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Abstract

Motivation: Single cell transcriptome sequencing (scRNA-Seq) has become a revolutionary tool to

study cellular and molecular processes at single cell resolution. Among existing technologies, the

recently developed droplet-based platform enables efficient parallel processing of thousands of

single cells with direct counting of transcript copies using Unique Molecular Identifier (UMI).

Despite the technology advances, statistical methods and computational tools are still lacking for

analyzing droplet-based scRNA-Seq data. Particularly, model-based approaches for clustering

large-scale single cell transcriptomic data are still under-explored.

Results: We developed DIMM-SC, a Dirichlet Mixture Model for clustering droplet-based Single

Cell transcriptomic data. This approach explicitly models UMI count data from scRNA-Seq experi-

ments and characterizes variations across different cell clusters via a Dirichlet mixture prior. We

performed comprehensive simulations to evaluate DIMM-SC and compared it with existing cluster-

ing methods such as K-means, CellTree and Seurat. In addition, we analyzed public scRNA-Seq

datasets with known cluster labels and in-house scRNA-Seq datasets from a study of systemic

sclerosis with prior biological knowledge to benchmark and validate DIMM-SC. Both simulation

studies and real data applications demonstrated that overall, DIMM-SC achieves substantially im-

proved clustering accuracy and much lower clustering variability compared to other existing clus-

tering methods. More importantly, as a model-based approach, DIMM-SC is able to quantify the

clustering uncertainty for each single cell, facilitating rigorous statistical inference and biological in-

terpretations, which are typically unavailable from existing clustering methods.

Availability and implementation: DIMM-SC has been implemented in a user-friendly R package

with a detailed tutorial available on www.pitt.edu/�wec47/singlecell.html.

Contact: wei.chen@chp.edu or hum@ccf.org

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Single cell RNA sequencing (scRNA-Seq) technologies have

advanced rapidly in recent years (Gawad et al., 2016). Among them,

the newly developed droplet-based technologies have generated

great interests (Macosko et al., 2015; Zheng et al., 2017). They are

able to measure the transcriptome of thousands of single cells simul-

taneously in a short time period and at a relatively low cost

(Macosko et al., 2015; Zheng et al., 2017). More attractively,

droplet-based technologies utilize Unique Molecular Identifier

(UMI) to annotate the 30 end of each transcript in order to reduce

PCR amplification bias, increase transcript capture efficiency and

substantially minimize batch effect (Islam et al., 2014). More re-

cently, 10� Genomics has released a commercialized droplet-based

Chromium system, which is efficient and cost-effective in isolating

thousands of single cells with average running time of ten minutes

based on the Gel bead in Emulsion (GEM) technology. They used

this platform to comprehensively characterize and profile peripheral

blood mononuclear cells (PBMC) (Zheng et al., 2017). Harnessing

the power of these exciting new technologies, droplet-based scRNA-

Seq has brought revolutionary insights to understand cellular and

molecular processes at single cell resolution.

One important question in the analysis of scRNA-Seq data is to

identify and characterize cell subtypes from heterogeneous tissues,

which is essential to fully understand cell identity and cell function.

Clustering methods have been extensively studied for many areas in

the past decades. For example, unsupervised clustering methods

such as K-means clustering, hierarchical clustering, and Adaptive

Density Peak (ADP) clustering (Rodriguez and Laio, 2014; Wang

and Xu, 2015), can be applied to droplet-based scRNA-Seq data

after certain data transformation. In addition, tailored methods such

as CellTree and Seurat have been proposed to analyze scRNA-Seq

data with the motivation from early generation platforms (duVerle

et al., 2016; Jaitin et al., 2014). However, clustering methods tail-

ored to droplet-based scRNA-Seq data are largely lagging behind.

Although existing clustering methods can be adapted, there are at

least three key limitations of using those methods to cluster droplet-

based scRNA-Seq data. First of all, most existing methods are de-

veloped for continuous data [e.g. Fragments Per Kilobase of tran-

script per Million (FPKM) or log-transformed count data] while

droplet-based scRNA-Seq data consist of the discrete count of the

unique UMIs, which are direct measurements of transcript copies

from each gene. Converting UMI counts into continuous measure

will alter the straightforward interpretation of UMI, thus it is more

appealing and reasonable to directly model the count data. Second,

most existing methods are designed for the early generation of

scRNA-Seq technologies that measure transcriptome across a rela-

tively small number of single cells. It is unclear how these methods

can be scaled up to cluster droplet-based scRNA-Seq data, which

usually contain thousands of single cells. Last but not the least, most

existing methods only provide a ‘hard’ cluster membership for each

cell without statistical uncertainty quantification. In order to con-

duct rigorous statistical inference and achieve reliable data interpret-

ation, different sources of uncertainties in droplet-based scRNA-Seq

data need to be explicitly taken into consideration in the clustering

analysis.

To fill in these gaps, we proposed DIMM-SC, a Dirichlet mix-

ture model for clustering droplet-based scRNA-Seq data. DIMM-SC

explicitly models both the within-cluster and between-cluster vari-

ability of the UMI count data, leading to rigorous quantification of

clustering uncertainty for each single cell. We also implemented an

efficient expectation-maximization (E-M) algorithm (Dempster

et al., 1977) for fast convergence. Furthermore, we proposed differ-

ent strategies for initial value selection to ensure algorithm robust-

ness. In the following sections, we first introduce the unique features

of droplet-based scRNA-Seq data, as well as the details of the

DIMM-SC method. Next, we compare the performance of DIMM-

SC with three popular clustering methods, including K-means clus-

tering, CellTree and Seurat, in both simulation studies and real data

applications. K-means clustering is one of the most popular cluster-

ing methods and has been used in the first 10� Genomics publica-

tion (Zheng et al., 2017). CellTree has been recently developed to

cluster scRNA-Seq data based on Latent Dirichlet Allocation (LDA)

(duVerle et al., 2016). Seurat is a deterministic approach which

relies on a graph-based clustering approach (Satija et al., 2015).

2 Materials and methods

2.1 Data description
The droplet-based scRNA-Seq data can be summarized into a UMI

count matrix (Table 1), in which each row represents one gene and

each column represents one single cell. Each entry in the UMI count

matrix is the number of transcripts (unique UMIs) for one gene in

one single cell. Compared to the data generated from early gener-

ation of scRNA-Seq technologies, droplet-based scRNA-Seq data

have three important features (Gawad et al., 2016; Stegle et al.,

2015; Zheng et al., 2017). First, each experiment can generate thou-

sands of cells, which dramatically increase the data dimension and

computational burden. Second, the use of UMI can reduce PCR

amplification bias and quantify the copies of captured molecules.

Droplet-based sequencing protocol amplifies the 30 end of the tran-

script, so the number of UMI is independent of the total transcript

length. The normalization method used in RPKM and FPKM, which

adjusts for total transcript length, is invalid for analyzing droplet-

based scRNA-Seq data. Therefore, the raw count data should be

directly modeled to retain their biological interpretations. Third,

the UMI count matrix is extremely sparse, and thus violates the

statistical assumption of many existing clustering methods.

Supplementary Figure S1 lists the empirical distribution of the UMI

counts for a few representative genes, demonstrating the non-

ignorable proportion of zeroes for different levels of expression.

Pre-selection of informative single cells and informative genes are

necessary before the downstream clustering analysis. After clustering

analysis, the results are usually visualized by a t-distributed stochas-

tic neighbor embedding (t-SNE) approach (van der Maaten and

Hinton, 2008), which embeds high-dimensional transcriptome data

into a two-dimensional scatter plot. Note that t-SNE is a visualiza-

tion tool, and it is not intended to be used for clustering scRNA-Seq

data.

2.2 Statistical model
We start with a matrix X , of which the element Xij represents the

number of unique UMIs for gene i in cell j where i runs from 1 to the

Table 1. An example of the raw UMI count table from droplet-based

scRNA-Seq data

Cell 1 Cell 2 Cell 3 . . . Cell 2000

Gene1 0 0 0 . . . 0

Gene2 1 0 1 . . . 0

Gene3 23 12 9 . . . 3

. . . . . . . . . . . . . . . . . .

Gene 10 000 22 6 7 9 3
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total number of genes G, and j runs from 1 to the total number of

cells C (as showed in Table 1). Xij is the count for the absolute num-

ber of transcripts. We denote the j th column of this matrix, which

gives the number of unique UMIs in the j th single cell, by a vector

xj ¼ x1j; x2j; . . . ; xGj

� �
, where j ¼ 1; . . . ;C. We assume that xj is

generated from a multinomial distribution with parameter vector

pj ¼ ðp1j; p2j; . . . ; pGjÞ. The element of pj, pij, is the probability that

a unique UMI count taken from cell j belongs to gene i. This gives a

likelihood for each cell:

P xj

� ��pjÞ ¼
Tj!QG

i¼1

xij!

p
x1j

1j p
x2j

2j . . . p
xGj

Gj ;

where Tj ¼
P

ixij is the total number of unique UMIs for the j th

cell. The joint likelihood of all C cells is the product of the likelihood

for each cell:
QC

j¼1 P xj

� ��pjÞ.

2.2.1 Dirichlet mixture priors

In a Bayesian framework, we need to define a prior distribution for the

multinomial parameter probability vector pj. For multinomial distribu-

tion, a commonly used conjugate prior is the Dirichlet distribution.

Specifically, we assume that the proportion pj ¼ ðp1j; p2j; . . . ; pGjÞ fol-

lows a Dirichlet prior distribution Dir að Þ ¼ Dirða1; a2; . . . ; aGÞ:

P pj

���a� �
¼ 1

BðaÞ p
a1�1
1j pa2�1

2j . . . paG�1
Gj ;

where BðaÞ is Beta function with parameter a ¼ ða1; a2; . . . ; aGÞ. All

the elements in a are strictly positive ðai > 0Þ. The mean and vari-

ance of pij are ai= aj j and ai aj j � aið Þ=ð aj j2 aj j þ 1ð ÞÞ, respectively,

where aj j ¼ a1 þ a2 þ � � � þ aG. A large aj j gives small variance

about the proportions pj, while a small aj j leads to widely spread

pj’s. When the cell population is homogeneous, we assume that pj’s

all follow the same prior distribution DirðaÞ, and the full likelihood

function is as follows:

P xj

� ��a� ¼ ð P xj

���pj

� �
P pj

���a� �
dpj ¼

Tj!QG
i¼1

xij !

YG
i¼1

C xij þ ai

� �
C aið Þ

 !
C aj jð Þ

C Tj þ aj j
� � :

We then assume that the cell population consists of K distinct cell

types, where K can be pre-defined according to prior biological

knowledge or can be estimated through model fitting. To provide a

more flexible modeling framework and allow for unsupervised clus-

tering, we extend the aforementioned single Dirichlet prior to a mix-

ture of K Dirichlet distributions, indexed with k ¼ 1; . . . ;K, each

with parameter aðkÞ. If cell j belongs to the k th cell type, its gene ex-

pression profile pj follows a cell-type-specific prior distribution

DirðaðkÞÞ. The full likelihood function is then obtained by multiply-

ing the Dirichlet mixture prior by the multinomial likelihood.

2.2.2 E-M algorithm for fitting the mixture of Dirichlet prior

We now use a latent variable vector Z with elements zj to represent

the cell type label for the cell j. This allows us to maximize the log

posterior distribution using the E-M algorithm (Dempster, 1977).

We have

P xj

� ��zj ¼ k; aðkÞÞ /
YG
i¼1

C xij þ aik

� �
C aikð Þ

 !
C a kð Þ
�� ��� �

C Tj þ a kð Þ
�� ��� � ;

and P zj ¼ k
� �

¼ pk, where pk is the proportion of the k th cell type

among all cells. We can treat zj as missing data, and use the E-M al-

gorithm to estimate a1k; a2k; . . . ; aGk and pk. The complete log likeli-

hood is

log
YC
j¼1

Pðxj; zj ¼ kÞ ¼
XC

j¼1

Iðzj ¼ kÞlog
YG
i¼1

C xij þ aik

� �
C aikð Þ

 !
CðjaðkÞjÞ

CðTj þ jaðkÞjÞ

( )
:

The formula for updating a1k; a2k; . . . ; aGk is derived from the

Minka’s fixed-point iteration for the leaving-one-out likelihood

(https://tminka.github.io/papers/dirichlet/minka-dirichlet.pdf):

baðtþ1Þ
ik ¼ aðtÞik

PC
j¼1

djk

n
xij=ðxij � 1þ aðtÞik Þ

o
PC
j¼1

djk Tj=ðTj � 1þ jaðtÞkð ÞjÞ
n o :

We repeat the above steps until the convergence of log likelihood or

a maximum number of iterations is reached (see detailed algorithm

in supplemental materials).

2.2.3 Selection of the number of clusters and initial values

To implement DIMM-SC, it is critical to select the total number of

clusters and the initial values for the E-M algorithm. Specially, the

number of clusters K can be defined with prior knowledge or can be

selected from model selection criteria such as AIC or BIC (Akaike,

1974; Schwarz, 1978). Meanwhile, there are many methods to de-

termine the initial values of a1; a2; . . . ; aG in the E-M algorithm for

fitting the Dirichlet mixture model. For example, Ronning (1989)

suggests to estimate
PG

i¼1 ai by

log
XG

i¼1
ai ¼

1

G� 1

XG�1

i¼1

log
E pið Þ 1� E pið Þð Þ

Var pið Þ
� 1

� �
;

where EðpiÞ can be approximated by
�PC

j¼1 xij=Tj

�
ðC) (Ronning,

1989). An alternative approach is to estimate the initial values using

a method of moment estimates proposed by Weir and Hill (2002).

In this paper, we applied the K-means clustering to obtain the initial

clustering results, and then used either the Ronning’s method or the

Weir and Hill’s method to obtain the initial estimates of Dirichlet

parameter a.

2.3 Simulation studies
We performed comprehensive simulation studies to compare

DIMM-SC with three existing clustering methods, including

K-means clustering, Seurat and CellTree. The first two are determin-

istic approaches and the third one is a probabilistic approach.

In the simulation set-up, the UMI count matrix was sampled

from the proposed Dirichlet mixture model. Specially, for a fixed

total number of cell clusters K, we first pre-defined the values of

aðkÞ ¼ a1ðkÞ; a2ðkÞ; . . . ; aGðkÞ
� �

for the k th cell cluster, and then

sampled the proportion pj ¼ ðp1j;p2j; . . . ; pGjÞ from a Dirichlet dis-

tribution Dir aðkÞ
� �

. Next, we sampled the UMI count vector xj for

the j th cell from the multinomial distribution MultinomialðTj; pjÞ.
We fixed Tj as a constant across all cells.

In the simulation studies, we considered the following seven clus-

tering methods. (i) DIMM-SCþK-meansþRonning (hereafter

referred as DIMM-SC-KR), in which we used the K-means cluster-

ing to obtain the initial values of clustering labels and then used the

Ronning’s method to estimate initial values of a; (ii) DIMM-

SCþK-meansþWeir (hereafter referred as DIMM-SC-KW), in
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which we used the K-means clustering to obtain the initial values of

clustering labels and used the Weir and Hill’s method to estimate

initial values of a; (iii) DIMM-SCþ randomþRonning (hereafter

referred as DIMM-SC-RR), in which we randomly selected the ini-

tial values of clustering labels and used the Ronning’s method to es-

timate initial values of a; (iv) DIMM-SCþ randomþWeir (hereafter

referred as DIMM-SC-RW), in which we randomly selected the ini-

tial values of clustering labels and used the Weir and Hill’s method

to estimate initial values of a; (v) K-means clustering; (vi) CellTree, a

LDA-based approach to cluster scRNA-Seq data; and (vii) Seurat.

To perform the simulation analysis using Seurat, we followed the tu-

torial instructions from the Seurat website (http://satijalab.org/

seurat/) and used all genes as input to perform Principal Component

Analysis (PCA). After that, we followed the ‘jackstraw’ procedure

implemented in Seurat, and identified first ten PCs for their down-

stream algorithm. We fixed the number of PCs in all the simulation

runs under each scenario. Since Seurat requires users to self-specify a

resolution parameter with increased values leading to a greater num-

ber of clusters, the clustering results are very sensitive to this reso-

lution parameter. Seurat suggests that setting this resolution

parameter between 0.6 and 1.2 typically returns good results for

datasets of around 3000 cells, so we ran Seurat using resolution par-

ameter with 0.6, 0.8, 1.0 and 1.2, and chose the one with the highest

adjusted rand index (ARI) value in each simulation setting. Note that

ARI is a commonly used metric of the similarity between the estimated

clustering labels and the true clustering labels (Rand, 1971).

We used the signal-to-noise ratio (SNR) to measure the magni-

tude of difference among different cell clusters. When K ¼ 2; SNR is

defined as:

SNR ¼
að1Þ � að2Þ
�� ��

1

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var að1Þ

� �
þ Varðað2ÞÞ

q ;

where j.j1 is the L1 norm of a vector. We performed comprehensive

simulations to investigate how different SNRs, different sequencing

depths, different total numbers of cells/genes/clusters, and different pro-

portions of noisy genes affect the clustering results. To evaluate the per-

formance of DIMM-SC and other competing clustering methods, we

used the following two metrics: (i) Clustering accuracy measured by

ARI and (ii) Stability (the standard deviation of ARI). We expect a good

clustering method should achieve both high accuracy and high stability.

3 Results

3.1 Simulation studies
Figure 1A shows the boxplots of ARI for seven clustering methods

across 100 simulations at different SNRs. Four DIMM-SC based

methods (KR, KW, RR, RW) achieved comparable performance,

which produced higher accuracy and lower variability than K-means

clustering, Seurat and CellTree. When SNR is high (i.e. substantial

differences among cell clusters), all seven methods performed well.

However, when SNR is low (i.e. different cell clusters are similar),

K-means clustering, Seurat and CellTree produced less accurate and

more variable clustering results, while four DIMM-SC based meth-

ods still performed well.

Figure 1B shows the boxplots of ARI for seven clustering meth-

ods across 100 simulations, when the total number of clusters is 2,

3, 4, 5 and 8, respectively. The four DIMM-SC based methods, espe-

cially the two methods with randomly selected initial cluster labels

(RR and RW), achieved better clustering accuracy (i.e. higher ARI)

with more number of clusters. K-means clustering has high variabil-

ity for more clusters, since it is a deterministic procedure and is more

likely to end at a local optimum when the total number of clusters in-

creases. CellTree performed worse for more clusters, partially due to

the over-parameterized LDA model and lack of fit to highly heteroge-

neous data. Seurat was run under different default recommended par-

ameters and the performance varies with different parameters.

Fig. 1. Boxplots of ARI for seven clustering methods across 100 simulations, investigating how different SNRs (A), number of clusters (B), number of genes

(C), number of cells (D), sequencing depth (E) and the number of informative genes (F) affect clustering results
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Figure 1C–F list the boxplots of ARI for seven clustering meth-

ods across 100 simulations, for different number of genes (Fig. 1C),

different number of cells (Fig. 1D), different sequencing depths

(Fig. 1E) and different number of informative genes (Fig. 1F) (i.e. dif-

ferentially expressed genes among clusters), respectively. Consistent

across all these four scenarios, more information (i.e. more genes,

more cells, higher sequencing depths and more informative genes)

lead to higher clustering accuracy and lower clustering variability.

Four DIMM-SC based clustering methods consistently outper-

formed K-means clustering, Seurat and CellTree in all these simula-

tion settings, suggesting the advantage of DIMM-SC.

3.2 Real data analysis: the publicly available 103

Genomics scRNA-seq data
3.2.1 In silicon studies based on purified cell types from published

scRNA-seq data

To illustrate the application of DIMM-SC to real datasets, we first

benchmarked our method against pre-defined measures in capturing

true cell-to-cell similarities on published single-cell datasets. 10�
Genomics has made eleven datasets from purified cell types avail-

able to public (Zheng et al., 2017). Among which, over 10 000

cells were detected in most experiments. Here we considered

two scenarios: (i) a simple case with cells from three highly distinct

cell types (CD56þNK cells, CD19þB cells and CD4þ/

CD25þ regulatory T cells); (ii) a challenging case with cells from

three similar cell types (CD8þ/CD45RAþnaive cytotoxic T cells,

CD4þ/CD25þ regulatory T cells and CD4þ/CD45RAþ/CD25-

naive T cells) (Table 2). For visualization, we used the t-SNE

algorithm to project the data into a two-dimensional space so that

certain hidden structures in the data can be depicted intuitively (see

the t-SNE visualization in Supplementary Figs S2 and S3).

We ran DIMM-SC, K-means clustering, CellTree and Seurat

50 times for both two scenarios. In the simple case, at each

time, we randomly selected 1000 CD56þNK cells, 2000

CD19þB cells and 3000 CD4þ/CD25þ regulatory T cells from

the 10� Genomics datasets, and combined them together. Thus

the total number of cells for clustering is 6000. Similarly, in the

challenging case, 1000 CD8þ/CD45RAþnaive cytotoxic T

cells, 2000 CD4þ/CD25þ regulatory T cells and 3000 CD4þ/

CD45RAþ/CD25- naive T cells were randomly selected at each

time.

Cell types in each dataset were known as a priori and were fur-

ther validated in the respective follow-up studies, providing a reli-

able gold standard to benchmark the clustering performance for

each method. We compared the performance of four DIMM-SC

methods with K-means clustering, CellTree and Seurat, in terms of

clustering accuracy and stability.

In the simple case, we applied all these seven clustering meth-

ods on the top 100 variable genes ranked by their standard devia-

tion among all cells. Table 3 shows that all methods provided

good clustering results. Two DIMM-SC methods with randomly

selected initial cluster labels (RR and RW) slightly outperformed

K-means clustering in terms of accuracy and variability. For the

challenging case, unlike what we did in the simple case, we chose

different numbers of top variable genes. Table 3 and

Supplementary Figure S4 show that the ARIs of CellTree and

Seurat were lower than other methods when the total number of

genes used for clustering was greater than 200. DIMM-SC

slightly outperformed K-means clustering in terms of accuracy.

K-means clustering made a great leap forward when the total

number of genes increased to 300. However, there is no further

improvement of ARI with K-means clustering when top 500 or

more variable genes were used. Since in the challenging case,

CD4þ/CD25þ regulatory T cells and CD4þ/CD45RAþ/CD25-

naive T cells were similar to each other, more and more noisy

genes were included in the analysis when we increased the total

number of genes, which undermined the performance of K-means

clustering. Note that K-means clustering and Seurat were only

able to provide a deterministic clustering label, while DIMM-SC

and CellTree can additionally provide the probability that each

cell belongs to each cluster.

3.2.2 Real data analysis on the PMBC 68 K dataset

To examine how DIMM-SC is applicable to large-scale dataset, we

applied DIMM-SC-KR on the PBMC 68 K dataset, which consists

of>68 000 single cells. Among all 32738 genes, we selected the top

1000 genes with the highest variations. Figure 2A shows a clear separ-

ation of cell types as we expected. 11 purified sub-populations of

PBMCs were used as the reference to identify the cell type of each sin-

gle cell from the PBMC 68 K dataset. We used the labels from cell

classification analysis as the approximated truth. In this analysis, each

cell was assigned to the purified population which has the highest

Table 2. Total number of cells, genes and validated populations for

two scenarios, for in silicon studies based on purified cell types

from 10� Genomics

Scenario #Genes #Cell Cell type

Simple 32 738 8385 CD56þ NK cells

10 085 CD19þ B cells

10 283 CD4þ/CD25þ regulatory T cells

Challenging 32 738 11 953 CD8þ/CD45RAþ naive cytotoxic T cells

10 263 CD4þ/CD25þ regulatory T cells

10 479 CD4þ/CD45RAþ/CD25- naive T cells

Table 3. Performance of clustering in the simple case and the challenging case

#Genes DIMM-SC-KR DIMM-SC-KW DIMM-SC-RR DIMM-SC-RW K-means clustering CellTree Seurat

The simple case

100 0.952 (0.114) 0.951 (0.118) 0.982 (0.052) 0.990 (0.002) 0.951 (0.129) 0.983 (0.002) 0.983 (0.003)

The challenging case

100 0.351 (0.140) 0.357 (0.140) 0.368 (0.140) 0.408 (0.128) 0.182 (0.012) 0.278 (0.018) 0.395 (0.027)

200 0.558 (0.014) 0.559 (0.014) 0.558 (0.014) 0.559 (0.013) 0.283 (0.050) 0.389 (0.022) 0.410 (0.017)

300 0.563 (0.013) 0.564 (0.013) 0.563 (0.013) 0.563 (0.013) 0.526 (0.063) 0.419 (0.023) 0.413 (0.022)

400 0.571 (0.014) 0.571 (0.014) 0.566 (0.040) 0.571 (0.014) 0.554 (0.014) 0.404 (0.050) 0.429 (0.012)

500 0.572 (0.015) 0.572 (0.015) 0.572 (0.015) 0.572 (0.015) 0.559 (0.014) 0.397 (0.067) 0.435 (0.011)

800 0.562 (0.041) 0.562 (0.041) 0.557 (0.057) 0.556 (0.056) 0.557 (0.041) 0.365 (0.078) 0.445 (0.011)

Note: In each test case, the method with the best performance is highlighted in bold font. The number within parenthesis is standard error.
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correlation with its gene expression profile. We calculated ARIs be-

tween the true labels and inferred ones obtained from K-means clus-

tering, CellTree, Seurat and DIMM-SC. The ARIs of K-means

clustering, CellTree and DIMM-SC are 0.32, 0.28 and 0.41, respect-

ively. To perform the analysis using Seurat, we used the default setting

of Seurat to select the top 1657 variable genes, and picked the first 22

PCs for the clustering analysis. The ARI of Seurat is 0.31, suggesting

that DIMM-SC performed the best in the PMBC 68 K dataset.

Additionally, we highlighted vague cells in the t-SNE projection

(Supplementary Fig. S2B), where vague cells are defined as cells with

the largest posterior cluster-specific probability<0.95. As shown in

Figure 2B, most of vague cells are located at the boundary of different

clusters, which reassuring the validity of the clustering results.

3.2.3 Analysis of the in-house scRNA-seq data from systemic scle-

rosis study

Collaborating with investigators at the University of Pittsburgh, we

are in the first place to use the 10� Chromium system to generate

scRNA-Seq data in order to study systemic sclerosis. We applied

DIMM-SC to the scRNA-Seq data of skin tissue collected from a

systemic sclerosis patient. Starting from a UMI count matrix for

1180 cells generated by the 10� Genomics Cellranger pipeline, we

first removed cells that had less than 300 genes expressed and fil-

tered noisy genes that were expressed in less than five cells, then we

extracted the top 1000 highly variable genes based on their standard

deviations. We set the total number of clusters to be six based on

our prior knowledge and utilized the KR method to generate the ini-

tial cluster labels and the initial values for the parameter a. The six

cell clusters from DIMM-SC included 92, 89, 45, 156, 469 and 271

cells, respectively. Figure 3 shows the t-SNE projection of the skin

cells, colored by cluster labels inferred by DIMM-SC, and the

dashed circles represent potential subtypes of skin cells according to

the expressions of cell type specific markers. It is interesting that

fibroblast cells exhibit two clusters, suggesting possible subtypes.

For each cell cluster, we identified top marker genes that were differ-

entially expressed between the specified cluster and all the other

clusters. We recognized some subtypes of skin cells for the identified

clusters based on the biological knowledge of cell specific markers,

such as pericyte cells specifically expressed gene RGS5, T cells spe-

cifically expressed gene IL32, endothelial cells specifically expressed

gene VWF, fibroblast cells specifically expressed gene COL1A1,

basal keratinocyte cells specifically expressed gene KRT14 and gene

KRT5, and suprabasal keratinocyte cells specifically expressed gene

KRT1 and gene KRT10.

3.3 Model fitting diagnosis
An important step in applying model-based approach is to examine

whether the proposed statistical model fits the real data well. In

Dirichlet distribution, the marginal distribution of p is a Beta distri-

bution. In addition, the mean of pi, aik= aðkÞ
�� ��, is approximately pro-

portional to its variation aik aðkÞ
�� ��� aik

� �
=
�

aðkÞ
�� ��2 aðkÞ

�� ��þ 1
� ��

. After

applying DIMM-SC to the PBMC 68 K scRNA-Seq dataset, we per-

formed the following two analyses to evaluate the goodness of fit of

the model. We first collected cells that belong to the same cell type

using datasets of purified sub-populations of PBMCs from 10�
Genomics, and then plotted the empirical marginal distribution of

proportion pi for top variable genes. We compared such empirical

Fig. 2. The t-SNE projection of 68K PBMCs, colored by the DIMM-SC cluster-

ing assignment (A) and the illustration of vague cells with the largest poste-

rior probability <0.95 (B)

Fig. 3. The t-SNE projection of cells from systemic sclerosis skin tissue, col-

ored by the DIMM-SC clustering assignment
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distribution with the marginal distribution Beta aik; a kð Þ
�� ��� aik

� �
at

aðkÞ ¼ baðkÞ, where baðkÞ was estimated from the real scRNA-Seq data.

Supplementary Figure S5A shows that the fitted distributions for top

variable genes aligned very well with the empirical distributions,

suggesting that DIMM-SC achieved good fit in real scRNA-Seq

data.

Moreover, we explored the relationship between the mean and

variance of pi’s, as commonly used in count data analysis, to evalu-

ate whether any over-dispersion pattern exists. Similar to the previ-

ous analysis, we also collected cells from the same cell type, and

calculated the mean and variation of pi for each gene. The scatter

plot of the log mean of pi versus the log variance of pi

(Supplementary Fig. S5B) shows a clear linear relationship between

mean and variance. Derived from Dirichlet distribution, the ex-

pected intercept and slope can be approximated by 1 and logð aj jÞ,
respectively, where logð baj jÞ was estimated from the real scRNA-Seq

data. In CD56þNatural Killer cells and CD19þB cells, logð baj jÞ
equals to 6.60 and 6.67, respectively. As shown in Supplementary

Figure S5B, the intercept and slope of the fitted line (red line) are

close to the expected values, indicating a good model fitting in this

real scRNA-Seq data. We noticed that, due to both technical

and biological uncertainties, a few genes exhibit extra variation,

which cannot be fully explained by the mean-variation relationship

posited by the Dirichlet distribution. We will pursue to extend

DIMM-SC to account for such additional variation in the near

future.

4 Software availability

We have implemented DIMM-SC into a user-friendly R package,

which is freely available on http://www.pitt.edu/�wec47/single

cell.html. This software program can take a full matrix file that is

compiled by users or can directly take the sparse UMI count matrix

file from the 10� Genomics Cellranger pipeline. The output

includes clustering results, the probability matrix for all cells, the

probability vector for each gene, and the t-SNE projection

visualization.

5 Discussion

Compared with the early generation scRNA-Seq technologies, the in-

trinsic characteristics of droplet-based scRNA-Seq data, including a

much larger number of cells and direct counting of molecule copies

using UMI, pose great challenges on statistical analysis and require

new methodological development. In this study, we developed a

model-based clustering method DIMM-SC for analyzing droplet-

based scRNA-Seq data. DIMM-SC directly models UMI counts from

scRNA-Seq data using a multinomial distribution with Dirichlet mix-

ture priors. We demonstrated that DIMM-SC has achieved substan-

tial improvements in clustering accuracy and stability compared to

existing clustering methods such as K-means clustering, Seurat and

CellTree. More importantly, our probabilistic model provides cluster-

ing uncertainty for each cell (how likely each cell belongs to each clus-

ter), thus can benefit rigorous statistical inference and straightforward

biological interpretations. In addition, DIMM-SC can be used to de-

tect differentially expressed gene markers among different cell types,

which is under our further investigation.

Our probabilistic model coupled with a computationally effi-

cient E-M algorithm is able to cluster large-scale droplet-based

scRNA-Seq data. For example, it takes around 3 h to cluster 68 000

cells using top 1000 highly variable genes. In the analysis of scRNA-

Seq data, both gene level filtering and cell level filtering are critical

for clustering regardless of which clustering method to use. We rec-

ommend to rank genes by their variations among all cells and choose

top 500–1000 highly variable genes. In addition, we also recom-

mend to run DIMM-SC 5–10 times, each with different random

seeds, and choose the one with the largest likelihood as the final re-

sults. For the number of clusters, we can pre-define it based on prior

knowledge on the tissue or determine it using some model checking

criteria such as AIC or BIC (Akaike, 1974; Schwarz, 1978). As

shown in Supplementary Figure S6, AIC and BIC work well in the

analysis of simulated datasets, the performance in real data needs

further exploration. Alternatively, it can be determined using the

procedure described in ADPclust (Wang and Xu, 2015) or the

Dirichlet process (Teh, 2011). DIMM-SC is currently implemented

in R/Rcpp with satisfactory computing efficiency for most needs so

far. Further improvement (e.g. parallel computing) can be made to

accommodate larger-scaled data.

There are several noticeable limitations of our method. First,

DIMM-SC only models variations among different cells from one sin-

gle individual. To jointly model scRNA-Seq data from multiple indi-

viduals, a hierarchical structure can be posed in the current

method to account for the individual level heterogeneity, but a

more sophisticated numerical algorithm will be needed to reduce

the computational cost. Second, DIMM-SC is an unsupervised

method that infers structures from all data. Prior knowledge on

cell-type-specific biomarkers may further improve the clustering

accuracy. To use such prior information, a semi-supervised ap-

proach is needed to guide cluster inference. Furthermore, existing

scRNA-Seq data from purified cells (e.g. via flow cytometry) can

serve as external reference panels or training datasets to reduce

experimental biases, remove outliers and improve clustering

reliability. Last but not least, our DIMM-SC model ignores the

measurement errors and uncertainties buried in the UMI count ma-

trix. Multiple factors such as drop-out event, mapping percentage,

sequencing depth and PCR efficiency are not considered in the

current model. These limitations can be largely overcome by

extending our method. We will explore these directions in the

near future.

We noticed that similar models have been proposed in the field

of text-mining (Yamamoto and Sadamitsu, 2005) and microbiome

(Holmes et al., 2012), where word, article and topic or taxa, individ-

ual, and meta-community are studied. However, in those applica-

tions, the clusters are not well defined and require a careful

interpretation. On the contrary, scRNA-Seq data usually consist of a

set of known cell types from prior knowledge and have a much

larger signal-to-noise ratio for the clustering analysis. Although

sharing the common types of data structure, these fields have differ-

ent fundamental questions, so existing methods proposed from other

fields need to be tailored or extended to incorporate intrinsic charac-

teristics of scRNA-Seq data. For example, CellTree adapts the LDA

approach from the text-mining field. Although LDA is more flexible

and more widely used in text-mining field than the Dirichlet mixture

model based methods, we have showed that DIMM-SC is more ac-

curate, stable and efficient than CellTree in both simulation studies

and real data applications in the context of scRNA-Seq clustering

analysis.

In summary, we provide a novel statistical method and an effi-

cient computational tool DIMM-SC for clustering droplet-based sin-

gle cell transcriptomic data, which facilitates rigorous statistical

inference of cell population heterogeneity. We are confident that

DIMM-SC will be highly useful for the fast-growing community of

large-scale single cell transcriptome analysis.
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