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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) technology can generate genome-wide expres-

sion data at the single-cell levels. One important objective in scRNA-seq analysis is to cluster cells

where each cluster consists of cells belonging to the same cell type based on gene expression patterns.

Results: We introduce a novel spectral clustering framework that imposes sparse structures on a

target matrix. Specifically, we utilize multiple doubly stochastic similarity matrices to learn a simi-

larity matrix, motivated by the observation that each similarity matrix can be a different informative

representation of the data. We impose a sparse structure on the target matrix followed by shrinking

pairwise differences of the rows in the target matrix, motivated by the fact that the target matrix

should have these structures in the ideal case. We solve the proposed non-convex problem itera-

tively using the ADMM algorithm and show the convergence of the algorithm. We evaluate the per-

formance of the proposed clustering method on various simulated as well as real scRNA-seq data,

and show that it can identify clusters accurately and robustly.

Availability and implementation: The algorithm is implemented in MATLAB. The source code can

be downloaded at https://github.com/ishspsy/project/tree/master/MPSSC.

Contact: seyoung.park@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in single-cell measurements have helped scientists

to better understand cellular heterogeneity (e.g. Kalisky and Quake,

2011; Pelkmans, 2012). However, single-cell datasets pose statistical

and computational challenges, such as the use of single-cell data to

identify groups of cells in the same functional states reflected in gene

expression profiles. The identification of subgroups from single-cell

data is an unsupervised classification problem, and principal compo-

nent analysis (PCA), spectral clustering (von Luxburg, 2007) and

k-means (Forgy, 1965) are most commonly used for subgroup iden-

tification. However, one major challenge of single cell RNA-seq

(scRNA-seq) data, compared to bulk RNA-seq or gene expression

microarrays, is that they have high level of noise and many

missing values due to technical and sampling issues (Bacher and

Kendziorski, 2016; Brennecke et al., 2013; Grün et al., 2014). The

high variability in gene expression levels even among cells of the

same type can confuse these existing clustering approaches

(Buganim et al., 2012; Guo et al., 2010; Hashimshony et al., 2012).

Several novel clustering methods have been proposed to address

these issues in scRNA-seq data analysis. For example, Xu and Su

(2015) proposed a clique-based method with shared nearest neigh-

bor similarity, which showed improved performance in identifying

cell types. Sophisticated methods that involve iterative clustering

have been proposed for subtype classification and the detection of

relationships between the subtypes (Macosko et al., 2015; Tasic

et al., 2016; Zeisel et al., 2015). Haghverdi et al. (2015) performed

dimension reduction of the data by diffusion maps, which stresses

continuity of cell states along putative developmental pathways.

Shao and Höfer (2017) utilized a Nonnegative Matrix Factorization

(NMF) technique to decompose the high-dimensional single-cell

data into biologically interpretable compositions. NMF detects func-

tional cell subgroups while simultaneously guiding the identification
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of biologically relevant features in the data. Wang et al. (2017) pre-

sented single-cell interpretation via multikernel learning (SIMLR),

which learns a similarity measure from scRNA-seq data in order to

perform dimension reduction and clustering. The critical feature of

SIMLR is that it learns a similarity matrix and separates clusters by

utilizing multiple kernels. These active methodology developments

reflect the many challenges in unsupervised learning of biologically

relevant features from scRNA-seq data.

Spectral clustering (SC) is one popular modern clustering method

that uses the eigenvectors of a matrix derived from the data for clus-

tering. SC is simple to implement, can be solved efficiently by stand-

ard linear algebra software, and often outperforms traditional

clustering algorithms such as the k-means algorithm (von Luxburg,

2007). Despite of these advantages, results of SC is sensitive to

choices of similarity measures, and obtaining a suitable similarity

measure from scRNA-seq data requires additional efforts (Wang

et al., 2017). Existing methods to improving SC performance can be

categorized into two approaches (Lu et al., 2016a): (i) improve the

SC clustering accuracy when a data similarity matrix is fixed; and

(ii) construct an appropriate similarity matrix to improve the clus-

tering performance. In this paper, we propose a new method that

improves on both fronts. Relating to the first approach, we modify

the SC framework by imposing sparse structure on the target matrix.

This is motivated by the observation that this structure is essential

for better clustering performance, but is not often obtained by SC

when the data includes high levels of noise (Lu et al., 2016a; Wang

et al., 2017). Relating to the second approach, we utilize multiple

doubly stochastic affinity matrices to construct a robust similarity

matrix. This can help to obtain more accurate and robust clustering

results, even when the data includes many missing values and imbal-

anced similarities, by normalizing the similarity matrix such that all

data points have equal total similarities (Lu et al., 2016b; Zass and

Shashua, 2006) (e.g. Fig. 1).

2 Materials and methods

2.1 Spectral clustering
Given a set of data points X ¼ x1; . . . ; xn½ � 2 Rp�n, where n is the

number of samples and p is the dimensionality of the data, spectral

clustering (SC) uses the similarity matrix S ¼ sij

� �
2 Rn�n, where

sij�0 represents a measure of the similarity between data points xi

and xj. For SC to perform well, it is important to choose an appro-

priate similarity matrix S. Gaussian function K xi; xj

� �
¼ exp

�kxi � xjk2= 2r2
� �� �

is one of the most widely used functions to

construct S (i.e. sij¼K(xi, xj)), where kxi � xjk is the Euclidean dis-

tance between xi and xj and r controls the width of the

neighborhoods. To partition data X into C clusters, SC solves the

following optimization problem:

min
L2Rn�C

hLLT ; In � �Si s:t: LTL ¼ IC; (1)

where �S ¼ D�1=2SD�1=2 and D ¼ diag d11; . . . ; dnnð Þ is a diagonal

matrix with dii ¼
Pn

j¼1 sij. Finally, each row of obtained L is treated as

a point in RC, and clustered into C groups by k-means. Note that In � �S

is called a normalized graph Laplacian (Andrew et al., 2001; von

Luxburg, 2007). For detailed properties of SC, see von Luxburg (2007).

Note that in the ideal case, the orthonormal matrix L 2 Rn�C,

which is the solution to (1), should have a sparse structure such that

Lij 6¼ 0 iff sample i belongs to the jth cluster. Hence, LLT should be a

block diagonal matrix and thus have a sparse structure. Motivated

by this observation and the fact that kLLTk2
F ¼ tr LLT

� �
¼ C,

one can consider the following regularized version of (1) to find a

better U:

min
L

ckLLTk2
F � h�S;LLTi þ kkLLTk1; s:t:LTL ¼ IC: (2)

Here adding the first term or not is mathematically equivalent, but

this term provides more desired convergence properties for the pro-

posed algorithm, which will be presented in Section 2.3.

Because (2) includes a nonlinear constraint LTL ¼ IC, it is not

convex. To address the computational issue of the nonconvex

model, we follow the idea of sparse spectral clustering (Lu et al.,

2016a), which adds the relaxed convex constraints for the sparse

spectral clustering:

min
P

ckPk2
F � h�S;Pi þ kkPk1 s:t:P 2 CH n;Cð Þ; (3)

where CH n;Cð Þ :¼ fP 2 Rn�n : tr Pð Þ ¼ C; 0�P�Ig and kPk1 ¼P
ij

jPijj.

REMARK 1 Lu et al. (2016a) also used the fact that the set

CH(n, C) is a convex hull of the set fP ¼ LLT 2 Rn�n : LTL ¼ ICg.
It is noteworthy that (3) is strictly convex due to the additional

term kPk2
F, so that the generalized formula (nonconvex) of (3) by

using multiple similarity matrices can be computed via an iterative

algorithm with convergence guarantee. See Section 2.3.1 for

details.

2.2 Multiple similarity learning
Due to complexities of single cell data, relying on a single similarity

may not be sufficiently informative, and we may benefit from con-

sidering multiple similarity matrices. Moreover, the performance of

SC is sensitive to a single measure of similarity between data points,

and there are no clear criteria to choose an optimal similarity meas-

ure. Following Wang et al. (2017), we consider multiple kernel func-

tions to construct similarity matrices as follows: for samples i and j,

1� i� j�n,

Kr;k i; jð Þ ¼ exp �kxi � xjk2

2�2ij

 !
;

�ij ¼
r li þ lj

� �
2

; li ¼

X
k2KNN ið Þ

kxi � xkk

k
;

(4)

where KNN(i) represents a set of sample indices that are the top k near-

est neighbors of the sample xi. The choices of parameters r and k are

important because they control the width of the neighborhoods and the

results of SC depend on these parameters. Hence, the generalized
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Fig. 1. Comparisons of SC using a regular normalized affinity matrix and dou-

bly stochastic matrix. We use the simulated data set (Simulation model 1). To

construct a similarity matrix, the five kernels with r in {1, 1.25, 1.5, 1.75, 2} are

used when k¼ 14 and k¼20. For each pair of bars, the left and right corre-

spond to the case of regular and doubly stochastic, respectively. The propor-

tion of missing value is 78.6%
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framework using multiple kernel functions can be more adaptive to the

data being analyzed than using a single kernel function. In this article,

we consider r 2{1, 1.25,� � �, 2} and k 2{10, 12,� � �, 30}, i.e. a total of 55

affinity matrices. More specifically, the normalized similarity matrix

G lð Þ ¼ D lð Þ� ��1=2
S lð Þ D lð Þ� ��1=2

for each l¼1,� � �, 55 is used in our anal-

ysis, where S(l) and D(l) are similarity and degree matrices corresponding

to the lth kernel function, respectively.

2.3 Proposed method
In this section, we present the three steps of the proposed method.

Step 1: Construct a symmetric doubly stochastic similarity matrix

We use a symmetric doubly stochastic affinity matrix to construct

a normalized graph Laplacian. Note that a doubly stochastic similarity

matrix has been used to improve cluster analysis (Zass and Shashua,

2006; Lu et al., 2016b). This normalization is motivated by the fact

that the popular affinity matrix normalization [e.g. Normalized-cuts

(Shi and Malik, 2000)] is associated with a doubly-stochastic con-

straint (Zass and Shashua, 2006). Lu et al. (2016b) showed that t-SNE

(van der Maaten and Hinton, 2008) with doubly stochastic similarity

matrix input tends to provide less crowded samples in the embedding

space. We observed that the performance of SC using a doubly sto-

chastic affinity matrix for graph Laplacian is similar to or better than

that using a normalized graph Laplacian (Fig. 1). We apply the

Sinkhorn-Knopp iterative algorithm (SK algorithm) (Sinkhorn and

Knopp, 1967) to the normalized affinity matrix G(l) for each l and

obtain a symmetric doubly stochastic matrix �G
lð Þ
. The SK algorithm

can maintain the sparse structure of the input matrix G(l) if it has a

such structure. Note that the SK algorithm generates a sequence of

matrices whose rows and columns are normalized alternately.

Step 2: Perform sparse spectral clustering

In the second step, we consider the optimization (3) by incorporat-

ing symmetric doubly stochastic matrices �G
lð Þ

with similarity learning:

min
P;W

ckPk2
F �

�X
l

wl
�G

lð Þ
;P

�
þ kkPk1; �P þ q

X
l

wl log wl

s:t:P 2 CH n;Cð Þ;
X

l

wl ¼ 1; wl � 0;

(5)

where kPk1; �P ¼
P

ij
�pijPij is the weighted L1 norm of P and �P ¼ f�pijg

are appropriately chosen weights. Here W ¼ fw‘; ‘ ¼ 1; . . . ;Ng is

a weight vector and k, q>0 are regularization parameters. We use

�pij ¼ 0 if j 2 KNN(i) and �pij ¼ 1 if j 62 KNN(i), where for each data

point xi, KNN(i) is the ~k-nearest-neighbor using Euclidean distance.

In implementation, we use k ¼ 10�4; ~k ¼ 10; q ¼ 0:2 and

c¼0.1. See Supplementary Figures S2, S6–S14 for sensitivity analy-

sis with respect to the changes of c, q and ~k. Note that (5) is not

jointly convex, but can be solved with iterative techniques. We use bP
to denote the solution to (5).

REMARK 2. When q increases to infinity, all the wl have the same

weight. Note that
P

l wl
�G

lð Þ
remains a symmetric doubly stochastic

matrix. One can use different regularizations for wl, but using the

penalty
P

l wl log wl yields a closed form solution of wl in the itera-

tive algorithm that reduces computational time.

Step 3: Shrink the pairwise difference of the target matrix

In this step, we utilize the fact that the ideal LLT in (1) is a block

diagonal matrix and thus has many equal row vectors. We consider

the following optimization: for some penalty parameter l>0,

min
X
kX� bPk2

F þ l
X
j<k

kXj;� �Xk;�k2

kbPj;� � bPk;�k2

s:t:X 2 CH n;Cð Þ; (6)

where the pairwise fusion penalties in (6) adaptively shrink some of

Xj;� �Xk;� to be zero, which is the essential idea of adaptive Lasso

(Zou, 2006). Let bX 2 Rn�n be the solution to (6). We obtainbL 2 Rn�C by taking the first C eigenvectors corresponding to the

first C largest eigenvalues of bX, and apply k-means to the normal-

ized norms of bL to find the membership of the n samples. Note that

(6) is also convex and can be computed using ADMM (Section A.2

of the Supplementary Material).

Note that Wang et al. (2017) imposed a low rank constraint on the

target similarity matrix to obtain the block-diagonal structure. But a

low rank matrix does not necessarily have the block-diagonal struc-

ture. We impose stronger constraints to obtain the block-diagonal

structure because this structure is essential for better clustering per-

formance. The proposed spectral clustering is different from that of

Lu et al. (2016a) in the following three aspects; in the first step, we

convert the normalized affinity matrix to a symmetric doubly stochas-

tic matrix; in the second step, we use the adaptive Lasso type penalty

term and include additional quadratic term kPk2
F; in the third step, we

aim to obtain a row-wise similar target matrix using the pairwise

fusion penalties to obtain the block-diagonal structure.

REMARK 3. Instead of the two-step procedure, one can consider

the following one-step optimization

min
P;W

ckPk2
F �

�X
l

wl
�G

lð Þ
;P

�
þ kkPk1 þ l

X
j<k

kPj;� � Pk;�k2

þq
X

l

wl log wl

s:t: X 2 CH n;Cð Þ;
X

l

wl ¼ 1; wl � 0;

(7)

which is also convex and can be computed using the ADMM algo-

rithm. But the proposed two-step procedure is more advantageous

as it uses the output matrix bP at the third stage, which adaptively

penalizes the Euclidean norm of row-wise differences.

2.3.1 Algorithm

Let G(P, W) be the objective function in (5). We iteratively solve

Wiþ1 ¼ argmin
W:
P

l

wl¼1;wl�0

G Pi;W
� �

(8)

Piþ1 ¼ argmin
P: P2CH n;Cð Þ

G P;Wiþ1
� �

(9)

until convergence. Note that both (8) and (9) are convex optimiza-

tions, and (8) has a closed form solution fwiþ1
j ; j ¼ 1; . . . ;Ng, where

wiþ1
j ¼

exp tr �G
jð Þ
Pi

� �
=q

� �
P
k

exp tr �G
kð Þ

Pi
� �

=q
� � : (10)

We note that (9) can be solved via ADMM: given fixed W¼Wiþ1,

we can reformulate the optimization (9) by

min
P;Q;C

ckPk2
F �

�X
l

wiþ1
l

�G
lð Þ
;P

�
þ kkPk1; �P

þhC;P�Qi þ g
2
kP�Qk2 s:t:Q 2 CH n;Cð Þ;

(11)

where the dual variables Cjk are the Lagrangian multipliers and

g>0 is the penalty parameter. See Section A.1 of the Supplementary

Material for details. We can update P, Q and C iteratively. Since (9)

is convex, the iterates of ADMM converge to an optimal point.
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Although (5) is not jointly convex, the proposed iterative Algorithm

(8)–(9) enjoys convergence properties:

PROPOSITION 1. Let G(P, W) be the objective function of (5). Then

the iterates (Pi, Wi) converge to a global minimum point of G, where

the objective value G(Pi, Wi) is monotonically decreasing.

The convergence of the proposed iterative algorithm is achieved

due to the fact that G(P, W) has a unique global minimizer given

one of P and W is fixed (Section B of the Supplementary Material).

2.4 Choosing the number of clusters
The proposed clustering method requires a target number of clus-

ters. We use the following procedure to select C. First, we use a large

enough number C0 as a target number and obtain bP by solving (5).

Let k1 � k2 � � � � � kn � 0 be the eigenvalues of bP. Define

C ¼ argmaxjf kj � kjþ1g. We use C as a target number, i.e. we

search for an index with a large eigenvalue gap of bP. Empirical

evidence using single-cell datasets suggests that this procedure

works well.

3 Simulation results

In this section, we present simulation studies to assess the perform-

ance of the proposed method. We use the following three perform-

ance metrics to evaluate the consistency between the obtained

clustering and the true labels: Normalized Mutual Information

(NMI) (Strehl and Ghosh, 2003), Purity and Adjusted Rand Index

(ARI) (Wagner and Wagner, 2007b). NMI and Purity take on values

between 0 and 1, but ARI can yield negative values. These metrics

measure the concordance of two clustering labels such that higher

value refers to higher concordance. For details of these metrics, see

Section D of the Supplementary Material.

REMARK 4. ARI is one of the metrics based on counting pairs of

objects. Note that ARI relies on the strong assumptions on the distri-

bution on clusterings; it assumes a generalized hypergeometric dis-

tribution as the null hypothesis, i.e. the two clusterings are drawn

randomly with a fixed number of clusters and a fixed number of ele-

ments in each cluster (Wagner and Wagner, 2007a). Purity is one of

the measures relying on a mapping, which is not one-to-one. This

mapping may be biased towards the cluster which has the largest

size (Wagner and Wagner, 2007a). NMI is based on mutual infor-

mation, which has its origin in information theory and is based on

the notion of entropy. Note that NMI does not suffer from the

drawbacks that one can find for metrics that are based on counting

pairs or mappings (Wagner and Wagner, 2007a).

In the experiments, we use two types of simulation data. We gen-

erate the first simulation model using the following four steps. In the

first step, we generate C points in the 2-dimensional latent space to

create a circle, each point is considered to be the center of one clus-

ter. The n points are generated by adding independent noise to the

center of the corresponding cluster. In the second step, we project

the generated 2-dimensional data to a p-dimensional space, which

represents gene expression data. In the third step, we simulate a

noisy gene expression matrix by adding independent Gaussian noise.

In the last step, we introduce a dropout event such that each entry is

independently observed with a certain probability. In the second

simulation model, we generate the data using Gaussian mixture

model. To distinguish different cell types, it is likely that only some

genes are informative, and non-informative and highly noisy genes

can increase the difficulty of identifying cell types. Under this con-

text, we use a few attributes to distinguish the clustering labels in

the simulation models. For details of these simulation models, see

Section E of the Supplementary Material.

In the first experiment, we compare the performances of SC by

using different graph Laplacians obtained by the regular normalized

affinity matrix and the doubly stochastic matrix. Figure 1 shows the

average NMI values and one standard deviation of the SC with ten

selected affinity matrices based on k 2{14, 20} and r 2{1, 1.25, 1.5,

1.75, 2} for the two different graph Laplacians. We can see that the

doubly stochastic affinity matrix based SC performs similar or better

than the SC with the regular normalized affinity matrix. In addition,

we see that the clustering performance varies across different kernels

used to construct an affinity matrix. This illustrates the need for a

new spectral clustering method that does not rely on a single similar-

ity measure, and for this purpose we utilize multiple similarity

matrices as presented in Section 2.2.

In the second experiment, we investigate the robustness of the

clustering performance of the proposed clustering method with

respect to the change of regularization parameters c; ~k; k and l. We

choose c from {0.01, 0.05, 0.1, 1}, ~k from {5, 10,� � �, 80} and k and l

from {10–5, 10–4, 10–3, 10–2}. We see that the clustering results are

robust with respect to the changes in these parameters, and stable

clustering results could be achieved by many different combinations

of c; ~k; k and l settings (Supplementary Fig. S2). Specifically, we

observe that the performance is consistently good when c¼0.1, ~k ¼ 10

and k¼l¼10–4. Therefore, in the following applications we use these

values. Note that Lu et al. (2016a) also included sensitivity analysis for

k in their modified SC formula, and proposed to use k¼10–4. For the

sensitivity of the choice of q, see Supplementary Figure S2F. In imple-

mentation, we fix q¼0.2, which performs well for various settings.

Sensitivity analysis of these parameters for the real scRNA-seq datasets

(Supplementary Figs S6–S14) also shows the robustness of the proposed

clustering method with respect to the changes of these parameters.

In the third experiment, to investigate the effect of the similarity

learning using multiple affinity matrices, more intuitively, we show

the heat map of the jVVT j ¼ jVi;�V
T
j;�j

� �
i;j

, where V 2 Rn�C has

orthonormal columns consisting of the C eigenvectors corresponding

to the first C largest eigenvalues of bP. Here bP 2 Rn�n is the obtained

target matrix by any SC methods. In the ideal case, jV V Tj should

have the block diagonal structure. Figure 2 shows the heat map of the

jV V Tj: Figure 2A and B consider the standard SC using different sim-

ilarity matrices. Figure 2C considers the proposed method without

Step 3. Figure 2D uses the proposed method as in Section 2.3. For

Figure 2A and B, we choose the kernel having the smallest kernel

weight, 0.0022, and the largest kernel weight, 0.032 in the proposed

spectral clustering used in Figure 2D. Interestingly, the structure in

Figure 2B is more similar to the block diagonal structure compared

with Figure 2A, which shows that the proposed method tends to give

a larger weight to a kernel that provides clearer block diagonal struc-

ture. We observe that Figure 2D has a clearer block diagonal structure

compared with Figure 2A, B and C, which shows that similarity learn-

ing and Step 3 help recover the true structure.

In the last experiment, we compare the proposed method with-

out similarity learning (‘PSSC’) and the proposed method

(‘MPSSC’), with the following four existing methods: t-SNE (van

der Maaten and Hinton, 2008); SIMLR (Wang et al., 2017);

Spectral clustering (‘SC’); and Sparse spectral clustering (‘SSC’) (Lu

et al., 2016a). For the PSSC, we use the average similarity matrix

from 55 considered kernels. For SSC, we use the regularized parame-

ters suggested by Lu et al. (2016a). Figure 3A and B show the aver-

age NMI value with one standard deviation (error bars) for

Simulation model 1. When c¼0.01 (missing proportion is 37%),
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MPSSC, PSSC, SIMLR and tSNE have similar NMI values and out-

perform the SC and SSC. The paired sample t-test shows that the

mean differences of SC, SSC and PSSC from MPSSC are significant

(P-value<0.001), but the mean differences of t-SNE and SIMLR

from MPSSC are not significant (P-values¼0.08 and 0.16, respec-

tively). When c¼0.006 (missing proportion is 90%), MPSSC out-

performs the other methods. The P-values of the other methods

from MPSSC are significant (P-value<0.002). The results of

Simulation model 2 (Fig. 3C and D) show that MPSSC, PSSC and

SSC have higher values than the other methods. For (C), the paired

sample t-test suggests that the mean differences of SC, t-SNE and

SIMLR from MPSSC are significant (P-value<0.001), but the P-

values of SSC and PSSC are 0.81 and 0.55, respectively. For (D), the

P-values of SC, t-SNE and SIMLR from MPSSC are significant (P-

value<0.001), but the P-values SSC and PSSC are 0.07 and 0.44.

To sum up, we observe that MPSSC and PSSC consistently have

higher values, compared with other methods, which suggests that

MPSSC and PSSC can identify clusters in accurately and robustly.

4 Applications to single-cell RNA sequence data

In this section, we apply the proposed clustering methods to single-

cell RNA-Seq datasets to demonstrate their clustering performances

compared with existing clustering methods. We collected nine

scRNA-seq datasets representing several types of dynamic processes

such as cell differentiation, cell cycle and response upon external

stimulus. Each scRNA-seq data contains cells for which the labels

were known a priori or validated in the respective studies. The char-

acteristics of the nine datasets are summarized in Table 1. For

detailed description of the nine scRNA-seq datasets, see Section F of

the Supplementary Material.

We compare the PSSC and MPSSC with the other methods using

the three metrics as in Section 3. For PSSC and MPSSC, we first esti-

mate the number of clusters using the method presented in Section

2.4. For the other methods, we use the true cluster number to obtain

the clustering results. Figure 4 summarizes NMI and computational

time for the six small-scale single cell datasets. In many cases, the

MPSSC and PSSC have higher NMI values, which shows that they

generally perform better than their competitors. This demonstrates

that the proposed methods can better uncover cell-to-cell similarity

and dissimilarity structures than other competitors. They also have

comparable computation time with other methods. Figure 5 summa-

rizes NMI and computation time for three larger-scale datasets. For

larger-scale datasets, we have conducted the MPSSC and PSSC with-

out the third step due to time complexity and memory issue. We

observe that the proposed methods MPSSC and PSSC still have

higher NMI values, while computation times are comparable to SSC

and SIMLR. For Purity and ARI measures, see Supplementary

Figures S4–S5.

Among the nine datasets, we mainly analyze the two datasets

based on the clustering results. The first dataset, called the Ginhoux

dataset (Schlitzer et al., 2015) in Table 1, contains the expression val-

ues of 11 834 genes for 251 dendritic cell progenitors in one of three

cellular states: Monocyte and Dendritic cell Progenitors (MDPs),

Common Dendritic cell Progenitors (CDPs) and Pre-Dendritic Cells

(PreDCs). DC progenitors are derived from hematopoietic stem cells

in the bone marrow, and transition through a plethora of cellular

states before becoming fully developed DC (Schlitzer et al., 2015).

The dataset contains 59 MDPs, 96 CDPs and 96 PreDCs. Although

dendritic cells play an important role in the activation of the adaptive

immune systems in vertebrates, several mechanisms involved in this

process are controversial (Cannoodt et al., 2016; Murphy et al.,

2016; Winter and Amit, 2015). Figure 6A visualizes the cells in 2-D

space using MPSSC. For visualization, we utilize the obtained bP of

MPSSC for a probability measures: we convert the bP into a symmetric

joint probability Q ¼ qij

� �
i;j

such that qij ¼ bPij=
P

k;l
bPkl, and apply
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Fig. 2. Heat maps of jVVTj for the standard SC using a single Kernel of r¼ 2

and k¼30 (A) and r¼ 1 and k¼10 (B). Heat maps of jVVTj for the proposed

method without Step 3 (C) and for the proposed method (D). The data follows

Simulation model 1

Fig. 3. (A) and (B): Average performance values with one standard deviation of the six clustering methods when c¼0.01 (A) and c¼0.006 (B). The proportions of

missing values are 37% and 90% for (A) and (B), respectively. The results are based on simulating 50 datasets following Simulation model 1; C and D: Average

performance values with one standard deviation of the seven clustering methods when c¼0.6 (A) and c¼0.1 (B). The proportions of missing values are 56 and

67% for (C) and (D), respectively. The results are based on 50 datasets simulated following Simulation model 2. See Section E of the Supplementary Material for

details of the simulation models and c
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the t-SNE to learn a 2-D map that reflects the similarities qij as well as

possible. We observe that the same type of cells group together well,

while some of the different type of cells are mixed and difficult to be

distinguished, which is also found when the other methods are used.

Note that the embedded data points approximately lie around a

sphere. This phenomenon is often observed when the input similarity

matrix is doubly stochastic, which can resolve the crowding problem

(Lu et al., 2016b).

The second dataset (Deng et al., 2014), called Deng dataset in

Table 1, consists of transcriptomes for individual cells isolated from

mouse embryos at different preimplantation stages. The data con-

sists of 135 cells and 12 548 genes, where cells belong to zygote,

early 2-cell-stage, mid 2-cell-stage, late 2-cell-stage, 4-cell-stage,

8-cell-stage and 16-cell-stage. As seen in Figure 6B, MPSSC groups

zygote, early 2-cell, mid 2-cell, late 2-cell and 4-cell stages quite

well. However, the 8-cell and 16-cell stages could not be differenti-

ated due to the technical variations of different library preparation

protocols, which was also observed in Xu and Su (2015). This also

can be explained by the fact that only a small number of genes have

expression changes between the 8-cell and 16-cell (Hamatani et al.,

2004; Wang et al., 2004). We note that for this data, MPSSC out-

performs the other methods in all the three evaluation criteria, and

none of the considered methods clearly distinguish the 8-cell and

16-cell populations.

5 Discussion

This article introduces a novel spectral clustering algorithm that

imposes a specific structure on the target matrix, motivated by the

observation that the target matrix should have this structure in the

ideal case. We expect that imposing the ideal structure can help to

achieve better clustering results, especially when the observed data

include high levels of noise and many missing values. From various

simulation and single-cell data analyses, we see the improved per-

formance of our algorithm compared with the other clustering meth-

ods. The extended spectral clustering algorithm utilizing multiple

similarity matrices can be favorable when the clusters have different

densities and views. Theoretical analysis for the proposed clustering

method in this setting will be our future work. For theoretical

aspect, one might also try one-step spectral clustering method as in

Table 1. Summary of the characteristics of the nine real single-cell

datasets

Dataset # cells (n) # genes (p) # cell types

Deng (Deng et al., 2014) 135 12548 7

Ginhoux (Schlitzer et al., 2015) 251 11834 3

Ting (Ting et al., 2014) 114 14405 5

Treutlein (Treutlein et al., 2014) 80 9352 5

Buettner (Buettner et al., 2015) 182 8989 3

Pollen (Pollen et al., 2014) 249 14805 11

Tasic (Tasic et al., 2016) 1727 5832 49

Zeisel (Zeisel et al., 2015) 3005 4412 47

Macosko (Macosko et al., 2015) 6418 12822 39
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Fig. 4. Evaluation of the eight clustering methods by NMI (A) and computational time (B) for the six small-scale datasets, implemented on an Apple MacBook Pro

(2.7 GHz, 8 GB of memory) using the MATLAB 2016b
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Remark 3, which has a simpler form. We solve the proposed non-

convex problem iteratively with the embedded ADMM algorithm,

and show the convergence of the algorithm. The convergence of the

proposed algorithm is achieved only when c>0, and using the

appropriate c>0 results in better clustering results than when c¼0.

The topic of dealing with convergence of the algorithm without add-

ing the term involving c will be of interest. Although we have dem-

onstrated that finding valid values of k and l are usually not hard

and altering these values in a certain range will not largely affect the

results for many clustering problems, we expect that the optimal val-

ues of these parameters should depend on data and data-driven

approaches for choosing these parameters will be of interest.
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Fig. 5. Evaluation of the eight clustering methods by NMI (A) and computational time (B) for the three large-scale datasets, implemented on the computing cluster
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