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Abstract

In the past decade, significant progress has been made in complex disease research across multiple omics layers from
genome, transcriptome and proteome to metabolome. There is an increasing awareness of the importance of biological
interconnections, and much success has been achieved using systems biology approaches. However, because of the typical
focus on one single omics layer at a time, existing systems biology findings explain only a modest portion of complex
disease. Recent advances in multi-omics data collection and sharing present us new opportunities for studying complex
diseases in a more comprehensive fashion, and yet simultaneously create new challenges considering the unprecedented data
dimensionality and diversity. Here, our goal is to review extant and emerging network approaches that can be applied across
multiple biological layers to facilitate a more comprehensive and integrative multilayered omics analysis of complex diseases.
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Introduction

Recent advances in multiple biological layers, such as the gen-
ome, transcriptome, proteome and metabolome, have signifi-
cantly facilitated research into complex diseases. Traditional
genome-wide association analysis (GWAS) has brought valuable
insights into the genetic basis of human disease, such as
PICALM for Alzheimer’s disease (AD) [1, 2] and SNCA for
Parkinson’s disease [3]. The increasing awareness of biological
interconnections and the wide application of systems biology
approaches are yielding high-level insights into disease mech-
anisms, with a particular focus on networks and pathways. For
example, using network analysis, Zhang et al. [4] found an im-
mune/microglia subnetwork that was strongly related to the
pathophysiology of late-onset AD, with TYROBP as a key regula-
tor. In a separate in vitro study, this gene was also found to be
directly involved with amyloid-beta turnover [4] and was

recently reported to inhibit the expression of a well-known AD
risk gene TREM2 in HeLa cells [5]. Despite these achievements,
many existing studies still treat the genome, transcriptome,
proteome and metabolome as isolated biological layers without
fully acknowledging their interconnections. This shortcoming is
largely because of the limited availability of multi-omics data
collected on the same group of individuals, as well as the lim-
ited availability of sufficiently powerful tools for high-dimen-
sional analysis. In view of the limited information carried by a
single omics layer, there is the potential for multilayered ana-
lyses to be much more powerful in facilitating our understand-
ing of disease complexity [6, 7], hence the necessity of an
integrative approach to omics.

Recent efforts in collecting multi-omics data in the same
group of individuals open numerous opportunities for more
comprehensive analyses of complex diseases. Example projects
include the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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[8], The Cancer Genome Atlas (TCGA) Research Network (http://
cancergenome.nih.gov/) and the International Cancer Genome
Consortium (ICGC; http://icgc.org/). Instead of limiting their per-
spective to a single omics layer, these data collections create a
molecular landscape spanning the genome, transcriptome,
proteome and even metabolome [9]. By capturing the abnormal-
ities across multiple molecular dimensions, these data sets are
believed to hold great potential for revealing a multilayered mo-
lecular basis of complex diseases and are likely to provide in-
sights for developing novel therapeutic interventions [10].
Although to date, there has been limited work in AD, integrative
omics analysis has already been performed on the TCGA data
and has helped to drive the progress of cancer research by re-
vealing a large-scale integrative view of the molecular aberra-
tions in various cancers [11–13].

Our goal is to perform a detailed review of network
approaches across multiple biological layers to help future ana-
lyses of the emerging multi-omics data in complex disease
studies. Networks constitute the foundation of biological sys-
tems, and substantial efforts have been dedicated to network
analysis within each biological layer. For the genome, epistatic
interactions have been evaluated that account for disease sta-
tus or quantitative traits (QTs), and these gene–gene inter-
actions can constitute one or more networks [14, 15]. For the
transcriptome and proteome, network inference, pathway en-
richment analysis and network module identification are three
principal topics. Network inference aims to reconstruct the
underlying dependency structure between entities [e.g. gene
regulatory networks (GRNs)]; pathway enrichment analysis and
network module identification help identify risk factors (e.g.
perturbed pathways or network modules) by mapping candi-
date genes/proteins onto pathways or prior networks, such as
protein–protein interaction (PPI) or gene co-expression net-
works. Protective effects can similarly be analyzed in a network
framework. In the biomarker discovery field, these known net-
works can also serve as priors to help guide machine learning
models, so that biologically meaningful biomarkers can be
identified.

Based on the role of networks, analytic approaches can be
divided into three groups. The first aims to explore the rela-
tionships between entities resulting in network generation;
the second uses existing network(s) as prior knowledge to
guide the analytic procedure; and the third analyzes the prior
network(s) regarding their topology and attributes (both nodes
and edges). This review is specifically focused on methods
with wide applications in molecular omics layers from gen-
ome, transcriptome and proteome to metabolome. They can
be further divided, based on the topic, into six subcategories
as shown in Figure 1: (1) epistasis, (2) network inference, (3)
pathway enrichment, (4) module identification, (5) marker rep-
rioritization and (6) network-guided biomarker discovery.
While the first two are mainly for exploration of disease mech-
anisms, the latter ones are expected to provide critical insights
into perturbed pathways and to reveal potential diagnostic
and therapeutic targets. As (3)–(6) are closely related topics, we
will discuss them together in ‘Pathway and network analysis’
section.

In each section, we review state-of-the-art network
approaches and associated tools, as well as their applications in
disease studies. In addition, we summarize recent efforts on in-
tegrative analysis, as well as findings that take advantage of
multi-omics data sets as a whole rather than one at a time. Our
overarching goal is to provide a critical review and global map
of network approaches spanning several of the most accessible

data modalities in studies of complex diseases and to present a
conceptual and methodological foundation for the emerging
multi-omics research paradigm that is transforming medical
research.

Epistasis

Though GWAS has dominated the genetic discovery of complex
diseases over the past decade and identified hundreds of
disease-associated single-nucleotide polymorphisms (SNPs),
existing findings cannot fully explain either disease heritability
or phenotypic variance [15–17]. This missing genetic variance
remains largely unknown with some portion hypothesized to be
because of the interactions between genetic loci (known as epis-
tasis) [18]. Despite little progress in finding the missing herit-
ability [19], epistasis analyses in model organisms have
revealed a substantial portion of phenotypic variance explained
by genetic interactions only [20]. The high dimensionality of
genotype data makes the detection of epistasis effects computa-
tionally challenging; high-order epistasis involving more than
two loci is even more complicated and rarely evaluated, given
the daunting number of possible interactions [19]. Thus, we
focus our review on those approaches for detection of pairwise
interactions.

Regression-based models

Logistic regression and linear regression are two models widely
applied to detect epistasis effects on disease case/control status
and QTs, respectively. Usually, there will be two models: a satu-
rated model and a reduced model. In the saturated model, it
takes both genetic variants and their product as an input, which
models the interaction effect, and estimates the total pheno-
typic variance explained by these predictors. In the reduced
model, the multiplicative interaction component is excluded,
and only the variance explained by the two genetic variants is
estimated. Then, by directly comparing the variance explained
in the saturated model relative to the reduced model, one can
obtain the variance explained only by the interaction. In add-
ition, by examining the weight and corresponding statistical
value of the interaction term in saturated model, the statistical
significance of the interaction effect can be derived and
evaluated.

PLINK [21] and interSNP [22] are two widely used packages
that implement these regression-based method. However,
these analyses can be time-consuming, especially given the
increasing genotyping resolution. Cordell et al. [23] reported
that a pairwise interaction test of 89 294 SNPs would take over
300 h to complete in PLINK. Schupbach et al. [24] proposed a
faster implementation through parallelization, which de-
creases the running time to around 24 h on a similar scale
data set. Note that this implementation is only applicable to
QTs, not case/control studies. BOOST is another high-
performance tool that takes advantage of Boolean operation.
BOOST was shown to be capable of evaluating all pairs of
�360 000 SNPs within 60 h on a standard desktop computer
and helped to identify a number of significant interactions in a
study of diabetes [25]. SNPHarvester [26] improves the compu-
tation efficiency with an extra dimension reduction step. As
removing nonsignificant SNPs is part of the dimension reduc-
tion strategy, this method has difficulties in identifying inter-
action pairs with weak or no main effects. Other tools based
on regression methods include PIAM [27], epiGPU [28] and
PLATO [29].
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Contrast test approaches

For case/control studies, epistasis effects can be detected
through examination of differences in the multi-locus associ-
ation between cases and controls. For example, if disease risk
is increased by the interaction of two SNPs, then the
co-occurrence of the corresponding alleles should be enriched
in the case group. Then, the significance of the interaction be-
tween two SNPs can be easily captured by contrasting the statis-
tic measuring the association between each SNP pair between
case and control groups. Such an approach will be computation-
ally much more efficient, as degree of freedom reduces to one
rather than four as in regression models mentioned earlier.
Typical statistics used for the contrast test are chi-square, link-
age disequilibrium [30], Pearson’s correlation [31] and odds ratio
[21] metrics. One package implementing this strategy is SIXPAC
[32], which coupled LD contrast test and Boolean operations for
fast analysis. This package is capable of handling interactions
between 450K SNPs within 8 h in a normal desktop computer
[32]. Another tool, EPIQ [33], was proposed in a recent study to
extend the contrast tests to QT analysis by coupling it with lin-
ear regression models.

Data mining/machine learning approaches

Multifactor dimensionality reduction (MDR) [14] is one of the
earliest data mining strategies for exploring genetic inter-
actions. For each genotypic class defined by the genotype of two

SNPs, MDR classifies it as high-risk or low-risk based on the
ratio of cases and controls in that class. In such a way, an n-di-
mensional problem is able to be transformed into a single-di-
mension problem, and the issues of sparse cells and the
concerns of multiple parameters can be avoided [34]. To further
extend the application of MDR to continuous QT, Lee et al. [35]
later proposed an extension by introducing a traditional
regression-based approach in the cell classification. Like all ex-
haustive search methods, MDR does not scale well to present
data volumes, and thus, additional methods are built in as part
of the software package to help filter SNPs before epistasis ana-
lysis [36]. A parallelized version of MDR with better scalability
was later developed to facilitate the processing of large data
sets [37].

Bayesian models are alternative approaches that do not
require explicit modeling of all SNP pairs. Bayesian Epistasis
Association Mapping (BEAM [38]) is specifically designed to
capture the loci with either a main effect or an interaction
effect. BEAM partitions all genotypes into three distinctive
groups: one without any effect, one with independent main
effect and one with joint effect on the outcomes based on the
posterior probability. BEAM is capable of handling a data set
with �100 000 SNPs in 50 cases and 50 controls [38]. However,
considering that the scale of current genotyping platforms
usually falls between 500K and 1M SNPs before imputation, a
genome-wide interaction analysis remains a challenging task
for the BEAM program, and additional data filtering techniques
may be required.

Figure 1. Networks and approaches in omics layers. (A) There are primarily three categories of network approaches across omics layers, where networks are generated

as outcomes, used as priors or analyzed as features, respectively. (B) The ultimate goal of integrative omics is to illuminate the interplay across biological layers that

potentially drives the progress of complex diseases.
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Many other approaches have been explored for interaction
analysis, such as information theory or entropy-based
approaches [39, 40]. Detailed reviews are available in Cordell
et al. [23], Wei et al. [41] and Upton et al. [42], which summarize
the epistasis methods from different perspectives. A review by
Koo et al. [43] focused on machine learning methods for epista-
sis analysis and detailed their application in various diseases.

Overall, despite its extremely challenging nature, genome-
wide epistasis analysis has now become much more feasible.
Exploration of genetic interactions that affect QTs has pro-
gressed by taking advantage of high-performance methodolo-
gies and tools. For example, Prabhu et al. [32] used the software
SIXPAC to search for epistasis influencing bipolar disorder and
identified a pair of interacting SNPs that had not been previ-
ously shown to have an effect in GWAS. Hemani et al. [44] used
epiGPU to perform an exhaustive search and found multiple
genetic interactions influencing gene expression in human per-
ipheral blood. Despite the accumulating evidence indicating the
importance of epistasis, many efforts to replicate these findings
in independent cohorts have been unsuccessful [32, 45], and we
are still far from understanding the underlying biological mech-
anisms. One possible solution is to perform extra downstream
analyses for more insight into the underlying mechanisms, e.g.
mapping variants to genes and then performing pathway en-
richment analysis [46]. However, to have an influence on dis-
ease diagnosis and treatment, more work replicating and
experimentally validating these epistasis findings in the future
is needed.

Network inference

The emergence of high-throughput methods has revolutionized
the study of diseases in the past decade and has greatly facili-
tated the exploration of interactions between biological entities.
However, examining all of these experimentally still remains
technically and financially infeasible. Reconstructing the under-
lying dependent relationships from observed data arises as an
alternative strategy, which can also help potentially generate
new biological hypotheses. These techniques have been widely
explored in transcriptomics, where microarray gene expression
data are used to infer GRNs. Other inferential networks of inter-
est are transcript-binding network, PPI networks, gene co-
expression networks and metabolic networks. As most methods
are generalizable, we will review methods with a focus on tran-
scriptome applications. Such data-driven network inference
strategies have recently demonstrated great potential in dis-
covering networks perturbed in disease, as discussed later in
this section.

The simplest way to estimate the pairwise relevance is by
correlation coefficients or mutual information (MI). On top of
that, we can either define module networks, such as imple-
mented in the weighted gene co-expression network analysis
toolbox (WGCNA) [47], or generate a normal network by opting
out those edges with relevance below a certain threshold.
Networks generated in this way are undirected and known as
correlation/relevance networks. Caution should be taken in dir-
ect application of these methods, as they are likely to generate
numerous indirect connections as false positives. To overcome
this limitation, context likelihood of relatedness (CLR) [48]
derived a new score based on the distribution of MI to serve as
the edge attribute, so that false-positive rate can be controlled.
Algorithm for the Reconstruction of Accurate Cellular Networks
(ARACNE) [49] performed an extra filtering step in which the
weakest edge in each triplet would be interpreted as indirect

interaction and therefore be removed. This approach was found
to be helpful in a GRN inference study in mammalian cells [49],
but its computation complexity increases significantly with the
network size. MRNet, which combines both criteria in CLR and
ARACNE, was implemented in the R package MINET [50]. Such
methods, though superior in simplicity, have limitations in
identifying joint regulation effects, and their computational ad-
vantages disappear when extra filtering steps are involved to
control the false-positive rate.

Network inference can also be formulated as a regression
problem, such as in TIGRESS [51]. For example, the expression
of one gene (response) is considered as a function of the expres-
sion of all other genes (predictors). In TIGRESS, lasso is applied
to help yield sparse patterns, as links identified in this way are
less likely to be indirect. The output of this strategy is also well
known as an estimator of partial correlation relationships be-
tween genes. Owing to the predefined setting of ‘predictor’ and
‘response’, networks inferred in this way are both weighted and
directional. GENIE3 [52] is a similar algorithm that implements
random forest regression instead of lasso. This algorithm was
recently extended in iRafNet [53] (available as an R package),
where multiple data are integrated to significantly reduce the
search space.

Probabilistic graph models, such as Bayesian network (BN)
inference [54], could also be used to estimate direct influences.
They compute the probability of the observed data given vari-
ous a priori networks. Then, the one with the highest probabil-
ity is selected as the most probable network. BN algorithms can
capture linear, nonlinear, stochastic and combinatorial relation-
ships between variables and are powerful for handling noisy
data given their probabilistic nature. However, these BN algo-
rithms are usually time-consuming. BNFinder [55] addresses
this concern by taking advantage of multiple CPU cores, speed-
ing up the algorithms linearly with increasing the number of
cores. BNFinder has been recently used to identify genes with
transcriptomic changes in smokers and to estimate the direc-
tional relationships between these changes [56]. In this work,
the search space was further narrowed by performing BN infer-
ence only on those genes that were differentially expressed be-
tween groups.

BNs are directed acyclic graphs and do not allow feedback
loops, which are important features in many biological networks.
To overcome this limitation, dynamic Bayesian network (DBN) al-
gorithms have been proposed. In these algorithms, DBNs are esti-
mated as a function of time series observations, where each
entity is unfolded into several nodes corresponding to the time
points. Then, the algorithms construct priors, indicating the stat-
istical dependence between variables at the initial time point, and
a transition network, indicating the dependence between nodes
at consecutive time points. Unlike BN algorithms, DBN algorithms
have the power of detecting cyclic loops through the transition
networks. Most tools, such as Banjo [57], SEBINI [58] and BNFinder
[55], are designed for both static BN and DBN inference. An alter-
native approach for time series data is ordinary differential equa-
tions, which are specifically designed for inferring dynamic
interactions between entities. In these models, the change in one
measure, rather than the measure itself, is assumed to be the out-
come of all other variables. Simple module methods and correl-
ation/relevance network inference approaches are also applicable
to time series data. TD-ARACNE [59] and the recently proposed al-
gorithm, MIDER [60], are two example packages that allow time
series data as input.

One natural question when facing many so methods to
choose from is which of the methods is the best in a given
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circumstance. However, this question has not yet been conclu-
sively answered. Even though many new methods claim them-
selves to be superior, it could also be argued that these methods
are complementary rather than competitive to each other. All
methods have their own advantages and limitations, especially
when applied under different experimental settings. Marbach
et al. [61] did an extensive comparison study on most of
abovementioned methods. They evaluated those methods
based on the area under precision–recall curve, which accounts
for both false-positive rate and true-positive rate. Interestingly,
they found that no method performed optimally across all ex-
perimental settings. In contrast, integration of multiple network
inference methods shows the most robust and high perform-
ance across diverse data sets. This finding implies that different
methods can only capture partial network structures individu-
ally, but fortunately can complement each other well. The same
conclusion was also made in a previous work [62]. Inspired by
this, efforts have been made to develop tools that combine net-
works inferred by multiple methods (e.g. NAIL [63]). However,
most of these methods will become limited when the data vol-
ume is significantly increased. Relevance networks would per-
form better in high data volume situations, but unfortunately
they are not directional and will be more likely to include many
indirect edges with a high false-positive rate. A simple yet ef-
fective strategy to solve this problem is to narrow down the
search space using prior knowledge as discussed in [53] and
[56]. Though the majority of existing network inference meth-
ods are currently used for GRNs and co-expression networks,
they are equally valuable for inference of other networks, such
as metabolic networks [64]. Finally, most current studies are
focused on network inference under various experimental con-
ditions, but some have extended these methods to assess net-
works that are disturbed in diseases. For example, two recent
studies [65, 66] have successfully used these methods to identify
several key regulators of transcriptomic changes in AD.

Pathway and network analysis

Pathway and network analyses are two common procedures for
exploration of high profile perturbations with candidate genes/
proteins [67]. They allow us to benefit from knowledge of prior
networks and pathways and gain extra insights from a higher-
level perspective, which is of particular importance for large-
scale analysis. In this section, we will cover four categories of
pathway and network analysis approaches.

Pathway enrichment analysis

There are three dominant analytic techniques for pathway en-
richment analysis (Figure 2A): (1) overrepresentation analysis
(ORA), (2) rank-based approaches and (3) topology-based
approaches. ORA is the first-generation approach for enrich-
ment analysis and is still widely used because of its easy imple-
mentation. ORA assesses the significance of overrepresentation
through hypergeometric distribution, chi-square or Fisher’s
exact statistics. This method has been integrated into many
tools including WebGestalt [68] and DAVID [69]. Notably, in
ORA, the input candidates are assumed to be significant, and an
arbitrary threshold is required for the prefiltering. In the enrich-
ment step, all included markers are treated equally without fur-
ther examination. This assumption leads to another key
drawback of ORA, especially for large-scale analysis, where
some risk markers may fall below the threshold and thus will
be excluded. Also, significance scores in ORA also tend to vary

considerably with small changes in overlap sizes [70]. In con-
trast, rank-based approaches account for the differences of all
markers by taking their significance as an extra input. GSEA [71]
is one typical example that first ranks all markers in the list and
then generates the enrichment score through random walk
using the weighted Kolmogorov–Smirnov-like statistic. Other
similar tools include GenGen [72] and MAXMEAN [73].
Compared with ORA, the performance of rank-based
approaches is not subject to an arbitrary threshold, but may be
heavily affected by a few highly significant markers depending
on the type of statistics applied [67].

While the first two approaches purely treat pathways as
simple sets of genes/proteins, third-generation approaches per-
form enrichment analysis in a more refined way by making the
best use of topology information. Considering that pathway
structure has long been known to be critical in biological func-
tion, topology-based approaches are believed to hold great
promise for revealing more in-depth information. One example
tool is EnrichNet [70], which generates an enrichment score for
each pathway by estimating the distance of that pathway to all
candidate genes in a network using a random walk with restart
(RAR) algorithm. A recent method, named SAFE, also takes ad-
vantage of the random walk algorithm, but uses it for functional
enrichment of the whole biological network [74]. SPIA [75] is an-
other well-known topology-based enrichment analysis tool,
which combines the evidence obtained from the classical ORA
analysis with a novel measure of the actual perturbation on a
given pathway. This family of algorithms has been recently ex-
tended in a tool called PhenoNet that accounts for topology in-
formation in both PPI networks and pathways via a two-step
procedure [76]. The majority of existing topology-based tools
are designed for transcriptomic microarray data. However,
some of them only require differentially expressed gene list as
the input, such as MetaCore (Thomson Reuters, http://www.
thomsonreuters.com) and EnrichNet [70], and thus can be dir-
ected for other enrichment purposes. In addition, these enrich-
ment methods are not only applicable to risk markers. By taking
advantage of the databases characterizing functional relation-
ship networks (e.g. STRING [77]), genetic interactions (e.g.
BioGRID [78]) or physical interactions (HPRD [79]), the risk set
can be easily extended by selectively incorporating their neigh-
bors. This extension strategy will not only help to reveal the
interaction of risk markers but also to discover other potential
genes that might participate in disease because of interaction
effects. By accounting for the topology information, the third-
generation enrichment approaches have shown better perform-
ance than those only using the pathway memberships.
However, it is worth noting that these approaches rely heavily
on the network information documented in existing databases,
which may be inaccurate, inconsistent, incomplete or not cell-
type specific. One possible solution, as proposed recently by Ma
et al. [80], is to first estimate a more reliable network by using
existing networks as priors and then perform the enrichment
analysis. However, whether this additional estimation step can
provide a more accurate and more complete network remains
to be seen, as the superior performance is only shown relative
to classical ORA approaches.

Network module identification

Module-based approaches are an alternative to enrichment
analyses, where the significance of each module is derived by
aggregating the significance of all its member markers (Figure
2B). Usually, modules are predefined through analysis of gene
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co-expression networks [81] or PPI networks [82]. For example,
both HotNet2 [83] and dmGWAS [84] map significance of single
markers onto PPI nodes and extract a list of significant subnet-
works by analyzing the topology of weighted network. In con-
trast, NIMMI [85] first constructs subnetworks of PPI based on
the Google page rank algorithm and prioritizes them by the
integrated statistics of their members.

Modules can be further examined by pathway enrichment
analysis for broader findings. With the enrichment analysis of
significant modules, Leiserson et al. [83] were able to illuminate
the critical role of the combination of rare mutations in cancer
and cross talks between cancer pathways. While these existing
studies largely focus on statistical significance of modules, an-
other potential extension will be to estimate the module-level
polygenic risk of complex disease. Instead of a gene set obtained
by thresholding GWAS results, densely connected genes within
a module are more likely to function together in a collaborative
way and exert polygenic effect toward QTs or disease status.

Marker prioritization

Another relevant topic that has been increasingly studied is pri-
oritization of GWAS results. One dominant strategy is to rank
genes based on their similarity to candidate disease genes in PPI
network. The similarity can be measured by direct neighbor-
hood relationship [86], shortest distance [87], random walk dis-
tance [88], etc. This strategy is capable of identifying novel
biomarkers that may not be collected in a specific data set. But
as a large part of disease genes remain unknown, candidate
genes with close connections to them will inevitably be
excluded if we purely rely on the similarity measures. Another
recent strategy NetWAS by Greene et al. [89] proposes to repri-
oritize the genes based on their connections with GWAS find-
ings without any prior knowledge of disease, where the whole
network topology was used as the only input in a classification
model. However, to be framed as a classification problem,
NetWAS requires an arbitrary threshold of GWAS P-values, and
its selection may affect the final reprioritization results. A

Figure 2. Common pipelines for pathway enrichment and network module identification. (A) Demonstration of three types of pathway enrichment analysis. In ORA

and rank-based methods (following the dark blue line), the pathway-level significance is based on node counts (ORA) or the significance of individual nodes (rank-

based); in topology-based methods (following the dark blue line), the topology of pathways, such as reactant and product in a single biochemical reaction, is taken into

account. (B) Demonstration of two types of network analyses. The first one (following the dark blue line) identifies the module based on the weighted network after

mapping gene/protein significance onto the node; the second one (following the light blue line) predefines the module based on the original network topology.
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regression model that can directly take the P-values or their log
transformation may yield more stable results.

Prior-guided association analyses

Similar to third-generation enrichment analyses, another ap-
proach also uses the network topology information, but in the
very first step, to generate a summary measure of each path-
way/network module. These methods significantly reduce the
dimensionality of the data, and derived scores allow for several
types of further analysis, including disease classification, re-
gression and survival prediction [90]. Pathifier [91], a tool de-
signed for microarray data, generates a principle curve for each
pathway and provides a pathway-level dysregulation score
based on the projection in the principle curve. Pathologist, a
Matlab-based tool, derives pathway-level measures by looking
at each individual interaction and deriving two metrics, ‘activ-
ity’ and ‘consistency’ scores, to estimate each interaction’s pos-
sibility to occur [92]. This algorithm has been used in a cancer
research for discovery of drug sensitivity predictors in cell lines.
Glaab et al. [93] recently provided a thorough review of various
dimension reduction algorithms used in existing pathway/
network-based classification approaches and discussed their
robustness, accuracy and biological interpretability. Compared
with enrichment analysis, this approach is particularly desir-
able for capturing joint effects among markers that would be
otherwise undetectable using methods that purely rely on the
differential performance of individual markers.

In contrast to approaches separating pathway/network fea-
ture extraction and association analysis in two steps, some re-
cent efforts have been made in advanced modeling to merge
them into one step. Most of these approaches formulate the fea-
ture selection step as an optimization problem and incorporate
the topology information of specific pathways/networks into a
so-called ‘network-constrained penalty’ such that markers with
joint effect can be detected. In a recent paper [94], a transcrip-
tomic co-expression network of 15 amyloid genes was used as a
prior to perform a bi-multivariate association analysis between
amyloid imaging measures and genetic variants. A similar ap-
proach has also been used in Li et al. [95], where molecular inter-
action networks were incorporated using a graph Laplacian
matrix. Both studies demonstrated better association perform-
ance when accounting for the topology information of prior net-
works than when simply using individual markers. With sparse
models, a group of significant subnetworks can also be gener-
ated [95]. However, these methods cannot provide pathway/net-
work-level significance toward phenotypes unless with further
examination; only one network at a time is allowed as prior.
Approaches serving this purpose are still evolving and much
less explored than previously mentioned network approaches.
Most of them are accessible as Matlab or R packages, such as
HDBIG-SCCA [94], but for best usage, some computation back-
ground is required.

Multi-omics data and integrative analysis

In previous sections, we discussed state-of-the-art network
analyses and approaches as well as their application to omics
data. A list of the tools categorized by type is shown in Table 1.
For each type of data or analytic method, network approaches
have been developed and successfully adopted. However, the
majority of work to date remains within single omics layer and
does not address the connections between multi-omic layers.
Even though pathway and network analyses use more than one

omics data type to some extent, their findings still rely primar-
ily on one single omics layer without effectively combining
them together. However, science cannot truly progress, even
with replicable significant findings, without combining together
the multi-omics data into an integrated framework as none of
the single dimensions can provide enough context or know-
ledge by themselves for full interpretation of a biological system
[99]. Particularly for large GWAS, without integrative analysis,
our knowledge of disease remains limited even if significant
genetic variations are identified, as this analysis alone cannot
tell the effects of these genetic alterations on downstream
layers.

Substantial attention has been devoted to integrative omics,
as the TCGA data release for a comprehensive and thorough
understanding of human health and disease. As a public funded
project, the TCGA provides comprehensive genomic profiles for
over 30 human tumors, e.g. genetic mutations, gene expression,
microRNA (miRNA) sequencing, etc., to help advance the dis-
covery of cancer-causing genomic alterations. A similar project
is the ICGC, an international collaborative effort that also
focuses on cancer data collection and distribution. Based on the
TCGA data, plenty of efforts have been made to integrate the
multidimensional genomic data for a comprehensive under-
standing of the underlying cancer biology. In [100], TCGA re-
searchers performed a comprehensive analysis of cervical
cancer using copy number, microRNA, mRNA and methylation
data. In addition to examining each data type individually, they
further integrated these multidimensional data and managed
to identify three subgroups with distinct molecular characteris-
tics. Similar approaches have also been applied to ovarian can-
cer [12], lung cancer [101], bladder cancer[11], etc. While these
studies primarily aim to discover multiple types of genomic
abnormalities associated with diseases, some other researchers
take advantage of the multi-omics data to search for robust
markers with evidence found in multiple omics layers [102]. In
[103], Zhang et al. examined the association between gene ex-
pression, miRNA, DNA methylation and bone mineral density.
Three genes and one miRNA were found to have consistent as-
sociation evidence in both expression and methylation data,
which suggests a consistent signal across layers. Although there
is some debate about the precision oncology initiative given
some initial trial failures [104, 105], findings from TCGA ana-
lyses have helped expand our current knowledge of cancer biol-
ogy [12, 100], and we remain positive about the potentials of
these comprehensive data sets to better understand human
disease.

The ADNI is another example project that has led the efforts
to collect multi-omics data in a human cohort with a primary
focus on AD. Specifically, ADNI has collected genomic, tran-
scriptomic and proteomic data for each individual in the study.
In addition, they also have metabolomic data and a broad range
of phenotypes available, including multimodal imaging meas-
ures and results from various clinical and cognitive assess-
ments [9]. Further, as ADNI is a longitudinal study, this data set
is still evolving and is advancing rapidly with more longitudinal
profiles. Another AD-focused project, the Imaging and Genetic
Biomarkers for AD (ImaGene), also provides a wide collection of
omics data, such as GWAS, methylation and longitudinal blood
gene expression data along with clinical, cognitive and imaging
phenotypes [106]. To promote data sharing and analysis, the
AMP-AD project (https://www.nia.nih.gov/alzheimers/amp-ad)
was recently established, and multiple omics data sets are being
incorporated into one knowledge portal to advance the integra-
tion of multi-omics studies in AD. These efforts have provided a
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global multi-omics landscape of individuals to allow studies to
begin to fully characterize AD progression in multiple layers.

Another interesting topic of integrative omics is to under-
stand the molecular interplays between different omic layers by
taking advantage of computational network approaches. For ex-
ample, Shin et al. [107] examined the effects of genetic vari-
ations on human blood metabolite networks by integrating
GWAS with metabolite network data, inferred using Gaussian
graphical models, and were able to generate nearly 100 new po-
tential SNP-metabolite/disease correlations for further biomed-
ical and pharmacogenetic assessment. Another work [108]
explored a human blood metabolome/transcriptome interface

where the between-level network was built using a thresholded
correlation matrix and confirmed the cross talk between the
biological layers at both a pathway level and a regulatory level.

Despite these progresses, computational network approaches
in integrative omics are still notably under-explored and most
studies use simple network approaches instead. While simple
network approaches are easy to implement, caution should be
taken when applying them, as their drawbacks may introduce
certain bias especially with an escalating number of markers. As
multi-omics data collection is much easier for simple model or-
ganisms, several leading groups have been working on more
advanced computational approaches for integrative analysis in

Table 1. A list of network tools for omics studies

Epistasis Features Reference

PLINK Regression based [21]
InterSNP Regression based [22]
Parallelized PLINK (FastEpistasis) Regression based; not applicable to case control analysis [24]
BOOST Regression based; high-performance tool [25]
SNPHarvester Regression based; high-performance tool [26]
SIXPAC Contrast test based; only for case control analysis; high-performance tool [32]
EPIQ Contrast test based; QT analysis; high-performance tool [33]
MDR Data mining based; exhaustive search [14]
BEAM Bayesian based [38]
Network inference

WGCNA Correlation coefficient based; generating modular networks [47]
CLR MI based [48]
ARACNE MI based; pruning out indirect edges with extra filtering steps [49]
MRNET MI based [50]
TIGRESS Regression based [51]
GENIE3 Regression based; using random forest regression [52]
iRafNet Regression based; using prior biological knowledge to narrow the search space [53]
BNFinder BN inference [55]
NAIL An integration of many state-of-art network inference methods [63]

Pathway and network analysis
WebGestalt Overrepresentation-based enrichment tool [68]
DAVID Overrepresentation-based enrichment tool [69]
GSEA Rank-based gene set enrichment tool [71]
GenGen Rank-based enrichment tool [72]
MAXMEAN Rank-based enrichment tool [73]
EnrichNet Topology-based enrichment tool; combining rank-based enrichment score [70]
PhenoNet Topology-based enrichment tool; accounting for topology information in

both PPI networks and pathways
[76]

SPIA Topology-based enrichment tool; only focus on signaling pathway [75]
HotNet2 Network module identification [83]
dmGWAS Network module identification [84]
NIMMI Network module identification [85]
GIANT Reprioritization tool; no prior needed [89]
HDBIG Topology-guided association tool; biological network as prior; performing

prediction tasks
[94]

Pathifier Topology-guided association tool; pathway as prior; reducing the feature
dimension by generating pathway-level measures

[91]

Pathologist Topology-guided association tool; pathway as prior; examining each
interaction in pathways and reducing the feature dimension by generating
pathway-level measures

[92]

Integrative analysis
PARADIGM Integrating copy number and gene expression data to estimate the activation

status of each pathway for each sample
[96]

Lemon-Tree Integrating multi-omics data for module network inference [97]
ATHENA Meta-dimensional multi-omics analysis package with both data filtering

and interaction modeling
[98]
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these systems. For example, Zhu et al. [99] estimated the causal
network between genes and metabolites in yeast using a BN
reconstruction algorithm in which genetic information, DNA–
protein binding and PPI network were used as priors. These
advanced approaches could be borrowed for multi-omics net-
work analysis of human disease. With the significant progress of
multi-omics data in human individuals, advanced network
approaches to handle more layers are expected to be developed
and implemented in future studies of human disease.

In addition to network approaches, integrative research
tools are also in urgent need to extract the most salient know-
ledge out of the multi-omics data sets. Pathway Recognition
Algorithm using Data Integration on Genomic Model
(PARADIGM) is one of the earliest tools developed for integra-
tive analysis [96]. By combining copy number and gene expres-
sion data, it takes into account different types of relationships
within pathways using a probabilistic graphical model and is
capable of providing a value for the activation status of each
pathway for each sample. In the past few years, it has been ex-
tensively applied to TCGA analyses, which have revealed sev-
eral key pathways associated with various cancers [12, 100].
Lemon-Tree [97], one recent effort in multi-omics network
analysis, has recently been expanded to allow integration of
multi-omics data for module network inference. Application
of this tool identified several novel candidate driver genes in
glioblastoma tumor. Another tool, ATHENA [98], is also dedi-
cated to comprehensive analysis of multidimensional omics
data by integrating data filtering and modeling together. In a
recent breast cancer study based on copy number alteration,
gene expression, protein expression and methylation data,
ATHENA successfully identified complex nonlinear inter-
actions across biological levels that contributed to cancer sur-
vival [109]. Despite the promising findings, these tools are far
from enough to tackle the extensive multi-omics data neces-
sary to fully understand human diseases. With the advance in
individual multi-omics data collection and the intensive at-
tention on the interplay between biological levels, integrative
network approaches will be needed to enable the discovery of
novel relationships that are causal for complex human
diseases.

Conclusion

Network approaches have generated substantial interest based
on their great potential for integrative omics analysis and are
expected to facilitate a new era of precision understanding of
complex diseases. However, this research field is still in its in-
fancy, from concepts and approaches, to databases and ena-
bling tools, with more expected in the near future. Biomedical
research appears poised to take advantage of existing network
approaches in single omics layers and soon will benefit from
emerging multi-omics methods and tools.

Considering the dimensionality and heterogeneity of the
contemporary biomedical data, a critical first step is data filter-
ing, which will be a key enabler of initial multi-omics analyses.
In this step, candidate markers from each omics layer can be ex-
tracted through traditional GWAS, statistical identification of
differentially expressed genes, epistasis, etc. This method will
significantly narrow the search space and allow further path-
way enrichment, network module identification and direct ap-
plication of the existing network inference approaches to
explore the interplays between candidate markers, as many of
existing approaches cannot yet manage large data scales.
Reprioritization of initially identified candidate markers is an

important follow-up stage, where new risk markers may be re-
vealed by evaluating their distance to candidate markers in
prior networks, e.g. PPI, gene regulatory and metabolic net-
works. It is also noteworthy that network-based prioritization
can play an essential role in replication. Replication of findings
in independent data sets is a convincing approach that has be-
come a requisite step in single biological layers [110], but will be
particularly challenging in multi-omics studies because of both
limited data availability and the nature of network modules,
which present challenges for the definition of replication. For
example, is it sufficient for replication for the same network
module to emerge with a particular gene or analyte? Network-
based prioritization, which allows partial replication as long as
markers identified in multiple data sets are closely related in
prior networks, is increasingly being adopted in systems biol-
ogy-level research. This strategy may be effective even in the
absence of independent data sets with exactly same data
modalities or measures for replication, as prioritization can
help infer different modality markers if a prior network includes
multimodal nodes, e.g. metabolic network with metabolites and
genes. In addition to statistical analysis, informative integrative
visualization of high-dimensional multi-omics networks is an-
other challenging goal where accelerated progress is needed.
Despite few extant multi-omics visualization tools, biomedical
research would greatly benefit from more powerful network
visualization tools.

Compared with traditional analysis with a focus on single bio-
logical layers, integrative multi-omics analysis is a new discipline
with much higher dimensionality and much more complexity. It
is ideally suited to the problems of complex diseases such as
most forms of AD and cancer that are polygenic and multifactor-
ial. Successful multi-omics research requires extensive collabora-
tive efforts from a wide array of scientists, including disease
experts, computer scientists, bioinformaticians, biologists and
many others. While we can make progress with existing net-
work approaches, novel methods, approaches and strategies
are emerging that can be expected to bring a better under-
standing of important and interacting biological processes
underlying complex human diseases.

Key Points

• Understanding the complex relationships among mul-
tiple omics layers rather than individual genes/pro-
teins is critical to enable a more complete view of
complex disease.

• Network approaches have generated substantial inter-
est based on their great potential for integrative omics
analysis and are expected to facilitate a new era of
precision understanding of complex diseases.

• From concepts and approaches, to databases and ena-
bling tools, integrative omics is still in its infancy, with
much more expected in the near future.

• The ability to take advantage of existing network
approaches in single omics layers is important to push
the frontier, while new multi-omics methods and tools
are in development.
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