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ABSTRACT

Objective: The aim of this work is to leverage relational information extracted from biomedical literature using

a novel synthesis of unsupervised pretraining, representational composition, and supervised machine learning

for drug safety monitoring.

Methods: Using�80 million concept-relationship-concept triples extracted from the literature using the SemRep

Natural Language Processing system, distributed vector representations (embeddings) were generated for con-

cepts as functions of their relationships utilizing two unsupervised representational approaches. Embeddings for

drugs and side effects of interest from two widely used reference standards were then composed to generate

embeddings of drug/side-effect pairs, which were used as input for supervised machine learning. This methodol-

ogy was developed and evaluated using cross-validation strategies and compared to contemporary approaches.

To qualitatively assess generalization, models trained on the Observational Medical Outcomes Partnership

(OMOP) drug/side-effect reference set were evaluated against a list of�1100 drugs from an online database.

Results: The employed method improved performance over previous approaches. Cross-validation results ad-

vance the state of the art (AUC 0.96; F1 0.90 and AUC 0.95; F1 0.84 across the two sets), outperforming methods

utilizing literature and/or spontaneous reporting system data. Examination of predictions for unseen drug/side-

effect pairs indicates the ability of these methods to generalize, with over tenfold label support enrichment in

the top 100 predictions versus the bottom 100 predictions.

Discussion and Conclusion: Our methods can assist the pharmacovigilance process using information from the

biomedical literature. Unsupervised pretraining generates a rich relationship-based representational foundation

for machine learning techniques to classify drugs in the context of a putative side effect, given known examples.

Key words: machine learning, representation learning, pharmacovigilance, unsupervised pretraining, literature based discovery

OBJECTIVE

Contemporary approaches for identifying potential on-market drug

side effects depend on aggregation of many data sources and manual

signal review.1,2 One source of information to assist this process is

the biomedical literature.3 Due to scale and complexity, this data

source necessitates robust and scalable methods.3–5 The aim of this

work is to leverage relational information extracted from the bio-

medical literature for drug safety monitoring, using a novel synthesis

of unsupervised pretraining, representational composition, and su-

pervised machine learning.
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BACKGROUND AND SIGNIFICANCE

Drug safety monitoring
Pharmaceuticals are a primary method of therapeutic intervention,

with nearly half of the US population utilizing a prescription drug in

a given month, and office, outpatient, and emergency department

visits including drug therapy in�75% or more of cases.6–9 Unfortu-

nately, pharmaceutical intervention may precipitate pharmaceutical

side effects, and adverse drug events (ADEs) are both common and

costly. The annual financial cost of drug-related morbidity and mor-

tality in the United States was estimated at 528.4 billion in 2016,

equivalent to 16% of total US healthcare expenditures that year.10

ADEs are unfortunately frequent in both hospitals11 and outpatient

settings.12 Often, adverse effects of drugs are identified after their

approval and release to market. Numerous products have been re-

moved from the market citing safety concerns,13 underscored by

high profile cases such as Vioxx (rofecoxib) and Bextra (valde-

coxib).13–15 Furthermore, a recent study found that nearly one in

three drug products approved between 2001 and 2010 had post-

market safety events, such as a label change or withdrawal, in the

years following release.16 The prevalence of these post-market safety

events is due, in part, to limitations in duration and patient cross-

section, inherent in the clinical trial process.17,18

To identify previously undetected side effects, drugs are moni-

tored for safety after market release, a process known as pharmaco-

vigilance (PV).18 PV has been primarily mediated by spontaneous

reporting systems (SRS), such as the Food and Drug Administration

(FDA) Adverse Event Reporting System (FAERS) in the United

States.19 FAERS aggregates large numbers of reports of adverse

events from clinicians, researchers, and patients, with over a million

reports received in 2014 alone.20 These data have widely acknowl-

edged limitations, however, such as reporting bias and incomplete-

ness of data.19,21–24 Consequently, detected signals mined from

FAERS require additional review for assessment of plausible causal-

ity.2,25 To assist in this, researchers have sought to improve signal

detection through algorithm development and integration of multi-

ple data sources.13,26–29 One possible data source with information

relevant to causality assessment is the biomedical literature. Indeed,

this literature is already consulted by reviewers in the PV

process.30,31 However, rapid increases in the biomedical literature

make manual review increasingly intractable.32,33 Scalable methods

to analyze this large text repository to assess potential causal links

are needed.2,32,34

Literature-based discovery
The most common approaches to leveraging the literature for PV

are based on concept co-occurrence.3,35,36 The general idea is that if

concepts co-occur with disproportionate frequency, a meaningful

statistical association exists between them. In PV, this can be lever-

aged to mine literature for enriched associations between drugs and

potential ADEs.3 At times, constraints are placed upon these co-

occurrence relationships, such as recognition of a causality assertion

using natural language processing (NLP),37 or identification of a

medical subject heading (MeSH) term indicating an adverse event.38

Terminological mapping and expansion can be used to enhance sig-

nal detection within these constraints.37,38 Regardless of constraints

or enhancements, explicit co-occurrence between a drug and a side

effect within a unit of text is a prerequisite for signal detection.

Concepts in the literature may also be related to one another im-

plicitly—in some cases exclusively so. Direct co-occurrence models

miss these hidden connections. Swanson’s seminal work on

literature-based discovery (LBD) demonstrated that these indirect

connections between concepts can reveal relationships that are both

biomedically plausible and therapeutically useful.4,39,40 On the basis

of their co-occurrence with shared bridging concepts, Swanson iden-

tified fish oil as a potential therapeutic for Raynaud’s Disease, a

finding later supported by a clinical trial.39,41 This form of transitive

inference, originally envisioned to discover treatments, can also be

applied to identify side effects.42 Traditionally, LBD is accomplished

by identifying chains of directly co-occurring terms,35 a computa-

tionally expensive task on account of the combinatorial explosion of

possible bridging terms.4 Perhaps more importantly, such methods

do not examine structured relational information—which is to say

that the nature of the relationships between concepts is not consid-

ered. How concepts relate to one another is of particular interest

when assessing the biological plausibility of putative associations.

Auspiciously, large amounts of explicitly structured relational in-

formation have been extracted from the biomedical literature using

NLP. For example, the semantic knowledge representation (Sem-

Rep) system extracts concept-relationship-concept assertions (eg

drugA: treats: diseaseB), known as semantic predications.43 Operat-

ing over MEDLINE citations, SemRep extracts on the order of tens

of millions of semantic predications. Drawing inference from this re-

lational information is still challenging, as step-wise exploration of

the entire logical connection space is also computationally

intractable.36 Consequently, methods that limit the search space us-

ing relational constraints,42,44 and/or some form of matrix factoriza-

tion,34,45–48 have been developed to utilize this information at scale.

Discovery patterns are one way of limiting the search space ex-

amined when considering explicit relational information.44,47,49

This approach operates on the premise that some relational path-

ways will be more enriched for a particular implicit relation than

others. For example, when looking for an implicit therapeutic rela-

tionship, enrichment might be expected along pathways in which a

stimulated process is inhibited in a disease pathway (or vice versa).44

Although these can be determined a priori, we have also developed

methods to infer such discovery patterns from positive examples of

a relationship of interest.44,47 Discovery patterns have successfully

been used to examine the role of insulin in Huntington’s Disease44

and to identify or explain other therapeutic relationships,47,50–52 as

well as ADEs.53 In these methods, restrictions are placed on bridging

concepts in terms of semantic type, semantic relationship, or a com-

bination thereof. Consequently, these methods do not consider all

possible relational connections between concepts—they are re-

stricted in their considerations by design.

Another approach to PV has been the use of supervised machine

learning models trained on manually engineered features alongside

curated reference standards of positive and negative examples of

drug/ADE pairs.37,54,55 Feature vectors may incorporate informa-

tion from the literature in the form of co-occurrence or dispropor-

tionality measures, with signal enhancement via mapping and

expansion of terms.37,38 Alternatively or additionally, information

from a variety of ontological and structured data sources may be uti-

lized.54,56,57 For example, a study examining the use of a support

vector machine for ADE classification utilized 4276 total pheno-

typic, biological, and chemical features extracted from four online

databases.54 However, manual feature engineering is a laborious

process that constrains the extension of the methods to other data

sets.58,59 In other domains, methods have been proposed and

deployed that obviate the need for manual feature engineering by

learning representations of data in an unsupervised manner.59–61

This unsupervised representational pretraining has resulted in better
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performance and generalizability in numerous tasks, such as image

and speech recognition.59–62

Representation learning
In our previous work, we have used representation learning for

PV.53,63,64 Representations of drug/ADE pairs were derived from

SemRep output using a method termed predication-based semantic

indexing (PSI),47,65,66 which uses reversible vector transformations

to encode the nature of the relationships between concept pairs. Ini-

tial results were promising, illustrating several advantages of this

encoding scheme, including: (1) compressed representation of large

amounts of relational information; (2) mediation of analogical infer-

ence;67 and (3) facilitation of downstream machine learning.63,64

This paper moves beyond our previous work by supplanting PSI

with a recently developed neural-probabilistic representational ap-

proach for semantic predications—called embedding of semantic pred-

ications (ESP)64—with inclusion of additional reference standards;

comparison with recently published results; visualization to interro-

gate the underlying representations; and an evaluation of generaliza-

tion to previously unseen drugs. Our hypotheses were that ESP would

offer advantages over PSI as a representational basis for machine

learning; that considering implicit relationships would improve the

performance of literature-based models; and that trained models could

be used to identify side effects of previously unseen drugs.

METHODS

Knowledge source
Predications were downloaded from SemMedDB, version 25.1.,68

containing 82 239 652 predications extracted by SemRep from

25 027 441 MEDLINE citations available before 2016.

Unsupervised pretraining
Concept embeddings were generated utilizing ESP, implemented in

the open source semantic vectors package.64,69 In brief, ESP is a rep-

resentation learning technique that generates semantic concept

embeddings from semantic predications, with advantages over PSI

in some predictive modeling experiments.64 In both PSI and ESP,

high-dimensional (on the order of thousands of dimensions) binary

vectors are generated consistent with the binary spatter code (BSC),

one of a family of representational approaches developed to mediate

symbolic operations (eg variable-value binding) on connectionist

representations.70–73 As deployed in ESP and PSI, the pairwise

exclusive-OR (XOR) operator, represented by �, is applied to bind

randomly initialized context embeddings (denoted C, and represent-

ing both predicates and their arguments) together, providing a basis

for the generation of semantic concept embeddings (denoted S) using

predications in SemMedDB. An example is shown in Figure 1 to

give intuition for this training process. In PSI, bound products, each

representing a predicate-argument pair, are superposed to generate

concept embeddings. In ESP, this superposition occurs during the

course of training a neural network to predict the object of a predi-

cation, given the subject and predicate. The mathematical differen-

ces between how this process is accomplished in ESP and PSI are

briefly covered in the Supplementary Appendix, but for a more de-

tailed account of these approaches, we refer the interested reader to

Cohen and Widdows64 and Widdows and Cohen66 respectively. In

this research, we generated two sets of concept embeddings: ESP

vectors using the parameters detailed in Cohen and Widdows64 and

PSI vectors using the same parameters as in Mower et al.,63 both at

32 000 dimensions and utilizing SemMedDB version 25.1, consis-

tent with previous work.

Generation of composite feature vectors
After concept embeddings were trained, representations for drug/

ADE pairs were composed by binding (�) concept embeddings for

the drug and ADE concerned. The resulting drug/ADE pair vectors

will be similar when composed from similar vector representations.

For example, the vector (myocardial infarction)�(celecoxib) would

be similar to (myocardial infarction)�(rofecoxib), if both drugs oc-

cur in the predication (*coxib):: INHIBITS:: cox-2. This combina-

tion of trained semantic vectors also reveals ways in which two

component concepts are related.53,63 For example, if (ibupro-

fen)þ¼(TREATS)�(PAIN) and (arthritis)þ¼(CAUSES)�(PAIN),

the composition (ibuprofen)�(arthritis) will be similar to

(TREATS)�(CAUSES),1 indicating that ibuprofen treats something

caused by arthritis. Figure 1 shows this composition in a simple

case. In practice and at PubMed scale, these compositions contain

many such relational “pathways,” resulting in an abstract relational

embedding.

For this analysis, vector representations were composed for each

drug/ADE pair in the Observational Medical Outcomes Partnership

(OMOP) and Exploring and Understanding Adverse Drug Reactions

(EU-ADR) manually curated reference sets.1,74 The OMOP set con-

tains 165 ground-truth positive and 234 ground-truth negative

examples across four ADEs: myocardial infarction (MI), gastrointes-

tinal bleeding (GIB), liver injury (LI), and kidney injury (KI). Exam-

ples containing two drugs (darunavir and sitagliptin) without

embeddings in the vector spaces used in this analysis were removed

(n¼5), leaving 394 examples (164 positive and 230 negative cases).

The EU-ADR reference set contains 94 total examples across 10

ADEs (the four OMOP ADEs and six others). The only unresolved

example removed was the positive example pair nimesulide-LI. Ex-

cept for cardiac valve fibrosis, each ADE is comprised of both posi-

tive and negative examples. All ADE terms were either identical to

the OMOP set, or extracted from the Supplementary Appendix of

Coloma et al.74 A single term was used per ADE—no terminological

expansion was performed.

Training and cross-validation
For supervised machine learning, the composite feature vectors were

labeled according to their ground-truth assertion in the OMOP or

EU-ADR reference set. Experiments were performed using sci-kit

learn version 0.19.075 and the Anaconda distribution of Python ver-

sion 3.6.1.76 We trained k-nearest neighbors (kNN) and logistic re-

gression (LR) models in leave one out (LOO) and stratified 5-fold

(S5F) cross-validation (CV) configurations. kNN was chosen, as rep-

resentations should be amenable to nearest neighbor approaches

(since the classification mechanism is distance based). LR was cho-

sen as a parametric linear model that scales comfortably to large

data sets. LOO was chosen to generate results comparable to other

research on these standards, and S5F was chosen as a more challeng-

ing CV configuration for comparison to LOO and previous work.

kNN was deployed with 1, 2, 5, and 10 nearest neighbors. For LR,

L1 regularization was utilized with default parameters. To assess

performance, F1 scores and receiver operating characteristic (ROC)

1 As XOR is its own inverse, the vector representation of

“PAIN” cancels out from the bound product

(PAIN)�(PAIN)�(TREATS)�(CAUSES), leaving (TREATS)�(CAUSES).
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area under the curve (AUC) metrics were computed on held-out vali-

dation sets, both within (within-set) and across (across-set) reference

sets (Figure 2), as well as within the union of the two sets. For over-

lapping drug/ADE pairs in combined CV and across-set CV, seven

duplicate pairs were removed before CV.

Visualization
To achieve a low-dimensional approximation of the data set for vi-

sual interrogation, t-distributed stochastic neighbor embedding

(tSNE)77 was used with a learning rate of 200.0 and perplexity of

30. Pairs in this low-dimensional space were labeled according to

the ADE they were composed with and according to their ground-

truth assertion in their reference set of origin.

Generalization
For generalization assessment, a list of drugs was downloaded

from the side-effect database SIDER, version 4.1, containing 1430

drugs.78,79 Drug/ADE pair representations for each of the drugs resi-

dent in our vector spaces were composed for each of the four

OMOP set ADEs, which we selected as cues for prediction because

the OMOP set provides sufficient positive and negative examples to

derive a robust model for each of them. Pairs included in the OMOP

set were removed, as were pairs contained in the high-performance

subset of the MEDication Indication resource (MEDI) database,80

to prevent inadvertent recovery of therapeutic relationships. After

removal of MEDI indications and reference set pairs, the final num-

ber of unique drug/ADE pairs derived from SIDER for MI, GIB, KI,

and LI were 1138, 1186, 1150, and 1155, respectively. After train-

ing a LR model on the full OMOP set (with identical configuration

to CV experiments), we rank-ordered its predictions on the SIDER-

derived test set. The top 10 predictions for each ADE were then

manually evaluated by searching FDA and/or United Kingdom

(UK)/European Medicines Agency (EMA) drug labels. Additionally,

for every drug/ADE pair, we mined the extracted label information

contained in SIDER to assess whether highly ranked predictions

Figure 1. Example schematic of binding, bundling, and composition of representational vectors. In the top pane, random instantiation of context embeddings is

shown. In the middle pane, binding (pairwise exclusive OR) and bundling (majority rule with ties split at random) of predicates and concepts relating to ibuprofen

is depicted, resulting in a semantic vector for ibuprofen. In the bottom pane, a composite representation of the concept pair ibuprofen/arthritis is created using

the same binding operator (as it is its own inverse) with the semantic vector for arthritis. The result is a vector approximating the representation of the relational

pathways that link these concepts together, which in turn serves as the input vector for downstream machine learning applications. Gray boxes indicate a tie split

at random (with a 0.5 probability of 1) when bundling. In this example, collisions between concepts occur in lower dimensions (where two vector embeddings

have the same representation for different concepts). In practice and at high dimensions, random splitting of ties and collisions are exceedingly unlikely to occur,

and concepts (and their relational pathways) are distinct.

Figure 2. Cross-validation (CV) configurations. Training sets are illustrated in white with black text. Held-out test sets are shown in black with white text. In within-

set configurations, one of five (S5F) folds is illustrated.
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from our models were more likely to be mentioned in drug labels

(to the extent the NLP-derived information available in SIDER is

accurate) than lower ranked predictions. For this mining, a dictio-

nary of several synonyms for each of the four ADEs (full list in Sup-

plementary Appendix) was used to determine if SIDER had mined

an association between a given drug/ADE pair. However, and as

noted previously, drug terms were not expanded. Figure 3 provides

a visual overview of the current research.

The code and data required to reproduce these experiments is

available at https://github.com/jusger/ADEClassifier-RepLearnML.

RESULTS

Cross-validation performance
The results of our experiments across CV configurations are shown

in Table 1 (F1 scores). Table 2 presents ROC AUC and F1 metrics

for both the OMOP and EU-ADR reference standards for ESP-LR

LOO and PSI-LR LOO configurations alongside results from prior

research.38,63

Comparison between ESP and PSI
ESP-based models perform better than PSI-based models in LR con-

figurations. However, this is not the case with kNN configurations,

a finding consistent with previous research.64 With ESP, LR models

improve upon kNN performance in all comparisons between them

(Table 1),2 providing the best overall performance. Across models,

cross-set LR performance was lower than within-set CV perfor-

mance but was best preserved with ESP-based models. In examina-

tion of Table 2, PSI-LR has the highest AUC for GIB results on the

OMOP set, but ESP generally performs more consistently and with

higher performance than PSI-based models across ADEs and refer-

ence standards, improving up to 0.11 in AUC over PSI on the EU-

ADR reference set.

Comparison with prior methods
As shown in Table 2, ESP-based LR generally performs better on

this set than the best results reported using generalized enrichment

analysis (GEA).38 GEA is of interest as a point of comparison, as it

also leverages the biomedical literature, but differs in methodology.

Winnenburg and Shah utilized GEA to detect signal from MED-

LINE indexed information using terminological expansion at vary-

ing levels of abstraction to increase signal strength by mapping

drugs and ADEs to related concepts.38 On an ADE-by-ADE basis,

ESP improves performance over GEA on MI and KI AUCs (0.765 to

0.979 and 0.929 to 0.947, respectively). Additionally, the best over-

all F1 score for any individual GEA model (that is, with all side

effects at the same level of terminological expansion) reported by

Winnenburg and Shah is 0.8 on the OMOP reference standard.38 In

contrast, ESP-based LR models attain a 0.901 F1, a 12.5% improve-

ment.

Recent research presented by Voss et al.37 provides another point

of comparison. Their method utilized supervised machine learning

(regularized linear regression), with classifiers trained on a range of

manually engineered features integrated from multiple sources, in-

cluding the biomedical literature, assertions extracted from it with

SemRep, FAERS data, and pharmaceutical product labels.37 These

authors report AUCs for the full OMOP set only (without per ADE

results), with a best overall AUC of 0.94 (compared to ESP-LR’s

0.96 AUC), and no F-metrics reported. When rounded to the same

precision, Voss et al.37 and ESP present identical AUCs (0.92) for

the EU-ADR reference set. Voss et al.37 also present AUCs for sub-

sets of SemMedDB information, which have greatly diminished per-

formance (0.57-0.59 AUC) when compared to ESP or PSI models

(0.809-0.960 AUC).

Figure 3. Schematic overview. Input data from SemMedDB are processed and then encoded into a distributed vector space as described in Unsupervised Pre-

training. Composite vectors for Drug/ADE pairs are then generated from this vector store as described in Generation of Composite Feature Vectors. These vec-

tors are visualized with tSNE as described in Visualization. The composite vectors are analyzed by labeling them as positive or negative according to the ground-

truth assertion in the respective reference standards, and then machine learning is deployed as described in Training and Cross-validation and Generalization.

2 Although not shown, ESP models of lower dimensionality perform

similarly to results reported in previous work examining PSI[63] and

ESP,[64] with PSI requiring higher dimensionality than ESP to retain

its performance.
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Visualization of composite feature vectors
A tSNE plot for ESP-derived composite representations of drug/

ADE pairs in the OMOP and EU-ADR reference standards is shown

in Figure 4. Separation in the reduced dimensional space appears to

first occur based on side effect, and within ADE specific clusters,

there is some localization of ground-truth positive pairs (dark/satu-

rated) versus ground-truth negative (light/pastel) pairs. The EU ref-

erence standard also shows clusters specific to side effects, with EU-

ADR clusters for conserved ADEs co-localizing, while ADEs unique

to the EU-ADR reference occupy disparate regions.

Table 1. Cross-validation Performance (F1 scores). Results from LOO and S5F CV configurations are shown. OMOP is presented in internal

CV in the first section, followed by EU-ADR, and finally the combined grouping of OMOP with EU-ADR, in which one set is used for training

and the left out set for testing. Results presented throughout the table are the averageþ/� 2 times the standard deviation over 100 runs

with random assignment to CV partitions on each run. The best results for each CV configuration are shown in boldface.

OMOP

Model ESP S5F F1-Score ESP LOO F1-Score PSI S5F F1-Score PSI LOO F1-Score

kNN 1 0.839 þ/� 0.017 0.852 0.846 þ/� 0.018 0.855

kNN 2 0.848 þ/� 0.024 0.869 0.875 þ/� 0.021 0.890

kNN 5 0.793 þ/� 0.022 0.804 0.840 þ/� 0.021 0.852

kNN 10 0.766 þ/� 0.023 0.771 0.821 þ/� 0.020 0.835

Logistic Regression 0.895 1/2 0.020 0.901 1/2 0.012 0.835 þ/� 0.035 0.848 þ/� 0.013

EU-ADR

kNN 1 0.658 þ/� 0.070 0.660 0.730 þ/� 0.056 0.760

kNN 2 0.620 þ/� 0.085 0.675 0.620 þ/� 0.086 0.667

kNN 5 0.550 þ/� 0.081 0.587 0.618 þ/� 0.092 0.704

kNN 10 0.486 þ/� 0.116 0.200 0.491 þ/� 0.135 0.203

Logistic Regression 0.834 1/2 0.066 0.841 1/2 0.017 0.662 þ/� 0.098 0.745 þ/� 0.028

EU-ADR 1 OMOP (Combined Internal)

kNN 1 0.798 þ/� 0.020 0.804 0.814 þ/� 0.022 0.827

kNN 2 0.810 þ/� 0.026 0.835 0.821 þ/� 0.026 0.832

kNN 5 0.753 þ/� 0.024 0.768 0.790 þ/� 0.021 0.807

kNN 10 0.725 þ/� 0.023 0.735 0.780 þ/� 0.023 0.784

Logistic Regression 0.886 1/2 0.021 0.911 1/2 0.009 0.812 þ/� 0.028 0.788 þ/� 0.030

Train Set Test Set Vector Base F1 Score Model

OMOP EU-ADR ESP 0.721 1/2 0.049 LR

EU-ADR OMOP ESP 0.626 1/2 0.018 LR

OMOP EU-ADR PSI 0.331 þ/� 0.059 LR

EU-ADR OMOP PSI 0.521 þ/� 0.020 LR

Table 2. Receiver operating characteristic area under the curve (AUC) and F1 comparisons across OMOP and EU-ADR reference sets. For

GEA, three abstraction (eg term expansion) levels are given, where higher values indicate more term expansion. GEA covers�95% of refer-

ence drug/ADE pairs. For Voss et al., the combined performance of nine predictive features is shown alongside performance for individual

predictive features of clinical trial (CT) and case report (CR) subsets of SemMedDB information. Voss et al. covers�80% of drug/ADE pairs.

ESP and PSI are presented in logistic regression leave one out cross-validation configurations, showing the averageþ/- 2 times the stan-

dard deviation over 100 runs. ESP/PSI models cover�99% of drug/ADE pairs. Shaded cells indicate results were not reported. The best

results for each metric are shown in boldface. *indicates results as reported in previous work.37,38

OMOP EU-ADR

MI AUC GIB AUC LI AUC KI AUC Overall AUC Overall F1 Overall AUC Overall F1

GEA 4.5-7* 0.765 0.887 0.906 0.929 0.76

GEA 7-10* 0.692 0.972 0.93 0.845 0.80

GEA 1.5-5* 0.70

Voss et al.

Combined*

0.94 0.92

Voss et al.

SemMedDB CT*

0.58 0.57

Voss et al.

SemMedDB CR*

0.58 0.59

ESP-LR LOO 0.979 1/-

0.004

0.934 þ/-

0.008

0.920 þ/-

0.005

0.947 1/-

0.005

0.960 1/-

0.002

0.901 1/-

0.012

0.918 1/-

0.006

0.841 1/-

0.016

PSI-LR LOO 0.960 þ/-

0.008

0.978 1/-

0.007

0.825 þ/-

0.015

0.945 þ/-

0.008

0.946 þ/-

0.004

0.848 þ/-

0.013

0.809 þ/-

0.015

0.742 þ/-

0.025
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Generalization to unseen drugs

The top 10 rank ordered LR-ESP predictions for approximately

one thousand previously unseen drugs from the SIDER database

for each of the four ADEs are shown in Table 3, with label infor-

mation and additional comments from manual review. URLs for

labels consulted for each drug can be found in the Supplementary

Appendix.

Support was found for 37 of the 40 top-ranked predictions, in-

cluding the high-profile association between rofecoxib and MI. This

corresponds to a mean precision at k¼10 of 0.925 across ADEs.

Two of the three remaining predictions were related to the side ef-

fect in question: isosorbide dinitrate is typically used to treat coro-

nary artery disease, but abrupt cessation can cause myocardial

infarction in physically dependent patients; and although label infor-

mation was unavailable for oral Suprofen, literature evidence does

exist supporting an association with GIB.83 In the case of amlodi-

pine, while no label information was present, disproportionality

measures on FAERS data (as seen in Table 3) meet criteria for fur-

ther investigation specified by Evans et al.82 when defining the pro-

portional reporting ratio (PRR), a statistical measure adopted by the

FDA to aid PV.84

Figure 5 shows a comparison of top-ranked predictions versus

low-ranked predictions for all four OMOP set side effects at vari-

ous ranks in terms of label support, as found via matching to

NLP-mined product label information contained in the SIDER

database. Seventy-two of the top 100 ranked drug/ADE pairs had

label support; seven of the bottom-ranked 100 drug/ADE pairs

had label support. This trend is diminished as more drugs are con-

sidered, with 469 out of the top 1000 drug/ADE pairs having la-

bel support compared with 107 drug/ADE pairs in the bottom

1000. Generally, the higher a drug/ADE pair is ranked by our

method, the greater the chance SIDER will contain label informa-

tion connecting that drug to that ADE.

DISCUSSION

Advantages over existing co-occurrence methods
When compared to existing methods, such as those presented by

Winnenburg and Shah38 and Voss et al.,37 ESP- and PSI-based mod-

els presented here have several advantages. With respect to perfor-

mance, our results set the state of the art on the OMOP reference

standard, and are equal to those reported by Voss et al.37 on the EU-

ADR standard. Furthermore, in contrast to previously published

methodologies (such as those described in37,38) that operate on ex-

plicit drug/ADE co-occurrence events, our method presented here

does not require co-occurrence for drug/ADE pairs (eg no direct co-

occurrence is required in SemMedDB to generate performant mod-

els). Rather, the distributed representations upon which our models

depend carry information concerning drug mechanisms and disease

pathophysiology (among other constituents), information that can

be leveraged for downstream supervised machine learning. Conse-

quently, our methods may be better positioned to detect emerging

side effects, which have yet to be described in detail in the literature.

Additionally, our approach does not require terminological ex-

pansion on account of the representational pretraining offered by

ESP/PSI. As similar concepts have similar vectors, there is no need

for expansion or cross-linking of concepts (eg mapping drugs to

their active ingredients). In GEA, this expansion plays a pivotal role,

as in order to achieve optimal performance, an optimal degree of

term expansion abstraction for each side effect must be identified (a

process that requires labeled training data).38 This tuning is impor-

tant, as there is not a consistently best performing level of abstrac-

tion across the OMOP reference standard for GEA. In contrast,

ESP-based L1 logistic regression models are trained using labeled

training data and MEDLINE-indexed information, but without re-

course to term expansion. This becomes especially important for

coverage and signal enhancement. For example, results in Table 2

are not strictly comparable, as only a subset of around 80% of each

Figure 4. A tSNE plot of the compositional drug/ADE pair embeddings generated from the unsupervised pretraining step with ESP. Conserved ADE examples be-

tween the EU-ADR and OMOP reference standards (indicated by black legend bar) localize together in their respective ADE spaces. Despite the highly com-

pressed representation, some delineation between positive (dark/saturated glyphs) and negative (light/pastel glyphs) spaces can be seen.
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Table 3. Rank-ordered predictions derived from training on the full OMOP set and testing on a list of unseen drugs derived from the SIDER

resource. For drugs with readily available information found in the FDA label, only the FDA label information was considered. For drugs

without availability in the United States, UK/EMA label information was assessed. Suprofen was discontinued, and label information was

unavailable for qualitative analysis; comments are speculative. Only amlodipine did not have support on the label for the predicted ADE

(kidney injury).

Myocardial Infarction

Drug Product Label Comments

Naproxen On FDA Label

Ibuprofen On FDA Label

Hydralazine On FDA Label In “overdosage” section; myocardial ischemia leading to myocardial infarction; angina pectoris /

tachycardia in “adverse reactions” section

Isosorbide Dinitrate Not on label as adverse effect Usually used to treat angina pectoris due to coronary artery disease; warning for those with MI

or congestive heart failure to avoid tachycardia and hypotension; abrupt cessation of nitrates

causes acute MI in those with physical dependence

Rofecoxib On FDA Label Withdrawn from market in 2004 over concerns of acute MI

Etoricoxib On UK/EMA Label Not available in United States

Diclofenac On FDA Label

Tenoxicam On UK/EMA Label Not available in United States

Meloxicam On FDA Label

Mefenamic Acid On FDA Label

Gastrointestinal Bleed

Drug Product Label Comments

Tenoxicam On UK/EMA Label Not available in United States

Rofecoxib On FDA Label

Etoricoxib On UK/EMA Label Not available in United States

Diclofenac On FDA Label

Aspirin On FDA Label

Celecoxib On FDA Label

Mefenamic Acid On FDA Label

Parecoxib On UK/EMA Label Not available in United States

Acenocoumarol On FDA Label

Suprofen N/A Discontinued; oral tablet may have caused GIB similar to other NSAIDs; ophthalmic solution un-

likely

Liver Injury

Drug Product Label Comments

Pravastatin On FDA Label

Atorvastatin On FDA Label

Fluvastatin On FDA Label

Pentoxifylline On FDA Label

Lovastatin On FDA Label

Simvastatin On FDA Label

Pirfenidone On FDA Label Elevated enzyme levels

Ticlopidine On FDA Label

Sorafenib On FDA Label

Rosuvastatin On FDA Label

Kidney Injury

Drug Product Label Comments

Tenoxicam On UK/EMA Label Not available in United States

Flurbiprofen On FDA Label

Quinapril On FDA Label

Nabumetone On FDA Label

Amlodipine Not on label as adverse effect Only connection via FDA label is that of affecting urine output; additionally, no contraindication

with renal impairment; however, calculating metrics on FAERS data through 2018-01-12

yields PRR ¼ 3.11, X2 Yates ¼ 3633.48, p<.0001, and 2704 reported cases,81 meeting criteria

for further investigation82

Rofecoxib On FDA Label

Etoricoxib On UK/EMA Label Not available in United States

Benazepril On FDA Label No discontinuation of the product, but elevated levels of serum creatinine and blood urea nitro-

gen

Perindopril On FDA Label

Cilazapril On UK/EMA Label Not available in United States

1346 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 10



reference standard was available in Voss et al.,37 and 94 % to 95%

in the GEA analysis (depending on mapping level),38 compared

to�99% for our methods. Not only does our method perform better

on the OMOP reference standard, but we also maintain greater cov-

erage, as we do not require sizeable direct associations for detectable

signal. The capacity for accurate prediction without direct co-

occurence is further indicated by the stark difference in performance

between Voss et al.’s use of SemMedDB-derived information and

our models. That ESP-based models perform better overall than

GEA (with a substantial improvement on MI-related side effects in

particular) and match or exceed the performance documented by

Voss et al.37 using SemMedDB features supports the hypothesis that

considering implicit relationships can enhance the performance of

literature-based PVmethods.

ESP and PSI with machine learning
Although previous research showed that with the simple algorithm

of kNN classification, PSI performed better on this classification

task than did ESP, additional machine learning approaches had not

been evaluated using ESP prior to the current research.64 While our

results with kNN mirror those reported previously, with L1 LR, ESP

demonstrates significantly increased performance on the majority of

OMOP ADEs, overall on OMOP, and on the EU-ADR standard. At

times, the improvement is as much as 14%. This advantage may be

due to ESP’s enhanced capacity for similarity-based inference rela-

tive to PSI.64 With more consistent and better overall performance,

our findings support the hypothesis that ESP offers advantages over

PSI as a basis for supervised machine learning.

Of note, OMOP results are better than EU-ADR results for both

PSI and ESP models. We suspect this is likely due to a smaller ADE

space (four in OMOP versus 10 in EU-ADR) and more examples per

ADE for the OMOP reference set. This may also explain the larger

degradation in performance of kNN at larger k in EU-ADR results

relative to OMOP results. Such results suggest performance is con-

tingent upon availability of sufficient numbers of training examples

for each side effect of interest, further evidenced by diminished per-

formance when training and testing are split across reference stand-

ards with only partially overlapping side effects.

Visualization and generalization
Although relative cluster size, density, and inter-cluster distances are

not especially meaningful in tSNE diagrams, clusters themselves are

likely to represent underlying data set structure.85 When examining

the tSNE plot for drug/ADE pairs for the OMOP and EU-ADR ref-

erence sets, the intra-ADE clustering of positive examples versus

negative examples explains the utility of these compositional distrib-

uted representations as a basis for supervised machine learning with

simple algorithms—in many cases, it is possible to discern a likely

classification boundary, even with reduction to two dimensions.

This observation, together with the clustering by side effect, explain

the reduction in performance when attempting to generalize to pre-

viously unseen ADEs, as these classification boundaries would be lo-

cated within ADE-specific clusters. In contrast, as both OMOP and

EU-ADR drug/ADE pairs colocalize for synonymous ADEs, this

tSNE plot does support the hypothesis that trained models may gen-

eralize to previously unseen drugs paired with previously seen

ADEs.

Figure 5. Comparison of the proportion of highest- and lowest-ranked drug/ADE pairs for label support in SIDER, as indicated by a match between a drug and a

small list of ADE terms (see Supplementary Appendix) in ADE label information extracted from the SIDER database. Dark bars denote the proportion of top-

ranked predictions that have support, and light bars denote the proportion of bottom (lowest)-ranked predictions that have label support. For example, the left-

most bar indicates both the proportion of the top 10 ranked predictions that have label support (dark bar), and the proportion of the bottom 10 predictions that

have label support (light bar). Moving left to right in the figure, the number of ranked pairs considered increases from 10 up to 1000 top- and bottom-ranked drug/

ADE pairs in increments of 10. In total, the graph represents the top�20% (1000 of 4629 total drug/ADE predictions) and bottom�20% of all predictions.
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With this in mind, our generalization analysis looked only at the

four ADEs in the larger OMOP reference standard. On qualitative

assessment, results appear very promising, with�93% of the top-

ranked drug/ADE pairs having some form of label support. Further-

more, in the case of amlodipine for KI, there is some indication that

this may be a previously unrecognized side effect, as though label in-

formation is absent, and the association is consistent with results

from a disproportionality analysis of FAERS data. In addition, a

coarse-grained quantitative analysis of the proportion of predictions

at different ranks that correspond to drug/ADE relationships

asserted in the NLP-derived SIDER database showed a 10-fold in-

crease for the top 100 ranked predictions as compared with the bot-

tom 100 ranked predictions. While this suggests a considerably

lower precision at k¼100 (of 0.72) than our manually evaluated

precision at k¼10 (of�0.93), there is some indication that ostensi-

ble false positive relationships (ie relationships not in SIDER that

are highly ranked) may constitute side effects missing from SIDER

on account of NLP errors. For example, in the case of hydralazine,

our mining of SIDER for a link to MI returns false, yet in the quali-

tative assessment, information can be found that strongly links hy-

dralazine to MI. Others may be as-yet unrecognized side effects, as

suggested by qualitative analysis in the case of amlodipine/KI. These

findings support the hypothesis that trained models can generalize

to unseen drugs when adequate training data for an ADE are

available.

Limitations
The most prominent limitations to this work exist in the generaliza-

tion analysis. The qualitative analysis covers only a small portion of

drugs queried, and the coarse-grained quantitative analysis of min-

ing SIDER-extracted label information is challenged by limitations

in recall and precision for the NLP that generated the information in

SIDER, and by our ability to mine such assertions, which required a

small amount of terminological mapping (the Supplementary

Appendix contains the set of terms queried for each ADE). Addition-

ally, 337 drugs from SIDER did not have a direct string match in

our vector stores, and required manual mapping, which resolved all

but 138 (�9.7%). Using SIDER as a point of comparison in this

way requires the very terminological mapping and expansion that

we seek to mitigate or obviate with our methods here. As such, we

still see tremendous value for terminological mapping and abstrac-

tion methodologies to aid and guide further research, and permit in-

tegration of observational data sources with our methods as they

evolve.

Additionally, a number of therapeutic indications were removed

from consideration during the generalization task; as the mecha-

nisms of drugs in treating or causing a particular effect may overlap,

it seems likely that our models will at times recover therapeutic indi-

cations instead of side effects. As these entities can be readily and au-

tomatically removed using existing reference stores in a PV pipeline,

such as the MEDI resource (as done here), we consider this a minor

limitation. Finally, as with other supervised machine learning

approaches, additional labeled training examples are likely to in-

crease scope and generalization performance across reference sets

and to unseen pairs. However, manual curation of these examples

would require significant, continued human effort in this domain.61

Future work
An important direction for future work concerns the evaluation of

our methods using the time-delimited reference standard provided

by Harpaz et al.,86 which will permit assessment of their perfor-

mance for emerging side effects;87,88 estimation of their impact on

public health (manifesting as earlier ADE detection); and evaluation

of the hypothesis that leveraging implicit relationships permits ear-

lier detection of drug/ADE relationships than is possible with meth-

ods requiring explicit drug/ADE co-occurrence. Expanding our

models with additional data sources, such as spontaneous reporting

data, is another area left for future work. Additionally, it may be the

case that incorporating therapeutic indications as negative examples

in the training set eliminates the need for post-process removal of

indications using a reference such as the MEDI resource, a direction

we have yet to explore.

CONCLUSIONS

CV performance utilizing the approaches presented here exceeds

that reported previously, even accounting for methodologies incor-

porating information from the literature, SRS, drug product labels,

and/or additional sources, such as those used by Voss et al. and Win-

nenburg and Shah.37,38 These results indicate that ESP-derived rep-

resentations provide a basis for robust performance without

terminological expansion, with advantages over our previous ap-

proach (PSI) as a basis for machine learning, given a suitable super-

vised learning algorithm. While performance is influenced by the

availability of examples to develop a robust model for each ADE,

trained models can generalize to previously unseen drugs, as indi-

cated by the evidence supporting predictions for the four ADEs in

the OMOP set. As these methods leverage implicit relationships, we

view them as complementary to existing approaches based on ex-

plicit co-occurrence in the literature and other data sources such as

FAERS. Of note, our methods produce state-of-the-art performance

on two widely used reference standards utilizing literature-derived

relational information only. It seems likely that their integration as a

component of an ensemble of PV signal detection methods would

further improve performance, as has been the case in prior evalua-

tions of multimodal signal integration.27,37,89
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