended to identify APA sites that are expressed differently between two biological sam-

ples and genes that contain 30 UTRs with shortening/lengthening events. Our extensive experi-

ments on simulated and real RNA-Seq data demonstrate that TAPAS outperforms the existing

tools for APA site detection or shortening/lengthening analysis significantly.

Availability and implementation: https://github.com/arefeen/TAPAS

Contact: gxxiao@ucla.edu or jiang@cs.ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

According to the central dogma of molecular biology, the transcription

process in eukaryotes synthesizes a pre-mRNA from the genomic se-

quence of a gene (Leavitt and Nirenberg, 2010). The pre-mRNA is

then converted to a mature mRNA by the post-transcriptional process.

Finally, this mature mRNA is translated into the corresponding pro-

tein. The post-transcriptional process includes three major steps: the

addition of a 50 cap, addition of a polyadenylation (polyA) tail and

splicing. In particular, a polyA tail is added at the 30 end of a pre-

mRNA with the help of the polyadenylation process. More precisely,

the polyadenylation process consists of two steps (Wahle and Kühn,

1997): cleavage near the 30 end of a pre-mRNA and the addition of a

polyA tail at the cleavage site. Certain cis-acting elements and trans-

acting factors have been found in the literature that influence the
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choice of a particular polyA cleavage site (Barrett et al., 2012; Pichon

et al., 2012). In particular, the 30 end sequence of a pre-mRNA usually

contains a AAUAAA hexamer (or some close variant). This hexamer is

called the polyadenylation signal (PAS) and it usually appears 10–30

bps upstream of the cleavage site (Tian, 2005). The PAS serves as a

binding site for the cleavage and polyadenylation specificity factor

(CPSF). U-rich or U/G-rich elements located 20–40 bps downstream of

the cleavage site are also involved in polyadenylation (Tian, 2005).

These U-rich or U/G-rich elements serve as the binding sites for the

cleavage stimulation factor (CstF). In addition, some auxiliary elements

upstream of the PAS and downstream of the cleavage site may enhance

the polyadenylation process (Tian, 2005). Due to the interactions be-

tween these cis elements and polyadenylation factors, alternative cleav-

age sites can be formed for a pre-mRNA, resulting in more than one

mRNA transcript from a single pre-mRNA containing 30 untranslated

regions (30 UTRs) of different lengths. Note that a 30 UTR is a suffix of

an mRNA sandwiched between the stop codon and polyadenylation

cleavage site of the mRNA. The length of a 30 UTR as well as some se-

quence elements in the 30 UTR such as AU-rich elements and GU-rich

elements may have impact on mRNA stability, mRNA localization,

protein translation, protein binding and translation efficiency (Barrett

et al., 2012). Moreover, the secondary structure of a 30 UTR is also im-

portant for its translation efficiency and disruption of expression

(Barrett et al., 2012). Alternative polyadenylation (cleavage) is very

common in mammalian genes (Tian, 2005). According to the study in

(Christine, 2016), more than half of human genes have alternative pol-

yadenylation in their post-transcriptional process. Therefore, the ana-

lysis of alternative (or all) polyadenylation sites (APA sites) would be

of great importance for the study of mammalian genes.

The analysis of expressed sequence tags (ESTs) has provided

genome-wide annotations of 30 UTRs. Not only does this analysis

show that mammalian genes have multiple 30 UTRs (Tian, 2005),

but also it reveals that neuronal cell mRNAs have longer 30 UTRs

than liver cell mRNAs (Sood et al., 2006). However, an EST based

approach is not able to estimate the relative abundance of each 30

UTR in the resultant mRNAs (Kim et al., 2015b). Using 3P-Seq

data, the 30 UTRs of genes in yeast, worm, fly, zebrafish, mouse and

human genomes have been annotated in (Andrew et al., 2010; Derti

et al., 2012; Hoque et al., 2013; Jan et al., 2011; Mangone et al.,

2010; Nam et al., 2014; Shepard et al., 2011; Ulitsky et al., 2012).

Unlike EST based approaches, these methods based on 3P-Seq pre-

cisely detect the usage of different 30 UTRs in mRNAs. On the other

hand, they require complex biochemical steps and large amounts of

RNA for their analyses (Kim et al., 2015b).

The advancement of RNA-Seq technology has provided new av-

enues for the study of transcription including the polyadenylation

process. A typical RNA-Seq data analysis process begins with map-

ping RNA-Seq reads to some reference genome using tools like

TopHat2 (Kim et al., 2013), HISAT (Kim et al., 2015a). Once the

reads are mapped, mRNA transcripts (or isoforms) are assembled by

using tools like Cufflinks (Trapnell et al., 2010), IsoLasso (Li et al.,

2011), StringTie (Pertea et al., 2015) or TransComb (Liu et al.,

2016), and their abundance levels are quantified by using tools

like Cufflinks (Trapnell et al., 2010), RSEM (Li and Dewey, 2011),

CEM (Li and Jiang, 2012), eXpress (Roberts and Pachter, 2013),

Kallisto (Bray et al., 2016), etc. Moreover, differential expression

between samples can be analyzed by using tools such as DESeq

(Anders and Huber, 2010), Cuffdiff (Trapnell et al., 2013) or

DEXSeq (Anders et al., 2012).

Recently, several methods for discovering 30 UTRs from RNA-

Seq data have been introduced in the literature. The tool introduced

in (Lu and Bushel, 2013) studies the dynamic expression of 30 UTRs

using a Poisson hidden Markov model. Due to the design of the

model, the tool is only able to identify up to two alternative polyade-

nylation sites for a given gene. The web server 3USS (Pera et al.,

2015) takes a pair of annotated genome and transcriptome and out-

puts alternative 30 UTRs. It only reports the polyadenylation sites

given in the transcriptome and thus would be unable to provide any

novel APA sites. Roar (Grassi et al., 2016) takes annotated APA sites

from public databases to identify genes undergoing regulation of 30

UTR length. Similar to 3USS, Roar is unable to discover novel APA

sites. GETUTR (Kim et al., 2015b) is another RNA-Seq based tool

to estimate the 30 UTR landscape. The method takes mapped reads

and a reference genome as the input, and finds APA sites by using

techniques to smooth read coverage including isotonic (or mono-

tone) regression (Kruskal, 1964). A drawback of the method is that

these smoothing techniques may result in many false APA sites. On

the other hand, although introns may occur in 30 UTRs (Barrett

et al., 2012; Bicknell et al., 2012), GETUTR does not consider in-

tronic regions in its analysis and thus often misses 30 UTRs that con-

tain introns. IsoSCM (Shenker et al., 2014) identifies alternative 30

UTRs based on a multiple change-point inference model. It first uses

the (statistical) model to infer change points in a gene that exhibit

sharp increase or decrease in read coverage. Then it employs some

additional mathematical constraint to filter change points that are

likely to be false APA sites. Similar to GETUTR, the method does

not consider introns inside a 30 UTR. DaPars (Xia et al., 2014) and

ChangePoint (Wang et al., 2014) are tools for comparing APA sites

in two biological samples and detecting shortening/lengthening

events. Both of these tools consider only two cleavage sites in their

shortening/lengthening analysis, although a gene may have more

than two APA sites.

In this paper, we introduce a new tool, called TAPAS (i.e. Tool

for Alternative Polyadenylation site AnalysiS), for detecting novel

APA sites from RNA-Seq data. It can deal with more than two APA

sites in a gene as well as 30 UTRs that contain intronic regions. The

tool is based on the Pruned Exact Linear Time (PELT) method for

finding change points in time series data (Killick et al., 2012), but

some filtration techniques that take into account special properties

of RNA-Seq data and the exonic structures of the 30 UTRs of the

same gene are also employed to remove change points that are likely

false APA sites. The tool is then extended to identify APA sites that

are expressed differently between two biological samples with mul-

tiple replicates by using an elaborate algorithm to align APA sites

from each replicate and standard statistical approaches for differen-

tial expression analysis such as the one in (Anders and Huber,

2010). The differential expression analysis is further extended to

identify genes that have 30 UTRs with shortening/lengthening

events.

To assess the performance of TAPAS, we have conducted extensive

experiments on both simulated and real data and compared TAPAS

with the above mentioned tools IsoSCM, GETUTR, DaPars and

ChangePoint for APA site or differential expression analysis.

Moreover, since a complete transcriptome provides full information

about APA sites, we also include the most popular tool for transcrip-

tome assembly, Cufflinks and its corresponding tool for transcript-

based differential expression analysis, Cuffdiff, in the comparison. As

none of these existing tools are able to perform all three types of APA

site and differential expression analysis that TAPAS can do, we organ-

ize the comparison as three groups: (i) detection of APA sites (among

TAPAS, IsoSCM, GETUTR and Cufflinks), (ii) detection of genes with

differentially expressed APA sites (among TAPAS, Cuffdiff, DESeq and

DEXSeq) and (iii) detection of genes with shortening/lengthening

events (between TAPAS, DaPars and ChangePoint). We exclude 3USS,
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Roar and the tool in (Lu and Bushel, 2013) from the comparison be-

cause they are either unable to discover novel APA sites or seriously re-

stricted. In the simulation experiments, the tools are compared in terms

of sensitivity and precision. Based on these two performance measures,

TAPAS outperforms IsoSCM, GETUTR and Cufflinks significantly in

the detection of APA sites. When 30-Seq (or polyA-Seq) and PAS-Seq

data are considered as the ground truth in real data experiments,

TAPAS is able to deliver more true APA sites than the other tools with

a similar number of predicted APA sites. For the detection of genes

with differentially expressed APA sites, TAPAS achieves a higher sensi-

tivity than Cuffdiff and DEXSeq even though they are provided with

an annotated transcriptome. Although its sensitivity is initially worse

than that of DESeq, the gap decreases rapidly with the increase of

sequencing depth. While its precision is also higher than that of

Cuffdiff without the transcriptome annotation and DEXSeq, it is

slightly lower than that of Cuffdiff with the transcriptome annotation

and lower than that of DESeq (but the gaps shrink as well with the in-

crease of sequencing depth). In the shortening/lengthening event ana-

lysis, TAPAS outperforms significantly DaPars and ChangePoint on

simulated data. On a real dataset and once again using 30-Seq data as

the ground truth, TAPAS identifies more genes with real shortening/

lengthening events than the other two, when all the tools are tuned to

output similar number of events. We also analyze the time and memory

efficiency of TAPAS and demonstrate that while TAPAS requires a sig-

nificant amount of memory, its running time is comparable to that of

the other tools.

The rest of the paper is organized as follows. The method of

TAPAS is discussed in Section 2. The experimental results and com-

parison with the other tools are given in Section 3. A brief evalu-

ation of the running time and memory efficiency of the tools is given

in Section 4.

2 Materials and methods

TAPAS takes a set of mapped RNA-Seq reads from standard

polyAþ libraries along with the read coverage information and an

annotated genome as the input to detect alternative polyadenylation

sites (i.e. APA sites). It first extracts the 30 UTRs of every gene in the

genome annotation. The overlapping 30 UTRs in a gene are merged

into a 30 UTR frame (if a gene has only one 30 UTR, then that 30

UTR is considered as the 30 UTR frame of the gene). Then it estimate

the the read coverage of the 30 UTR frames. The read coverage of

each of these frames is given as the input to the PELT algorithm to

infer change points in a gene where the read coverage increases or

decreases sharply. Since not all such change points are true APA

sites, TAPAS filters them to produce a list of predicted APA sites.

The abundance of an APA site (i.e. the total abundance of all tran-

scripts that end at the APA site) can be estimated by using the quan-

tification method in (Trapnell et al., 2010). When two biological

samples with multiple replicates are given, TAPAS can be applied to

each replicate to obtain its set of APA sites and the associated abun-

dance. The sets of APA sites from all replicates are then aligned

using an elaborate algorithm and some standard statistical steps like

those used in DESeq (Anders and Huber, 2010) are applied to iden-

tify APA sites that are differentially expressed in the two samples.

This analysis can be easily extended to infer genes that have short-

ened/lengthened 30 UTRs between the two samples. The flowchart

shown in Supplementary Figure S1 illustrates the main steps of

TAPAS. Each of these steps is explained in detail below.

2.1 Detecting alternative polyadenylation sites
As mentioned above, TAPAS starts its APA site analysis by extract-

ing 30 UTR frames of each gene from an annotated genome (or tran-

scriptome, if it is available). Such an annotation typically provides

some known 30 UTRs of each gene. Some of the 30 UTRs may over-

lap. In order to avoid the potential inference between overlapping 30

UTRs in our subsequent change point analysis, we merge multiple

overlapping 30 UTRs of a gene into a frame. For convenience, if a

gene has only one 30 UTR, the 30 UTR is also considered as the 30

UTR frame of the gene. Next, it takes a set of standard RNA-Seq

reads mapped to the reference genome by TopHat2 (Kim et al.,

2013) along with read coverage information and extracts the read

coverage for each base position of a 30 UTR frame. The prune exact

linear time (PELT) algorithm (Killick et al., 2012) based on dynamic

programming is applied to infer APA sites in each 30 UTR frame as

follows.

Let the read coverage of a 30 UTR frame be y1:n¼ y1, y2,. . ., yn

and t1:m¼ t1, t2,. . ., tm the (potential) ‘change points’ in the frame.

These m change points split the sequence y1:n into mþ1 segments,

where the ith segment is represented as yti�1þ1:ti
, and can be deter-

mined by minimizing Equation 1:

Xmþ1

i¼1

Cðyti�1þ1:ti
Þ þmc (1)

where Cðyti�1þ1:ti
Þ ¼ �2�maxk

Xti

j¼ti�1þ1

log f ðyjjkÞ

The minimization involves a cost function C() and penalty mc,

where c is a parameter estimated from the read coverage y1:n.

Similar to the the method in (Jiang and Wong, 2009), we assume

that the read coverage in a segment follows a Poisson distribution

with density function f and mean k, and use twice the negative log-

likelihood method to determine C. More details of the PELT algo-

rithm for inferring change points as well as determining the value of

m are given in Algorithm 1 of the Supplementary Material.

The change points found by the PELT algorithm indicate pos-

itions in a 30 UTR frame where the read coverage increases or de-

creases sharply. Not all of them are necessarily true APA sites. In

particular, the read coverage typically decreases rather than in-

creases at an APA site, although it may increase after an intron con-

tained in a 30 UTR frame. Therefore, we need filter the change

points output by the PELT algorithm to reduce false positives.

It has been observed in our preliminary experiments that the

PELT algorithm often outputs an extra change point before a true

APA site when the read coverage increases or decreases gradually

(please see Supplementary Fig. S2a for more details). To remove the

spurious change point, we scan the coverage between two consecu-

tive change points from left to right. If it is generally decreasing,

then TAPAS removes the first change point. If it is generally increas-

ing, then TAPAS removes the second change point. The details of

this filtration procedure are given in Algorithm 2 of the

Supplementary Material.

If a 30 UTR frame does not contain any intron, then the read

coverage is generally expected to monotonically decrease across the

frame. However, introns occur in 30 UTRs (Barrett et al., 2012) and

they cannot be ignored (Bicknell et al., 2012) in APA site analysis.

When introns (either annotated or novel) exist in a frame, ‘wells’

could be created in the read coverage, as illustrated in

Supplementary Figure S2b. This might lead the PELT algorithm to
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output change points around the introns that are unlikely to be true

APA sites. These spurious change points can be removed according

to cases as illustrated in Supplementary Figure S2c. More details of

this filtration step are given in Algorithm 3 of the Supplementary

Material. Note that various biases in RNA-Seq data such as pos-

itional bias, sequencing bias and mappability bias may also cause

PELT to report false change points, but they are not dealt with expli-

citly here.

After filtering potentially spurious change points, TAPAS obtains

a list of predicted APA sites for each 30 UTR frame. Note that since

the 30 UTR frames are extracted from the input genome (or tran-

scriptome) annotation and the end of each such frame is likely an

(expressed) APA site, the real novelty of TAPAS is the detection of

internal APA sites located inside the 30 UTR frames.

2.1.1 Estimation of the abundance of alternative 30 UTRs

In order to perform differential expression analysis based on APA

sites, we need estimate the abundance of each APA site. Here, the

abundance of an APA site is defined as the total abundance of all

transcripts that end at the APA site. Instead of considering full tran-

scripts (which are unknown), TAPAS considers all possible 30 UTRs

within a 30 UTR frame, as a crude approximation. The introns

(annotated or identified in the filtration step) located in a 30 UTR

are factored into the effective length of the 30 UTR. Let R be the set

of reads mapped to a 30 UTR frame, T the set of all possible 30 UTRs

in the frame, and qt and lt the abundance and effective length of a

specific 30 UTR t, respectively. The abundance of t can be estimated

by Equation 2, as done similarly in Cufflinks (Trapnell et al., 2010).

LðqjRÞ ¼
Y
r2R

X
t2T

ar;t
qtP

u2Tr
qu

1

ðlt � lr þ 1Þ (2)

Here, ar,t¼1 when a 30 UTR t contains read r, or otherwise ar,t¼0.

Tr denotes all 30 UTRs containing read r. This likelihood function

can be maximized by using an EM algorithm similar to the one

introduced in the transcript quantification tool IsoEM (Nicolae

et al., 2011). The details of the EM algorithm are given in Algorithm

4 of the Supplementary Material. Note that here the abundance of a

transcript is measured in read count rather than RPKM or FPKM.

2.2 Detecting differentially expressed APA sites
If two biological samples with multiple replicates are given, TAPAS

first identifies potential APA sites for each replicate along with their

abundance levels (measured in read count) by following the steps in

Section 2.1. It then ‘aligns’ the APA sites from all replicates by merg-

ing them based on their genomic locations as follows. It puts all the

APA sites of a gene across the replicates into a list and sorts them by

their genomic locations. TAPAS then merges a pair of neighboring

APA sites on the list into a cluster if their genomic distance is less

than some threshold (which is set as 70 bps in our experiments based

on several trials) and they are from different replicates. It repeats

this step until no more neighboring APA sites can be merged.

Finally, every singleton cluster (i.e. a cluster with only one APA site

from some replicate) is merged with its nearest neighbor cluster.

Each cluster will be considered as an APA site in the differential ex-

pression analysis, and its genomic location is determined by the ma-

jority location in the cluster. If there is a tie, TAPAS takes the

median genomic location of all APA sites in the cluster. If a cluster

contains an APA site a from a replicate r, then its abundance in r is

defined as the abundance of a. If the cluster does not contain any

APA site from r, then its abundance in r is zero.

Let A and B be two samples with mA and mB replicates, respect-

ively, and m¼mAþmB. Suppose that the above alignment proced-

ure results in n clusters for all genes. Denote the abundance (in read

count) of these clusters in all replicates as an n�m matrix ki,j, where

i¼1, 2, . . . , n indexes the APA sites and j¼1, 2, . . . m indexes the

replicates. As in Anders and Huber (2010), we assume that the read

counts of an APA site across all replicates from the same sample fol-

low a negative binomial (NB) distribution:

ki;x � NBðli;x; r
2
i;xÞ; (3)

where li,x and ri,x are the mean and variance of the NB distribution,

respectively, for APA site i in sample x (x¼A or B). NB distribu-

tions can be used to model count data with over-dispersion

(Cameron and Trivedi, 1998) and are popular in RNA-Seq based

differential expression analysis. The mean and variance can be esti-

mated by fitting the data to a mathematical model, and the null hy-

pothesis that an APA site is not differentially expressed between the

two samples can be tested as in (Anders and Huber, 2010).

Finally, TAPAS reports an APA site as differentially expressed if

the Benjamini & Hochberg adjusted P-value for the APA site is less

or equal to 0.1.

2.3 Detecting shortening/lengthening events of 30 UTRs
30 UTRs (and their corresponding APA sites) are sometimes short-

ened or lengthened to cause significant changes in gene functions

(Bahn et al., 2015; Xia et al., 2014). Hence, it would be interesting

to accurately detect shortening/lengthening events between two bio-

logical conditions. We start with the above differential expression

analysis for APA sites. Consider a pair of APA sites i and j where at

least one APA site is differentially expressed and APA site i precedes

APA site j on the genome. Denote the mean abundance of i and j in

samples A and B as ei,A, ej,A, ei,B and ej,B, respectively. We can use

the following Equation 4 to calculate the relative change value for

the APA site pair:

rci;j ¼ log2

ej;B

ej;A

� �
� log2

ei;B

ei;A

� �
(4)

Similar to Bahn et al. (2015), if jrcijj�1.0, then the APA site pair

(i, j) is considered as giving rise to a shortening/lengthening event.

TAPAS outputs all genes that contain APA site pairs with shorten-

ing/lengthening events.

3 Experimental results

In this section, we compare the performance of TAPAS with those of

some state-of-the-art methods in term of detecting APA sites, differ-

entially expressed APA sites and shortening/lengthening events on

both simulated and real data.

3.1 Performance on detecting APA sites
In this experimental study, we compare TAPAS with two existing

tools IsoSCM (Shenker et al., 2014) and GETUTR (Kim et al.,

2015b) for detecting APA sites. As explained in Introduction, as

APA sites are uniquely determined by transcripts, we also include

the most popular transcriptome assembly method Cufflinks

(Trapnell et al., 2010) in the comparison. In order to simulate RNA-

Seq data, we download the human RefSeq annotation GRCh37

(hg19) from the UCSC Genome Browser. The annotation contains

19 150 genes with 44 923 transcripts and 21 731 APA sites. Among

these genes, 17 083, 1769 and 298 have one, two or more than two
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unique APA sites each, respectively. The distribution of the lengths

of the 30 UTR frames extracted by TAPAS from the annotation is

plotted in Supplementary Figure S3. Using this annotation and

RNASeq Read Simulator (http://alumni.cs.ucr.edu/�liw/rnaseqread

simulator.html) (genexplvprofile.py with parameters -e -1, 2) intro-

duced in (Li and Jiang, 2012), an expression profile is generated

with the log normal distribution. Based on this expression profile,

single-end reads with lengths 76 bps are simulated to create 50, 100

and 150 million read datasets. We consider three datasets to evalu-

ate how sequencing depth may impact the performance of the tools

in APA site detection.

Since it is difficult to detect APA sites from RNA-Seq data at sin-

gle nucleotide precision, some degree of flexibility is used to match

predicted APA sites to the annotated ones as done similarly in

(Shenker et al., 2014). For TAPAS, if a predicted APA site is within

50 bps of some annotated APA site then the prediction is considered

as a true positive (TP), or otherwise a false positive (FP). We use 100

bps as the flexible range of matching for IsoSCM, GETUTR and

Cufflinks because it was used in (Kim et al., 2015b; Shenker et al.,

2014). The numbers of TPs, FPs and true (i.e. annotated) APA sites

(P) are used to calculate sensitivity (TP
P ) and precision ( TP

TPþFP). In the

calculation of sensitivity, all TPs matching the same true APA site

count as one TP.

Among the 21 731 annotated APA sites, TAPAS identifies

16 866, 18 205 and 18 871 true APA sites on the 50, 100 and 150

million read datasets, respectively. For the other tools, IsoSCM iden-

tifies 11 790, 13 583 and 14 592 true APA sites, GETUTR identifies

15 495, 16 596, 17 082 true APA sites and Cufflinks identifies

15 117, 16 303 and 16 779 true APA sites, respectively. The sensitiv-

ity and precision of the methods are illustrated in Figure 1. It can be

seen from the figure that all tools perform better with the increase of

sequencing depth. Supplementary Table S1 provides a detailed ac-

count of the performance of the tools. Clearly, TAPAS outperforms

all three other tools in both sensitivity and precision. Note that

among the tools, IsoSCM and Cufflinks do not use the transcrip-

tome annotation, but TAPAS and GETUTR use the annotation to

define 30 UTR frames. However, once the reads are mapped to the

frames, the annotation is no longer used in the latter two tools. In

particular, these tools do not consult the annotated APA sites when

deciding if a change point should be output as a predicted APA site.

While the use of annotation might have helped the performance of

TAPAS and GETUTR (especially its sensitivity), it does not benefit

GETUTR’s precision because the tool does not perform rigorous fil-

tration as TAPAS and IsoSCM do. Although Cufflinks achieves a de-

cent sensitivity, its precision is low because it assembles many

transcripts with incorrect APA sites. GETUTR and IsoSCM have the

worst performance in the experiment (in term of precision). While

the performance of GETUTR is consistent with the results in (Kim

et al., 2015b), it is reported in (Shenker et al., 2014) that IsoSCM

performs well when the sequencing depth is 500 reads/kb or more.

Note that the sequencing depths for our 50, 100 and 150 million

read datasets are in fact 326, 652 and 977 reads/kb, respectively.

However, the simulation study in (Shenker et al., 2014) assumed the

abundance is distributed uniformly among all transcripts while we

use a log normal distribution. Moreover, a slightly different (and

more relaxed) criterion was used in (Shenker et al., 2014) to define

correctly identified APA sites. To make sure that we have installed/

run IsoSCM correctly, we created a small dataset based on

Chromosome 18 with deep coverage (1000 reads/kb) and uniform

abundance distribution. Using the evaluation criterion in (Shenker

et al., 2014), IsoSCM was able to achieve 86.98% precision and

96.71% sensitivity, matching the results reported in (Shenker et al.,

2014).

We also compare the performance of the four tools for detecting

APA sites on real data. We download paired-end RNA-Seq reads

from standard polyAþ libraries for mouse brain (GSE41637) from

NCBI. TopHat2 is able to map 85.4% of these reads to the reference

genome (76189196 out of 87264604 reads). The mouse RefSeq an-

notation NCBI37 (mm9) is downloaded from the UCSC Genome

Browser. For performance evaluation, a 30-Seq dataset (BED file of

annotated APA sites, GSM747481) for mouse (GSE30198) is also

downloaded from NCBI and used as the benchmark, as done simi-

larly in Shenker et al. (2014) and Xia et al. (2014). We run the tools

with the mapped reads and compare their predicted APA sites

against the benchmark using two flexible ranges of 50 and 100 bps

for matching. Here, we consider two flexible ranges because the de-

fault flexible range for TAPAS is 50 bps but 100 bps was used as the

default range in IsoSCM (Shenker et al., 2014). Among the 33 751

APA sites reported in the 30-Seq data, TAPAS, Cufflinks, IsoSCM

and GETUTR identify 10 429, 5711, 6354 and 3111 APA sites, re-

spectively, using the flexible range of 50 bps. When the flexible

range is increased to 100 bps, TAPAS, Cufflinks, IsoSCM and

GETUTR identify 12 224, 7956, 7680 and 6977 APA sites in the

benchmark, respectively. Clearly, all tools found more true APA

sites with more flexibility in matching. The detailed performance of

the tools is illustrated in Figure 2 and Supplementary Table S2. Note

that TAPAS and Cufflinks predicted similar numbers of APA sites

while IsoSCM and GETUTR predicted many more. Clearly, TAPAS

outperforms the three other tools on this real dataset.

Supplementary Tables S2–S4) show that this advantage of TAPAS

remains true when the prediction results of the other tools are fil-

tered by the 30 UTR frames or only internal APA sites located inside

30 UTR frames are considered. In particular, it still outperforms
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Fig. 1. Performance of the tools in APA site detection on simulated data with

different sequencing depths. (a) The sensitivity and (b) the precision
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Fig. 2. Number of correct APA sites detected by different tools on the real

dataset when the flexible range for matching a predicted APA site to a true

APA site of 30-Seq is 50 bps (a) and 100 bps (b)
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Cufflinks even if the latter is provided with the reference transcrip-

tome in RefSeq.

Similar to the 30-Seq data, we also use mouse PAS-Seq data (BED

file of annotated APA sites) from NCBI (GSE25450) as a benchmark

for the performance evaluation of the tools using two flexible ranges

(50 and 100 bps). This PAS-Seq dataset contains APA sites from

mouse ES (embryonic stem), NPS (Neuropeptide S) and neuron cells.

We extract APA sites from neuron for our evaluation. Moreover, we

consider only APA sites that are supported by four or more reads of

PAS-Seq. Among the 50 148 APA sites reported in the PAS-Seq data,

TAPAS, Cufflinks, IsoSCM and GETUTR identify 26 336, 12 338,

17 606 and 6253 APA sites, respectively, using flexible range 50 bps

and 29 346, 17 290, 19 919 and 15 442 APA sites, respectively, using

flexible range 100 bps. The detailed results of the tools are given in

Supplementary Table S5. Clearly, TAPAS outperforms other the

tools again with respect to this new benchmark. Although all tools

have better performance on the PAS-Seq benchmark (because it con-

tains more sites), the trends are similar on both benchmarks.

3.2 Performance on APA site-based differential

expression analysis
In this section, we compare the performance of TAPAS with

Cuffdiff (Trapnell et al., 2013), DESeq (Anders and Huber, 2010)

and DEXSeq (Anders et al., 2012) in detecting differentially ex-

pressed genes on simulated data. Note that TAPAS’s differential ex-

pression analysis is based on APA sites while Cuffdiff’s, DESeq’s

and DEXSeq’s are based on transcripts, genes and exons, respect-

ively. Moreover, DEXSeq is designed for differential splicing (DS)

rather than DE analysis (Liu et al., 2014; Soneson et al., 2016). The

data is simulated for two conditions as follows. For condition 1, the

expression profile created in Section 3.1 is taken as its initial expres-

sion profile. Genes with at least one major transcript (i.e. a tran-

script that has RPKM value greater than or equal to 1) in the

expression profile are kept, similar to Yang and Jiang (2016). For

these genes, only transcripts with different APA sites are selected for

the analysis. This results in 12 683 genes with a total of 14 716 tran-

scripts (and 14 716 APA sites). For condition 2, 1254 (around 10%

of all genes) genes are randomly selected as differentially expressed

(DE) genes and a major transcript of each selected gene is chosen as

a DE transcript (indirectly, making the APA site of that transcript a

DE APA site). Among the 1254 DE genes, 630 are designated as up-

regulated and 624 as down-regulated. For each up-regulated gene,

the abundance of its DE transcript is increased by a factor of four

and for each down-regulated gene, the abundance of its DE tran-

script is decreased by a factor of four, similarly to (Bullard et al.,

2010) and (Yang et al., 2013). For the other (non-DE) transcripts,

their abundance levels are kept the same as in condition 1. This gives

us the initial expression profiles of both conditions.

Given the RPKM value qt,c of a transcript t in the initial expres-

sion profile for condition c, a negative binomial distribution NBðlt;c;

r2
t;cÞ is used to generate a set of RNA-Seq reads rt,j for each replicate j

of condition c. We generate six replicates for each condition. The

mean and variance of the negative binomial distribution are lt;c ¼ qt;c

�lt � bs and rt;c ¼ lt;c þ / � l2
t;c, respectively, where lt is the effective

length of the transcript t in kilo bps, bs the size of the RNA-Seq library

in millions and / the dispersion. We simulate four RNA-Seq datasets

by setting bs ¼ 30, 50, 100 and 150 million with /¼0.179, as done in

(Kimes et al., 2014). A similar simulation procedure was also adopted

in (Yang and Jiang, 2016).

To compare the performance of TAPAS, Cuffdiff, DESeq and

DEXSeq in differential expression analysis, we run all four tools on

the simulated datasets to detect DE genes based on the abundance of

either APA sites, transcripts, genes, or exons, respectively. In order

to make a thorough comparison, Cuffdiff is run with and without

the transcriptome annotation. DEXSeq divides exons into ‘counting

bins’ [or expressed segments (Li et al., 2011)] according to the over-

lapping structure of annotated transcripts, and outputs DE counting

bins between samples. It can be regarded as either a tool for detect-

ing DE APA sites where we only consider counting bins in front of

each APA site or a tool for detecting DE genes where we consider all

counting bins in a gene. We adopt the latter option to be consistent

with the other tools. Since it is designed for DS rather than DE ana-

lysis, we consider only true DE genes with at least two transcripts

(298 in total) as the benchmark for evaluating DEXSeq. The FDR

value of 0.1 is used in Cuffdiff to call a DE transcript to make it

comparable with TAPAS (which uses the adjusted P-value of 0.1).

Similar to TAPAS, the adjusted P-values for DESeq and DEXSeq are

set to 0.1. The performance of TAPAS, Cuffdiff, DESeq and

DEXSeq are summarized in Figure 3. From the figure, we can see

that DESeq has the best overall performance and DEXSeq has the

worst overall performance. Both TAPAS and Cuffdiff with annota-

tion perform better with the increase of sequencing depth. In terms

of sensitivity, DESeq outperforms the rest of the tools when the

number of reads is less than 100 million. But, the sensitivity of

TAPAS catches up quickly when the number of reads gets close to

100 million (perhaps helped by its improved performance on lowly

expressed DE APA sites). TAPAS outperforms both Cuffdiffs when

the number of reads reaches 50 million or more, even if it is given

the transcriptome annotation. It also achieves a better precision than

Cuffdiff without annotation. Although its precision is worse than

that of Cuffdiff with annotation and DESeq, the gap closes rapidly

with increased sequencing depth (again, perhaps helped by its im-

proved performance on lowly expressed DE APA sites). The detailed

results of TAPAS, Cuffdiff, DESeq and DEXSeq are given in

Supplementary Table S6. It is interesting to observe that TAPAS is

able to achieve a better overall performance than Cuffdiff with

annotation when the sequencing depth is high in the experiment.

This is because in the simulated datasets, the average number of

APA sites contained in a gene is 14716
12683 ¼ 1:16. Thus, most genes (and

hence 30UTR frames) contain just a single APA site. This makes the

estimation of the abundance of an APA site quite easy (actually triv-

ial) while Cuffdiff still has to face the challenging problem of quanti-

fication, since the average number of annotated transcripts for each

gene is 44923
19150 ¼ 2:35.
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Fig. 3. Performance of TAPAS, Cuffdiff, DESeq and DEXSeq in differential

expression analysis in terms of sensitivity (a) and precision (b). Cuffdiff_

anno denotes running Cuffdiff with the transcriptome annotation and

DEXSeq_gene denotes running DEXSeq to detect DE genes (instead of DE

APA sites)
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Although an RNA-Seq based differential expression analysis is

generally expected to perform better with the increase of sequencing

depth (Zhang et al., 2014), it is interesting to observe that Cuffdiff

does not exhibit this behavior when the transcriptome annotation is

not given. In fact, its performance decreases slightly when the

sequencing depth is increased. This could be caused by Cuffmerge,

which is used by Cuffdiff without annotation to merge assembled

transcripts from different replicates. In particular, Cuffmerge tends

to merge a transcript that is contained in another into the latter tran-

script. It may also merge two similar transcripts into one transcript.

Both cases may result in the loss of transcripts in a sample and thus

false DE genes. When the sequencing depth increases, more tran-

scripts are assembled for each replicate and hence more transcripts

could be merged.

In this simulation experiment, DESeq is able to outperform the

other tools mostly because each simulated DE gene contains only

one DE transcript. Although the performance of DEXSeq is worse

than the other tools, it is generally consistent with the performance

results reported in (Liu et al., 2014; Soneson et al., 2016). Again,

DEXSeq is designed for DS analysis instead of DE analysis.

Although we used a different benchmark for DEXSeq in the experi-

ment to account for this difference, our specific simulation proced-

ure above might still have put DS analysis methods at a

disadvantageous position since each DE gene is only required to

have one major transcript.

3.3 Performance on detecting shortening/lengthening

events
In this section, we compare the performance of TAPAS with two

methods DaPars (Xia et al., 2014) and ChangePoint (Wang et al.,

2014) in the literature for detecting genes with 30 UTRs that short-

ened or lengthened between conditions on both simulated and real

data. For the simulation study, similar to the above differential ex-

pression analysis, we need generate data for two conditions. For

condition 1, the log normal distribution used in Section 3.1 is used

again to obtain the initial expression profile, but we now consider

only genes with at least one transcript whose RPKM value is greater

than or equal to 2 and keep these genes for further analysis. The

number of such gene is 7033. For each of these genes, select a tran-

script t with RPKM value at least 2 and introduce another transcript

t0 (called an artificial transcript) that is the same as t but with a 30

UTR half as long as that of t. We then divide the initial expression

value of t evenly between t and t0. To create data for condition 2,

674 genes are randomly selected as differentially expressed.

Moreover, we make sure that the APA site of the artificial transcript

in each such gene is at least 100 bps upstream of the corresponding

original transcripts. Here, the distance of 100 bps is chosen because

we found that the distance between two APA sites given in the

benchmark data is more than 100 bps. Among the 674 artificial

transcripts, 340 are chosen to be up-regulated and 344 are down-

regulated by a factor of four. The abundance of the other (non-DE)

transcripts is kept the same as in condition 1. This gives us the initial

expression profiles of both conditions.

Similar to Section 3.2, six replicates per condition are generated

using negative binomial distributions. Three different datasets are

created with sequencing depths of 50, 100, 150 million reads, re-

spectively. TAPAS, DaPars and ChangePoint are run on these data-

sets to compare their performance. We do not include Cuffdiff here

because we have run Cufflinks on the first dataset (50 million read)

and found that it output only one APA site for most genes and failed

to identify most of the artificial APA sites. A similar observation

about Cufflinks was also be made in (Shenker et al., 2014). Since

ChangePoint does not support multiple replicates, it is run with only

one replicate from each condition. The FDR cutoffs for both DaPars

and ChangePoint are set to 0.1, since TAPAS uses 0.1 as adjusted

P-value cutoff.

The performance of the tools is summarized in Figure 4. Again,

the performance of all tools improve with the increase of sequencing

depth. TAPAS outperforms the other two methods significantly. The

poor performance of ChangePoint can probably be attributed to the

fact it allows only one replicate per condition. (We also tried run-

ning ChangePoint by pooling all replicates but its performance got

even worse.) The details results of all three tools can be found in

Supplementary Table S7.

We also compare the tools on a real dataset (RNA-Seq reads

from standard polyAþ libraries) used in (Xia et al., 2014). Four rep-

licates of MAQC human brain (SRX016368, SRX016367,

SRX016366, SRX016365) and MAQC UHR (SRX016372,

SRX016371, SRX016370, SRX016369) data are downloaded from

NCBI. The reads are then mapped to the reference human genome

by TopHat2 to be used by the tools for shortening/lengthening ana-

lysis. To evaluate the performance, 30-Seq datasets are downloaded

for MAQC human brain (GSM747473 and GSM747474) and UHR

(GSM747475 and GSM747476) from NCBI. Similar to (Xia et al.,

2014), the significance of each APA site in the 30-Seq data is assessed

by using Fisher’s exact test, and only statistically significant APA

sites are kept to create the benchmark of shortening/lengthening

events by estimating the abundance of the APA sites using 30-Seq

reads and relative change values for each pair of APA sites as in

Equation 4 and applying the cutoff jrcijj�1.0.

On this real dataset, TAPAS reports 872 genes having shorten-

ing/lengthening events with a precision of 61.7%. On the other

hand, Dapars and ChangePoint output 808 and 734 genes having

shortening/lengthening events with precision values of 39.85 and

34.33%, respectively. Clearly, TAPAS outperforms the other two

tools significantly. The detailed results are given in Supplementary

Table S8.

4 Discussion and time/memory efficiency

In this work, we have introduced TAPAS, a bioinformatics tool for

detecting novel APA sites from standard RNA-Seq data. It is also

capable of finding differentially expressed APA sites and genes with

shortening/lengthening events. Our extensive experiments on both

simulated and real data show that TAPAS performs better than all

existing RNA-Seq based tools for APA site analysis. Compared with

methods based on more dedicated experimental protocols such as
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genes with shortening/lengthening events in terms of sensitivity (a) and

precision (b)
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3P-Seq, standard RNA-Seq data is more abundant and easier to ob-

tain. Moreover, a preliminary analysis of a 3P-Seq data against the

corresponding 30-Seq data and TAPAS prediction results suggests

that although 3P-Seq may have a higher sensitivity than TAPAS, it

actually achieves a lower precision than TAPAS (see Supplementary

Table S11 for more details). Hence, we expect that TAPAS will serve

as a useful APA site analysis tool in biological research.

Although both TAPAS and Cufflinks are capable of finding novel

APA sites, TAPAS relies on a transcriptomic or genomic annotation

while Cufflinks can assemble transcripts from scratch. As a result,

Cufflinks may potentially discover novel APA sites that are not

found by TAPAS, especially because TAPAS only searches in 30 UTR

frames. Hence, one may consider combining the output of both

TAPAS and Cufflinks to increase the coverage of novel APA sites.

Since the efficiency of a bioinformatics tool is critical to its prac-

tical utility, we also compare TAPAS with the existing tools in term of

time and memory efficiency. Similar to the study in the previous sec-

tion, we divide the comparison into two groups: comparison between

the APA site detection tools and comparison between the shortening/

lengthening analysis tools. Our computation platform is a high-end

computer cluster, where each node has 32 Intel Broadwell cores and

512 GB memory. We compare the four APA site detection tools (i.e.

TAPAS, IsoSCM, GETUTR and Cufflinks) on the simulated dataset

with 50 million reads as considered in Section 3.1 based on sequential

running time (i.e. using a single core) and peak memory usage. As

shown in Supplementary Table S9, although TAPAS requires a signifi-

cant amount of memory, its running time is comparable to that of the

other three tools. We then compare the running time and memory ef-

ficiency of the three tools for shortening/lengthening event detection

(i.e. TAPAS, DaPars and ChangePoint) on the dataset with 50 million

reads as considered in Section 3.3. It can be seen from Supplementary

Table S10 that TAPAS requires more time and memory than DaPars

when it is run on a single core, but the gap in running time can be sig-

nificantly reduced when more cores are used (one core per replicate)

since DaPars is unable to take advantage of parallelism. TAPAS is sig-

nificantly more efficient than ChangePoint in both running time and

peak memory usage. Also note that ChangePoint cannot be parallel-

ized either.
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