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Abstract
Prior studies have shown that dopamine (DA) functioning in frontostriatal circuits supports reinforcement learning (RL), as
phasic DA activity in ventral striatum signals unexpected reward and may drive coordinated activity of striatal and
orbitofrontal regions that support updating of action plans. However, the nature of DA functioning in RL is complex, in
particular regarding the role of DA clearance in RL behavior. Here, in a multi-modal neuroimaging study with healthy adults,
we took an individual differences approach to the examination of RL behavior and DA clearance mechanisms in
frontostriatal learning networks. We predicted that better RL would be associated with decreased striatal DA transporter
(DAT) availability and increased intrinsic functional connectivity among DA-rich frontostriatal regions. In support of these
predictions, individual differences in RL behavior were related to DAT binding potential in ventral striatum and resting-state
functional connectivity between ventral striatum and orbitofrontal cortex. Critically, DAT binding potential had an indirect
effect on reinforcement learning behavior through frontostriatal connectivity, suggesting potential causal relationships
across levels of neurocognitive functioning. These data suggest that individual differences in DA clearance and
frontostriatal coordination may serve as markers for RL, and suggest directions for research on psychopathologies
characterized by altered RL.
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Introduction
Learning to select behaviors that lead to positive outcomes is
fundamental to survival, and prior research has suggested that
the neurobiological mechanisms of successful reinforcement
learning (RL) are shared across species, environments, and con-
texts (Seger 2009). In particular, striatal dopamine (DA) signal-
ing for unexpected rewards (reward prediction errors (RPE)) is
believed to play a key role in coordinating activity among stria-
tal and orbitofrontal regions, thereby updating the value of
environmental cues and action plans (Schultz 2015). Evidence
for RPE encoding by DA has been found using electrophysiologi-
cal measurement of DA cell firing (Cohen et al. 2012; Eshel et al.
2015; Schultz 2015), optogenetic stimulation of DA neurons
(Tsai et al. 2009; Kravitz et al. 2012), and measurement of DA
release in striatal terminal field regions (Flagel et al. 2011; Hart
et al. 2014). Similarly, evidence linking frontostriatal circuit
strength to RL has been documented in research ranging from
preclinical studies (Bailey and Mair 2007; Braz et al. 2015) to
human developmental (van den Bos et al. 2012) or lesion stud-
ies (Bellebaum et al. 2008). Together, this prior research pro-
vides support for the idea that DA release in frontostriatal
circuits is a critical mechanism of successful learning.

A critical protein in the DA signaling pathway is the DA
transporter (DAT), which facilitates rapid clearance of extracel-
lular DA within the striatum. According to theoretical accounts
of DA RPE signals, phasic release of DA in response to unex-
pected rewards should persist in the synapse long enough to
engage post-synaptic targets but be cleared rapidly enough to
maintain the requisite temporal precision for prediction error
encoding. Moreover, abundant preclinical evidence indicates
that, in addition to DA clearance, DAT shapes the signal-to-noise
ratio of DA neurotransmission and can affect presynaptic DA
levels during neuronal activity (for review, see Sulzer et al. 2016).
If correct, this model would predict that modulation of DAT func-
tion would affect RPE signaling and by extension, reinforcement
learning. Consistent with this framework, pharmacological
manipulations that block or reverse DAT function, such as psy-
chostimulants, have been shown to produce marked change in
DA-dependent behaviors, including enhanced instrumental
conditioning (Taylor and Robbins 1984; Everitt and Robbins
2005; 2016). However, these drugs often possess noradrenergic
and serotonergic effects as well, and some studies using more
selective DAT inhibitors (e.g., GBR12909) have failed to detect
clear effects on RL behavior (Costa et al. 2014). Consequently,
the role of DAT function for RL remains unclear.

In addition to its potential influence on DAergic RPE signals,
individual differences in DAT function may also influence con-
nectivity within frontostriatal networks, for example, the mag-
nitude of positive functional connectivity between key nodes
within the brain reward pathway, including regions implicated
in reward prediction errors (such as the nucleus accumbens,
NAc) and regions involved in updating action plans (such as
the orbitofrontal cortex, OFC) (Yeo et al. 2011; Smith 2012;
Smith et al. 2013). Given that one of the major effects of post-
synaptic DA receptors on striatal medium spiny neurons
(MSNs) is to potentiate or attenuate the strength of excitatory
cortical and limbic inputs (Floresco 2015), it is plausible that
DAT availability may also be associated with downstream
effects on the level of large-scale network functioning. For
example, lower DAT availability corresponding with increased
synaptic DA may be related to enhanced coordination among
frontostriatal regions. However, to our knowledge these possi-
bilities have not yet been tested.

One strategy for investigating RL and frontostriatal DA is to
capitalize on individual differences in these functional
domains. People vary considerably in their RL behavior, and
prior research has demonstrated that such variability corre-
sponds with distinct profiles of DA and network-level function-
ing. For example, individuals characterized by DA deficiencies
are shown to exhibit impaired learning (Frank et al. 2004;
Wilkinson et al. 2009) and altered frontostriatal recruitment
(Nakamura et al. 2001). An individual differences approach to
the associations between DAT availability, frontostriatal net-
work activity, and RL behavior, may be useful in revealing natu-
rally occurring covariance across levels of functioning.

The present study was designed to examine how individual
differences in RL manifest in frontostriatal DA systems in healthy
humans, with a particular focus on DAT binding, as indexed by
DAT binding potential (BPND). We took a multi-modal approach
that included evaluation of individual differences using positron
emission tomography (PET), functional magnetic resonance imag-
ing (fMRI), and behavioral testing. We used the highly selective
DAT ligand [11C]altropane to assess DAT availability in the NAc
within ventral striatum. Motivated by research suggesting the
reliability of slow-wave intrinsic connectivity (Geerligs et al. 2015),
frontostriatal circuit activity was evaluated using resting-state
functional connectivity. Directly relevant to the current study,
prior research has shown that pharmacological manipulation of
DA enhances resting-state functional connectivity between NAc
and ventral frontal regions (Kelly et al. 2009), and individual dif-
ferences in frontostriatal resting-state functional connectivity
have been associated with DA concentrations (Horga et al. 2016).
Therefore, in the present study, resting-state functional connec-
tivity of bilateral NAc was interpreted as a circuit-level index of
effective coordination among DA systems (although other neuro-
chemicals may contribute to individual differences in the same or
overlapping circuits (Felger et al. 2016)). Reinforcement learning
behavior was indexed using a validated task that has been used
to measure individual differences in implicit reward sensitivity in
previous research (Santesso et al. 2008). We predicted that better
learning task performance would be related to 1) lower DAT BPND

in ventral striatum (interpreting DAT BPND as an index of DAT
clearance capacity); and 2) stronger resting-state functional con-
nectivity in a frontostriatal circuit including ventral striatum and
areas of orbitofrontal cortex.

Materials and Methods
Thirty-four healthy adults (ages 19–44, mean age = 26.81, SD =
7.00; 24 females) were recruited from the Boston metropolitan
area through local websites, flyers, and advertisements. All par-
ticipants completed a Structured Clinical Interview for the DSM-
IV-TR to confirm the absence of current or history of psychiatric
illness. In a behavioral testing session, participants completed a
task designed to assess implicit RL; in a separate session, partici-
pants completed PET scanning. Next, a subset (n = 25, ages 19–44,
mean age = 25.48, SD = 7.04; 15 females) of participants completed
a session involving magnetic resonance imaging (MRI) scanning
that included structural imaging and a resting-state paradigm.
The average interval between sessions was 15.12 days; inter-
session interval did not covary with experimental variables. In
previous independent studies, these sample sizes were shown to
be adequate for examining dopamine transporter (DAT) (Yeh et al.
2012) and for investigating the neural and behavioral indices of
reinforcement learning used in the present study (Pizzagalli et al.
2008; Santesso et al. 2008, 2009). In light of prior evidence that DA
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functioning changes with age (Volkow et al. 1996), all analyses
controlled for participants’ age in months. No participant was
taking psychoactive medications, and all participants reported
no history of neurological impairment, head injury, or MRI counter-
indications. This study was approved by the Partners Healthcare
Institutional Review Board, and written informed consent was col-
lected. Data were stripped of identifying information, encrypted,
and saved to password-protected servers. Data from the present
study are available upon request.

Behavioral Testing and Analysis

Probabilistic Reward Task for Assessment of Reinforcement
Learning Behavior
Individual differences in RL were measured in an implicit learn-
ing task that takes a signal detection approach to measuring
sensitivity to rewards, the Probabilistic Reward Task (PRT)
(Pizzagalli et al. 2005). For each trial of this task, the participant
was presented (for 500ms) with a drawing of a face on which
either a short or long mouth stimulus (or a short or long nose
stimulus), was displayed (for 100ms). The participant was
instructed to respond as quickly as possible to indicate which
stimulus was displayed, and correct responses either resulted
in reward feedback ($0.20 and the phrase “Correct! You won
$0.20”) or null feedback (blank screen). The reinforcement
schedule was asymmetrical: one “rich” stimulus was rewarded
for correct responses 3 times more frequently than the other
“lean” stimulus, unbeknownst to the participant. In total, the
participant received 40 reward outcomes, 30 of which were eli-
cited by correct response to rich stimulus, 10 of which were eli-
cited by correct response to lean stimulus. Accordingly, in each
block 30 of the 50 rich trials (60%) but only 10 of the 50 lean
trials (20%) could be followed by a reward feedback. For the PET
analyses, participants were pooled across 2 separate studies,
which used the identical PRT paradigm, but different numbers
of blocks. Specifically, 67% of participants completed 3 blocks of
100 trials/block, whereas the remaining participants completed
2 blocks of 100 trials/block. In order to merge these databases,
performance scores were z-transformed within subgroups that
performed either the 2-block or the 3-block version of the task,
before pooling z-scores for a unified RL factor in subsequent
analyses; in addition, task version was included in the analyses
as a covariate. The primary index of reinforcement learning
behavior was z-transformed change in response bias (ΔRB)
from the first to the last block of trials [ΔRB = Response Bias
(final block) – Response Bias (first block)]. Response bias (RB)
was computed with the equation:

⎛
⎝⎜

⎞
⎠⎟= ( + )∗ ( + )

( + ) ∗ ( + )

bResponse bias: log

1
2

log
Rich 0.5 Lean 0.5
Rich 0.5 Lean 0.5

.correct incorrect

incorrect correct

In this equation, the variables Richcorrect and Richincorrect corre-
spond to the number of correct and incorrect responses to
identify the rich stimulus, respectively, and the variables
Leancorrect and Leanincorrect correspond to the number of correct
and incorrect responses to identify the lean stimulus, respec-
tively. Consistent with previous studies using this task, 0.5 was
added to each of the above variables to permit calculating
response bias in cases in which one of the raw variables was
equal to zero (Santesso et al. 2008; Vrieze et al. 2013). Positive
ΔRB over the course of the task indicates reinforcement learn-
ing proficiency (i.e., increased bias to respond accurately to
“rich” compared with “lean” stimuli over time). Individual

differences in this measure of reinforcement learning have
been shown to correspond to symptoms of anhedonia
(Pizzagalli et al. 2005), response to dopaminergic drugs
(Pizzagalli et al. 2008), and neural response to reward
(Santesso et al. 2008). Participants who performed poorly
(<55% accuracy, or >10% outlier trials with RT < 150ms or RT
> 2500ms, or failure to achieve an overall reinforcement
schedule of approximately 3:1) (Pizzagalli et al. 2005) were
excluded from analyses (all n = 34 eligible for analysis). See
Figure 1 for summary of the PRT; no outliers on learning per-
formance were detected in the present sample (i.e., ΔRB scores
within 3 standard deviations of mean).

PET Acquisition and Analysis

To investigate DA clearance, we used the radiotracer [11C]altro-
pane with DAT binding potential (BPND) as the primary out-
come parameter. [11C]altropane was selected as the PET tracer
for this study because it has rapid and specific striatal binding
(rapid kinetics in DA-rich striatal regions) and high selectivity
for DAT (e.g., 28 times more selective for DAT than serotonin
transporter (Fischman et al. 2001; Madras et al. 1998)). [11C]
altropane binding was assessed using an ECAT EXACT HR+
(CTI, Knoxville, TN) PET camera (3D mode, 63 contiguous
2.4mm slices, 2.06 × 2.06mm transaxial grid). For each partici-
pant, (approximately) 10mCi of [11C]altropane was adminis-
tered intravenously over 20–30 s. Images were acquired in 39
frames, with the duration of each frame increasing over time (8
frames of 15 s, 4 frames of 60 s, 27 frames of 120 s) for a total
duration of 60min. A filtered back-projection algorithm was
used to reconstruct PET images with physical corrections
applied for photon scatter and attenuation, random coinci-
dences, system deadtime, and detector inhomogeneity. The
motion-corrected frames were summed and coregistered to a
common reference space (Montreal Neurological Institute, MNI)
using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and by comput-
ing the deformation field on the basis of the participant’s struc-
tural MRI scan for individual warping. Transformations were
then applied to the dynamic PET images.

To calculate regional BPND (Innis et al. 2007), we used the
multilinear reference tissue model (Ichise et al. 2003) with the
reference region defined as the cerebellum, excluding the ver-
mis (Alpert and Yuan 2009; Fang et al. 2012). BPND was esti-
mated in left and right NAc, with regions defined by an
anatomical atlas (Tzourio-Mazoyer et al. 2002) in MNI space
(AAL atlas publically available as an SPM12 toolbox, http://
www.gin.cnrs.fr/en/tools/aal-aal2/). The NAc ROI for PET imag-
ing was structurally defined to ensure adequate coverage of
ventral striatum, which is necessary to gain a sufficiently
strong radiotracer signal in resting PET imaging studies. See
Table 1 for report of DAT BPND in left and right NAc across the
sample; the range of DAT BPND is consistent with previous
studies, and no outliers were detected in the present sample
(i.e., DAT BPND scores within 3 standard deviations of sample
mean). For analyses and in all figures, DAT BPND scores were
residualized for age and z-scored.

To test the association between individual differences in
reinforcement learning and DAT binding in ventral striatum,
we performed a correlation between (z-scored ΔRB) and DAT
BPND (residualized for age) in left and right NAc. Putative hemi-
spheric differences in correlation coefficients were tested with
the Meng test (Meng et al. 1992), which tests for differences
between correlation coefficients while taking into account
dependency between predictor variables in each correlation.
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MRI Acquisition and Analysis

Data Acquisition
A Siemens Tim Trio 3T scanner and 32-channel head coil
were used to collect MRI data, including a high-resolution

T1-weighted anatomical image (TR = 2200ms, TE = 4.27ms, flip
angle = 7, 144 slices, field of view = 230mm, matrix = 192 × 192,
voxel size 1.2 × 1.2 × 1.2mm) and eyes-open resting functional
data (TR = 3000ms, TE = 30ms, flip angle = 85, 47 slices, field of
view = 216mm, matrix = 72 × 72, voxel size 3 × 3 × 3mm, total
duration = 6.2min, total volumes = 124). Resting-state fMRI
data were collected immediately following collection of ana-
tomical data, and prior to other functional scanning.

Resting-state: General Image Preprocessing
We discarded the first 6 s of each participant’s functional data
to allow for stabilization of the magnetic field. Preprocessing of
functional data was performed in SPM8 using the standard spa-
tial preprocessing steps of slice-time correction, realignment,
normalization in MNI space, and smoothing with a 6-mm
kernel.

Table 1 Descriptive statistics for DAT BPND

DAT BPND

Min Max Mean STDEV

Left NAc 0.98 2.90 2.08 0.45
Right NAc 1.08 3.04 2.19 0.45
Bilateral NAc 1.03 2.94 2.14 0.44

Note: DAT BPND was indexed by [11C]altropane. For analyses and in all figures,

DAT BPND scores were residualized for age and z-scored.

Figure 1. Behavioral Tasks. (A) The Probabilistic Reward Task (PRT). For each trial, a cartoon face stimulus was presented, after which a mouth (or a nose, depending

on task version) appeared briefly (100ms) on the face and the participant was instructed to indicate (via buttom press) whether the mouth (or nose) was long or short.

After the participant responded (or 2500ms elapsed) feedback was presented. Correct responses for one (“rich”) stimulus were rewarded 3 times more frequently

than correct responses for the other (“lean”) stimulus. The asymmetrical reward schedule induced a response bias in which participants were more likely to respond

accurately to the “rich” stimulus than the “lean” stimulus. (B) Participants either completed a 2-block (100 trials/block) or a 3-block (100 trials/block) version of the

task (task version was entered as a covariate in the analyses). Displayed is average response bias for each block of trials, for the subgroup of participants who com-

pleted each version of the task. (C) For analyses, to enable collapsing across task versions, participants’ change in response bias from the first (block 1) to the last

(either block 2 or block 3) was computed, and z-scored within the subgroup of participants who completed each version of the task. Z-scored response bias was then

collapsed across task versions; however, task version was a covariate in analyses. Displayed is the distributions of z-scored response bias across all participants.
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Resting-state: Head Motion and Artifact Detection
Motion correction is of special importance for resting-state
functional connectivity analysis (Buckner et al. 2013). We used
SPM8 to assess head motion by translation and rotation in x, y,
z directions. Next, Artifact Detection Tools (ART, www.nitrc.
org/projects/artifact_detect/) were utilized to calculate time
points of significant head motion or fluctuations in the mag-
netic field (>1mm motion from previous frame, global mean
intensity >3 standard deviations from mean intensity across
functional scans) for each participant. Then, outlier images
were modeled in each participant’s first-level general linear
model (as a vector the length of the time series, with 1 for
outlier time points and 0 for non-outlier time points) to
remove the influence of outlier time points on estimates of
functional connectivity while maintaining the temporal
structure of the data. Thus, motion correction included the
regressing out of not only residual head motion parameters
(3 translation and 3 rotation parameters, plus 1 composite
motion parameter reflecting the maximum scan-to-scan
movement), but also outlier volumes (as calculated through
artifact detection).

Resting-state: Denoising
We performed voxelwise seed-based functional connectivity
analyses using the CONN toolbox (https://www.nitrc.org/
projects/conn/; Whitfield-Gabrieli and Nieto-Castanon 2012).
We estimated physiological and other sources of noise using
CompCor (Behzadi et al. 2007), a method that estimates physio-
logical noise from white matter and cerebrospinal fluid for each
participant using principal component analysis. The first 5
components were then regressed out of each participant’s
functional data on the first level of analysis. In addition, a tem-
poral band-pass filter of 0.01–0.10 Hz was applied to the time
series. This range was selected to remove high frequency activ-
ity related to cardiac and respiratory activity (Cordes et al. 2001)
and low frequency activity that may be related to scanner drift.

Together, the corrections performed on the time series
included: detrending, outlier correction, motion regression, and
CompCor correction (which were performed together in a single
first-level regression model), followed by band-pass filtering.
These corrections produced a residual BOLD time course at
each voxel that was used for subsequent analyses.

Resting-state: First-level Functional Connectivity Analysis
For first-level resting-state analyses, we computed the
Pearson’s correlation coefficient between the full time course of
a bilateral seed region of interest (ROIs) in left and right NAc
and the time course of all other voxels, yielding a correlation
map for each participant. Correlation coefficients were normal-
ized using the Fisher’s z-transformation. Functionally defined
NAc ROIs were used for fMRI analyses in order to restrict the
seed ROI to voxels that have been shown to correspond with
regions responsive to rewards (vs. null feedback) in previous
BOLD imaging research from an independent sample (Admon
and Pizzagalli 2015). (For alternate views of functionally defined
and structurally defined NAc ROIs, see Supplementary Fig. 2).
Although primary analyses used a bilateral seed, to explore
potential laterality effects, follow-up voxelwise analyses were
performed using left and right NAc seeds independently.

Resting-state: Group-level Functional Connectivity Analysis
For group-level analyses, first-level normalized correlation
maps were entered into a whole-brain regression analysis and
group-level statistics were performed at each voxel. To identify
regions in which NAc functional connectivity was associated
with individual differences in reinforcement learning behavior,
mean-deviated ΔRB was entered as the independent variable
predicting the magnitude of correlations in activity between
NAc and other regions of the brain (mean-deviated age of par-
ticipant was entered as a covariate). Regions in which func-
tional connectivity with NAc was associated with ΔRB were
considered significant if they exceeded a peak amplitude of P <
0.05 (2-sided, i.e., P < 0.025 in each tail), cluster corrected within
an intrinsic brain mask that restricts the search space to the
SPM MNI template brain to False Discovery Rate of P < 0.05.
Analyses were also repeated including sex and number of out-
lier images as group-level covariates; because controlling for
these variables did not affect results, and these variables did
not relate to ΔRB, simple analyses (with age as the only covari-
ate) are reported. See Table 2 for report of resting-state func-
tional connectivity in significant clusters of effect; no outliers
were detected in the present sample (i.e., estimates of func-
tional connectivity within 3 standard deviations of sample
mean). For mediation analyses and in all figures, estimates of
resting-state functional connectivity were z-scored.

Table 2 Implicit reinforcement learning ability predicts resting-state functional connectivity of nucleus accumbens

Peak Coord Vol Average FC of cluster Correlation between
implicit reinforcement
learning and FC of cluster

Mean STDEV r Cluster P

Bilateral NAc seed
OFC −16, 20, −10 1214 0.21 0.08 0.69 <0.001
Parietal cortex 54, −36, 56 1070 0.01 0.09 −0.66 0.001

Left NAc seed
OFC 8, 60, −24 1611 0.14 0.10 0.60 0.003

Right NAc seed
OFC/subcallosal −20, 4, −16 2463 0.09 0.10 0.61 0.002
SMA 6, −16, 52 941 0.05 0.02 0.44 0.042
MFG 36, 40, 24 1292 0.02 0.13 −0.49 0.020
Parietal cortex 40, −42, 36 1704 0.01 0.09 −0.54 0.010

Note: Coord = coordinates in MNI space, Vol = volume in 1 × 1 × 1mm voxels, FC = resting-state functional connectivity. Peak thresholded at P < 0.05 2-sided, cluster

corrected to false discovery rate (FDR) of P < 0.05.
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Mediation Modeling

The mediation model included the following variables: 1) DAT
BPND (residualized for age) in the NAc, 2) functional connectiv-
ity between NAc and OFC (Fisher’s z-transformed correlation
coefficients from the OFC region in which ΔRB predicted increased
functional connectivity between NAc and OFC, extracted using
REX (https://www.nitrc.org/projects/rex/), and 3) individual differ-
ences in reinforcement learning (ΔRB). The model tested the indi-
rect relationship between DAT BPND and individual differences in
RL behavior as mediated by NAc-OFC functional connectivity. To
estimate the standardized regression coefficients for the associa-
tions between DAT BPND in NAc, resting-state functional connec-
tivity of NAc-OFC, and reinforcement learning behavior, we
performed regression analyses. Mediation was tested using a
bootstrapping (5000 iterations) approach (Preacher and Hayes
2008) to estimate the indirect effect. Mediation and regres-
sion analyses were performed using SPSS19.

Results
Individual Differences in Reinforcement Learning
Behavior are Associated with Striatal Dopamine
Transporter Binding Potential

Correlation analyses tested the associations between individual
differences in RL (z-scored ΔRB) and (z-scored, age-residualized)
DAT BPND in left and right NAc (controlling for RL task version).
Results showed that ΔRB was negatively associated with DAT
BPND in bilateral NAc, r(31) = −0.43, P = 0.01, indicating that—as
hypothesized—lower DAT availability was associated with bet-
ter reinforcement learning (Fig. 2). Visual inspection of the scat-
terplot suggested potential outliers (data points exerting undue
influence on the correlation); Cook’s D (Cook 1977) was calcu-
lated, and the correlation was repeated omitting (n = 3) data
points with Cook’s D above the standard threshold (4/n; Bollen
and Jackman 1985). Omitting these data points did not alter the
overall pattern of results; although the association dropped to
trend-level, the magnitude of the correlation remained a
medium effect size (adjusted r = −0.32, adjusted P = 0.08)
(Cohen 1992). Follow-up correlations to examine putative later-
ality effects revealed that ΔRB was negatively associated with
DAT BPND in both left NAc, r(31) = −0.49, P < 0.01, and (at the
level of a trend) in right NAc, r(31) = -0.34, P = 0.06.

Individual Differences in Reinforcement Learning
Behavior are Associated with Frontostriatal Resting-
State Functional Connectivity

Next, a voxelwise functional connectivity analysis was per-
formed using seed ROIs in left and right NAc to identify regions
in which functional connectivity with ventral striatum was
associated with individual differences in reinforcement learn-
ing (z-scored ΔRB, controlling for age). Results showed that ΔRB
was positively associated with functional connectivity between
bilateral NAc and regions of medial OFC (Fig. 3), and negatively
associated with functional connectivity between NAc and areas
of posterior parietal cortex (Supplementary Fig. 3). Of note, we
had no a priori hypotheses with respect to cortical systems
beyond OFC, however, in light of interesting recent work
showing that parietal systems may be especially relevant to
reinforcement learning under conditions of high attentional
control (Niv et al. 2015), these findings are displayed in greater
detail in the Supplement and discussed below (Table 2).

Follow-up voxelwise analyses revealed positive correla-
tions between ΔRB and functional connectivity of left NAc
with distributed regions of medial and lateral OFC, and of
right NAc with regions of medial OFC and mid-cingulate
(Table 2).

Frontostriatal Resting-state Functional Connectivity
Mediates the Relationship Between Striatal Dopamine
Transporter Binding Potential and Individual
Differences in Reinforcement Learning Behavior

Taken together, the above results suggest that individual differ-
ences in RL may be driven by striatal DAT expression and frontos-
triatal circuit coordination. These neurobiological mechanisms
may act in concert to shape or reflect RL behavior: prior data indi-
cate that DA firing together with co-activation by cortical and
limbic glutamatergic afferents drives striatal responses (Floresco
2015). Lower clearance of DA by DAT may therefore increase the
impact of striatal RPE signals on frontostriatal pathways, resulting
in better learning. To examine this hypothesis, we tested the indi-
rect effect of DAT BPND on individual differences in reinforcement

Figure 2. Individual differences in reinforcement learning behavior are asso-

ciated with dopamine transporter binding potential (DAT BPND) in nucleus

accumbens (NAc). In healthy adults, better reward learning performance

(increased response bias towards a frequently rewarded stimulus) was

related to lower DAT BPND in (A) bilateral NAc, r(31) = −0.43, P = 0.01. Follow-

up analyses confirmed this inverse association independently in (B) left

NAc, r(31) = −0.49, P < 0.01, (C) and (at the level of a trend) in right NAc, r(31)

= −0.34, P = 0.06. Displayed on the x-axis are individual differences in z-

scored change in response bias towards a reward-rich stimulus; on the y-

axis are DAT BPND estimates (residualized for age, z-scored); all statistical

tests were 2-sided.
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learning performance through resting-state functional con-
nectivity of NAc (Fig. 4). Variables entered into the mediation
model included DAT BPND in bilateral NAc (age-residualized
and z-scored), resting-state functional connectivity (z-scored
Fisher’s z-transformed correlations) between bilateral NAc
and OFC, and RL behavior (z-scored ΔRB). Bootstrapped path-
analysis (Preacher and Hayes 2008) revealed that frontostriatal
resting-state functional connectivity significantly mediated the
relationship between bilateral DAT BPND and learning behavior
(confidence interval: −0.26 to −0.01). However, in a separate
mediation model, resting-state functional connectivity between
striatal and parietal regions did not significantly mediate the
effect of bilateral DAT BPND on learning behavior (confidence
interval: −0.36 to 0.005). Follow-up analyses showed a significant
indirect effect of left NAc DAT BPND through left NAc-with-OFC
functional connectivity on learning behavior (bootstrapped 95%
confidence interval: −0.24 to −0.02); and a trending effect of right
NAc DAT BPND through right NAc-with-OFC functional connec-
tivity on learning behavior (bootstrapped 95% confidence inter-
val: −0.23 to 0.00).

Discussion
The present study provides evidence that individual differences
in RL are associated with DAT BPND and intrinsic frontostriatal
functioning. Consistent with a wide range of evidence support-
ing the role of striatal DA in RL across people and species
(Flagel et al. 2011; Cohen et al. 2012; Eshel et al. 2015; Hart et al.
2014; Schultz 2015), we observed that individual differences in
RL in healthy humans were related to DAT BPND in ventral stria-
tum and resting-state functional connectivity of a frontostriatal
circuit linking ventral striatal regions with areas of orbitofrontal
cortex involved in updating action plans. Moreover, mediated
effects support a model in which DA clearance capacity may
shape learning performance by contributing to the intrinsic
strength of frontostriatal circuits. Collectively, these data suggest
that DA re-uptake and frontostriatal circuit integrity are a key
source of individual differences in reinforcement learning.

In the striatum, phasic DA release in response to better-
than-expected outcomes is believed to facilitate learning for
reward-predictive cues via enhanced long-term potentiation or

Figure 3. Correlation between reinforcement learning behavior and voxelwise resting-state functional connectivity of left, right, or bilateral NAc. Whole-brain resting-

state functional connectivity (RSFC; Fisher’s z-transformed correlation coefficients) was computed for seed regions in either left or right NAc, or bilateral NAc, and cor-

related with ΔRB (i.e., the increase in response bias towards a more frequently rewarded stimuli across blocks). (A) Better learning behavior was related to increased

RSFC between bilateral NAc and regions of orbitofrontal cortex (OFC) (peak −16, 20, −10, k = 1214). Follow-up analyses confirmed that better learning behavior was

independently associated with (B) increased RSFC between left NAc and regions of OFC (peak 8, 60, −24, k = 1611), and (C) increased RSFC between right NAc and

regions of medial cortex including OFC and (peak −20, 4, −16, k = 2463). Note: Cluster correction performed using peak P < 0.05, FDR; P < 0.05. Displayed are scatterplots

showing the correlation between individual differences in z-scored change in response bias towards a reward-rich stimulus and z-scored RSFC between NAc seeds

and clusters of effect indicated in black squares.
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depression of cortical glutamatergic inputs to striatal medium
spiny neurons (Reynolds et al. 2001; Frank 2005). This well-
supported model leads to several predictions for understanding
individual differences in RL. First, lower DAT availability—and
hence greater sensitivity to RPE signals owing to higher levels
of DA—is predicted to promote reinforcement learning. In sup-
port of this idea, we observed that individuals characterized by
lower DAT BPND showed higher reinforcement learning scores
in behavioral testing. This finding contrasts to some prior
research suggesting that DAT blockade does not influence
learning, but instead, has effects on novelty seeking (Costa
et al. 2014). However, differences in the nature of tasks used to
probe RL behavior may contribute to mixed findings (modeling
RL behavior using a modified multiarm bandit task vs. an
implicit reward sensitivity task as in the present study), and
the present findings are consistent with other research indicat-
ing that DAT has a role in RL (Everitt and Robbins 2005). Second,
because the expected effect of larger DAergic RPE signals is to
increase coupling between striatum and glutamatergic afferents,
we predicted that lower DAT binding would be associated via
frontostriatal connectivity with reinforcement learning behavior.
Supporting this prediction, we observed that individuals who
exhibited lower DAT BPND not only performed better in a rein-
forcement learning task but also this association was mediated
by stronger resting-state functional connectivity between NAc
and the OFC. Taken together, these results support the idea that
striatal DA signaling contributes to the coordinated activity of
striatal and orbitofrontal regions to update learned behaviors
(Wilson et al. 2014; Schuck et al. 2016), and that individual differ-
ences in striatal DA can be linked to individual differences in RL.

Some limitations to the current study warrant additional com-
ment. First, the present study was designed to target “intrinsic”
individual differences in frontostriatal functioning, by investigat-
ing molecular (DAT signaling) and systems-level (functional con-
nectivity) activity at rest. We note that prior research suggests
that approximately half of variability in resting-state functional
connectivity is attributable to trait-like individual differences
(Buckner et al. 2013). However, a complementary approach would
be to investigate individual differences in frontostriatal functional
connectivity and molecular signaling during active demands for
reinforcement learning. Efforts to extend the scientific questions

of the present study to dynamic task-based neuroimaging, using
high-resolution neuroimaging sequences, are underway. Second,
the present study evaluated DAT concentrations and frontostria-
tal functional connectivity in separate sessions. This approach
assumes stability over time of individual differences in molecular
functioning and functional connectivity, an assumption that has
been supported (Zuo and Xing 2014; Chen et al. 2015) but may
have exceptions (Somandepalli et al. 2015). Therefore, capturing
individual differences in molecular and systems-level functioning
at the same time point, for example, through simultaneous PET/
fMRI (Riedl et al. 2014; Bailey et al. 2016), may provide more pre-
cise information about the correspondence between DAT and
frontostriatal activity. Third, the negative relationship between
learning rate and DAT potential was reduced to a trend when
3 participants characterized by data points with Cook’s D above
the standard threshold were excluded (adjusted r = −0.32,
adjusted P = 0.08); clearly, independent replications of the current
findings are needed. A final caveat to the described findings is
that the behavioral measure of reinforcements learning used
(Probabilistic Reward Task) was relatively simple, and only
involved learning actions in response to a single stimulus dimen-
sion that were associated with possible gains. The relationship
between DAT and other aspects of reinforcement learning, for
example, learning from penalties or with more complex multidi-
mensional stimuli, was not examined. Consequently, it is possible
that the observed associations between DAT and performance
would not generalize to these other experimental designs. It is
also possible that other RL tasks would be useful to clarify the
present finding of a negative association between RL behavior and
resting-state functional connectivity in a parietal corticostriatal
circuit. In this context, it is interesting to note that prior research
that has shown that parietal and dorsolateral regions of an atten-
tion control network are important for selecting and updating
which stimulus dimensions are relevant to reinforcement learn-
ing (Niv et al. 2015). Thus, it is possible that in the present study,
poor learners responded to the task as more attentionally
demanding than good learners; this possibility should be exam-
ined using an RL task that varies cognitive load.

Conclusion
In spite of the above limitations, our results highlight—we
believe for the first time in humans—the importance of DAT
mechanisms putatively involved in DA clearance and frontostria-
tal circuit functioning as markers of individual differences in RL.
While prior studies have used measures of DA cell firing, phar-
macological and optogenetic manipulation, and terminal efflux
to demonstrate the role of DAergic RPE signals during reinforce-
ment, these data provide novel evidence for DA re-uptake as a
critical source of individual differences in human reinforcement
learning. Future research may build upon these findings to inves-
tigate linkages between frontostriatal DA functioning and dimen-
sions of personality (e.g., impulsivity, reward dependence),
psychiatric health (e.g., anhedonia), and daily functioning.
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(OFC). Variables entered in the mediation model were: DAT BPND in bilateral

NAc (DAT BPND measured with the DAT radiotracer [11C]altropane, residualized

for age, z-scored), bilateral NAc resting-state functional connectivity (z-scored

Fisher’s z-transformed correlation coefficients) extracted from OFC (FDR, P <

0.05), and reinforcement learning (z-scored change in response bias towards a

frequently rewarded stimulus). Shown are standardized regression coefficients

for each path in the model; the standardized regression coefficient between

DAT BPND and reinforcement learning, controlling for NAc-OFC connectivity, is

in parentheses; all statistical tests were 2-sided.
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