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Abstract.—The analysis of hybridization and gene flow among closely related taxa is a common goal for researchers studying
speciation and phylogeography. Many methods for hybridization detection use simple site pattern frequencies from observed
genomic data and compare them to null models that predict an absence of gene flow. The theory underlying the detection
of hybridization using these site pattern probabilities exploits the relationship between the coalescent process for gene
trees within population trees and the process of mutation along the branches of the gene trees. For certain models, site
patterns are predicted to occur in equal frequency (i.e., their difference is 0), producing a set of functions called phylogenetic
invariants. In this article, we introduce HyDe, a software package for detecting hybridization using phylogenetic invariants
arising under the coalescent model with hybridization. HyDe is written in Python and can be used interactively or through
the command line using pre-packaged scripts. We demonstrate the use of HyDe on simulated data, as well as on two
empirical data sets from the literature. We focus in particular on identifying individual hybrids within population samples
and on distinguishing between hybrid speciation and gene flow. HyDe is freely available as an open source Python package
under the GNU GPL v3 on both GitHub (https://github.com/pblischak/HyDe) and the Python Package Index (PyPI:
https://pypi.python.org/pypi/phyde). [ABBA-BABA; coalescence; gene flow; hybridization; phylogenetic invariants.]

It is increasingly recognized that a strictly bifurcating
model of population descent is inadequate to describe
the evolutionary history of many species and is
particularly common among plants, as well as some
groups of animals (Mallet 2005; Baack and Rieseberg
2007; Mallet 2007). Hybridization and gene flow
are processes that obscure this simple model, but
separating the signal of admixture from other sources
of incongruence, such as incomplete lineage sorting
(ILS), is especially difficult (Maddison 1997). Early
methods for detecting hybridization in the presence
of ILS used estimated gene trees to detect deviations
from the coalescent model under the expectation of a
bifurcating species tree (Joly et al. 2009; Kubatko 2009;
Meng and Kubatko 2009; Gerard et al. 2011). This work
was later extended to include searches over network
space to infer species networks with reticulate edges
(Yu et al. 2011, 2012, 2013, 2014; Solís-Lumis and Ané
2016). Because these network inference methods do
not always scale to large numbers of species, other
approaches for detecting hybridization that use genome-
wide single nucleotide polymorphism (SNP) data to
test for admixture on rooted, four- or five-taxon trees
have often been employed (“ABBA-BABA”-like methods;
Green et al. 2010; Durand et al. 2011; Patterson et al. 2012;
Martin et al. 2014; Eaton and Ree 2013; Pease and Hahn
2015). A common feature of these genome-wide methods
for hybridization detection is their use of site patterns to
test for deviations from the expected frequency under a

neutral coalescent model with no introgression (Green
et al. 2010; Durand et al. 2011).

The theoretical underpinnings of these site pattern-
based inference methods originate from the study of
invariants: functions of site pattern probabilities that
contain information about the underlying relationships
of the sampled species. For example, the D-statistic
(Patterson et al. 2012) is based on invariants and uses
the site patterns ABBA and BABA, which should occur
in equal frequency in the absence of admixture. The
earliest use of invariants to infer phylogenies was a
pair of articles from Cavender and Felsenstein (1987)
and Lake (1987), who separately derived functions
to determine the correct topology for an unrooted
quartet using binary and nucleotide data, respectively.
Recent applications of phylogenetic invariants include
proving identifiability (Chifman and Kubatko 2015),
coalescent-based species tree inference (SVDquartets;
Chifman and Kubatko 2014), sliding-window analyses
of phylogenetic bipartitions (SplitSup; Allman et al.
2016), and the detection of hybridization (Green et al.
2010; Durand et al. 2011; Kubatko and Chifman 2015).
The increased interest in methods using invariants
is concomitant with the ability to collect genomic
sequence data, allowing for accurate estimates of
site pattern frequencies. Furthermore, because these
methods are based on site pattern frequencies, they offer
computationally tractable approaches for analyzing
genome-scale data sets.
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FIGURE 1. Illustration of the model for detecting hybridization using HyDe. The hybrid population (Hyb) is modeled as a mixture between
two parental populations, P1 (1-�) and P2 (�).

In this article, we introduce HyDe, a Python
package for the detection of hybridization using
phylogenetic invariants. HyDe automates the detection
of hybridization across large numbers of species and
can conduct hypothesis tests at both the population
and individual levels. A particular advantage of
HyDe over other methods is its ability to assess
individual-level variation in the amount of hybridization
using per-individual hypothesis tests and individual
bootstrap resampling in putative hybrid populations.
The programming philosophy behind HyDe is to
provide a low-level library of data structures and
methods for computing site pattern probabilities and
conducting hypothesis tests, along with a core set of
Python scripts that use this library to automatically
parse and analyze genomic data. This setup allows our
software to be easily extended as new methods based
on site pattern probabilities are developed. We describe
the available features of the software in detail below
and demonstrate the use of HyDe on both simulated
and empirical data sets. To facilitate the use of HyDe
for other researchers, we have provided all of the code
for processing, plotting, and interpreting the results of
these analyses.

DESCRIPTION

Model Background
In this section, we provide a brief overview of the

model used by HyDe for detecting hybridization. The
theory behind the model, the derivation of the test
statistics and corresponding asymptotic distributions, as
well as assessments of statistical power and performance
for different simulation settings can be found in Kubatko
and Chifman (2015).

Consider a rooted, four-taxon network consisting of
an outgroup and a triplet of ingroup populations:
two parental populations (P1 and P2) and a hybrid
population (Hyb) that is a mixture of P1 and P2
(Fig. 1). Under this model, gene trees arise within
the parental population trees following the coalescent
process (Kingman 1982), where the hybrid population
is either (1) sister to P1 with probability 1−� or (2)
sister to P2 with probability � (Meng and Kubatko
2009). Mutations are then placed on these gene trees

according to the standard Markov models of nucleotide
substitution [e.g., JC69 (Jukes and Cantor 1969), HKY85
(Hasegawa et al. 1985), GTR (Tavaré 1986)]. Given one
sampled individual within each population, we can
describe a probability distribution on the possible site
patterns observed at the tips of the gene trees: pijkl =
P(O= i,P1= j,Hyb=k,P2= l), with i,j,k,l∈{A,G,C,T}.
Using nucleotide sequence data, we can also estimate
these probabilities using the observed site patterns

to get p̂ijkl = Xijkl
S , where S is the total number of

observed sites and Xijkl is the number of times that site
pattern ijkl was observed. Implicit in this model is the
assumption that each site evolves along its own gene
tree, making unlinked sites the most appropriate input
data. However, when the number of genes is large, it has
been shown through simulations and empirical analyses
that multilocus data provide a good approximation for
the model and can be used to calculate site pattern
probabilities (Chifman and Kubatko 2014; Tian and
Kubatko 2017).

These site pattern probabilities form the basis of the
test for hybridization that is implemented in HyDe, as
well as several other methods. As we noted before, the
D-statistic (Patterson et al. 2012) is based on invariants
and uses the site pattern probabilities pijji and pijij to
test for hybridization assuming a null model of no
admixture:

D= pijji −pijij

pijji +pijij
. (1)

When admixture is absent, the expected value of D is
0, indicating that pijji and pijij should occur in equal
frequency (i.e., they are invariant).

In a similar way, Kubatko and Chifman (2015)
presented several different invariants-based test
statistics that detect hybridization using linear
phylogenetic invariants. Among the invariants that
they tested, the ratio of f1 =piijj −pijij and f2 =pijji −pijij
provided the most statistical power and is used to
form the test statistic that is used by HyDe to detect
hybridization. When the model holds, it can be shown
that

f1
f2

= piijj −pijij

pijji −pijij
= �

1−�
. (2)
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Deviation of the observed frequencies from this
expectation is used to form a test statistic that
asymptotically follows a standard Normal distribution,
allowing formal hypothesis tests to be conducted (H0 :
�=0 vs. H1 :�>0). Furthermore, because the ratio of f1
and f2 is a function of �, we can estimate the amount
of admixture directly from the observed site pattern
frequencies:

�̂= f̂1
f̂1 + f̂2

. (3)

Software Features
In this section, we outline the main features of the

HyDe software. Previously, Kubatko and Chifman (2015)
used C code to test their new methods and distributed
it in accordance with standard publishing practices.
However, the code was only intended to evaluate
performance for their method of hybridization detection,
and not as a “distribution-level” piece of software.
The new Python package that we present here serves
that purpose, and provides additional functionality to
accommodate more complex hybridization scenarios
and sampling designs.

Multiple individuals per population.—We have modified
the calculation of the site pattern probabilities
originally presented in Kubatko and Chifman (2015)
to accommodate multiple individuals per population,
rather than testing each sampled individual separately.
We do this by considering all permutations of the
individuals in the four populations involved in the
hypothesis test. For example, if there are NO individuals
in the outgroup, NP1 individuals in parental population
one, NHyb individuals in the putative hybrid population,
and NP2 individuals in parental population two, then
a total of NO ×NP1 ×NHyb ×NP2 quartets are used
to calculate the site patterns for the hypothesis test.
Including multiple individuals per population increases
the sample size used to calculate the site pattern
probabilities and can therefore lead to more accurate
detection of hybridization.

Identifying individual hybrids.—An underlying assump-
tion of the coalescent with hybridization is that all the
individuals in the hybrid population are admixed (i.e.,
hybrid speciation; Meng and Kubatko 2009). However,
when gene flow, rather than hybrid speciation, is
responsible for the introgression of genetic material
into the admixed population, it is possible that not all
individuals will contain these introgressed alleles. When
hybridization detection is conducted on populations
with a mix of hybrids and non-hybrids, it is possible
for invariant-based tests to report significant results,
even though the underlying assumption of uniform
admixture is violated. To help with the detection of
non-uniform introgression into the hybrid population,

FIGURE 2. Violin plots of the distribution of �̂ across 500 bootstrap
replicates for 10,000, 50,000, 100,000, 250,000, and 500,000 sites for
the non-uniform hybridization simulations. The black dots in each
violin plot represent the actual values of �̂ that were estimated by
each replicate (black dots are jittered). The pattern of jumping between
distinct values of � with no estimates in between are a strong indication
of non-uniform admixture.

we have included two methods in HyDe that aim to
detect variation in the amount of hybridization in the
individuals sampled.

If not all of the individuals in a putative hybrid
population are admixed, bootstrap resampling can
reveal heterogeneity in the process of introgression when
more or fewer hybrid individuals are included in each
replicate. For example, if we are testing four diploid
individuals in a putative hybrid and only two of them are
50:50 hybrids (� = 0.5 for each), then the value of gamma
for the whole population will be �=0.25. When we
resample individuals with replacement and recalculate
�, we will get different values depending on how many
times the hybrids are resampled (0 times: �=0.0; 1 time:
�=0.125; 2 times: �=0.25; 3 times: �=0.375; 4 times: �=
0.5). Because the process of hybridization is not uniform,
the value of � jumps between different values. This can
also be visualized by plotting the distribution of � across
the bootstrap replicates (e.g., Fig. 2).

We have also implemented methods that test all
individuals in a putative hybrid separately while treating
the parents and outgroup as populations. This approach
allows hypothesis tests and estimates of � to be calculated
for every individual to see if it is a hybrid. A caveat
with testing each individual is that the number of sites
sampled must be enough to have statistical power to
detect that hybridization has occurred (Kubatko and
Chifman 2015).

Ambiguity codes and missing data.—To allow more data
to be used, and to account for the potentially large
amounts of missing data that are common in high
throughput sequencing data sets, we have implemented
approaches that integrate over missing or ambiguous
nucleotides by considering the possible resolutions of
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the observed bases into site patterns. We note that this
approach is also appropriate for high coverage data
sets when an individual is heterozygous at a particular
locus, but a consensus sequence with an ambiguity
code is used to represent the different bases of the
heterozygous genotype. As an example, consider the site
pattern AGRG. There are two possible resolutions for
the ambiguity code R: AGGG and AGAG. To account for
this, we add 0.5 to the site pattern counts Xijjj and Xijij.
In general, for any site pattern containing ambiguous
or missing bases (but not gaps), we find all possible
resolutions and add one divided by the total number
of resolutions to the corresponding site pattern counts.

Software Design and Implementation
HyDe is implemented in Python and also uses Cython,

a superset of the Python language that allows C/C++
capabilities to be incorporated into Python for better
efficiency (Behnel et al. 2010). Installing HyDe requires
several external Python modules [numpy, cython,
matplotlib,multiprocess, andseaborn]. The goal
behind our implementation of HyDe was to provide both
pre-packaged scripts to conduct standard hybridization
detection analyses, as well as a library of functions
and data structures that researchers could use to
customize their analyses or implement new tests based
on site pattern probabilities. Below, we describe the
functionality of both of these interfaces, as well as the
input files required to run HyDe.

Input files.—The input files for running HyDe are plain
text files containing the DNA sequence data and the
map of individuals to populations. The DNA sequence
data are expected to be in sequential Phylip format
and the population map is a two-column table with
individual names in the first column and the name of
the population that it belongs to in the second column.
The third input file that is required for individual-level
testing and bootstrapping (optional for running a normal
HyDe analysis) is a three column table of triplets. A
hypothesis test is then run for each triplet using the
first column as parent one, the second column as the
putative hybrid, and the third column as parent two.
The outgroup for each test is always the same and is
specified separately at the command line. Output files
from previous HyDe analyses can also be used to specify
which triplets are to be tested.

Command line interface.—The command line interface
for HyDe consists of a set of Python scripts that can
be used to detect hybridization, filter results, conduct
individual bootstrapping, and test for hybridization at
the individual level. The three main scripts for detecting
hybridization with HyDe provide the majority of the
basic functionality that is needed to detect hybridization
in an empirical data set and to assess if individuals
in putative hybrids are all equally admixed. Each

of these scripts also has a multithreaded version for
parallelizing hypothesis tests across triplets (in square
brackets below).

• run_hyde.py [run_hyde_mp.py]: The run_hyde.py
script detects hybridization by running a
hypothesis test on all possible triplets in a
data set in all directions (i.e., a “full” HyDe
analysis). There is also an option to supply a list
of specific triplets (three column text file) to test.
The script outputs two files: one with all of the
hypothesis tests that were conducted and one with
only those hypothesis tests that were significant
at an overall �=0.05 level (after incorporating
a Bonferonni correction) with estimates of �
between 0 and 1.

• individual_hyde.py [individual_hyde_mp.py]:
The individual_hyde.py script runs separate
hybridization detection analyses on each
individual within a putative hybrid lineage.
The only additional input needed for the script is
a three column list of triplets or a filtered results
file from the run_hyde.py script.

• bootstrap_hyde.py [bootstrap_hyde_mp.py]: The
bootstrap_hyde.py script performs bootstrap
resampling of the individuals within a putative
hybrid lineage and conducts a hypothesis test
for each bootstrap replicate. Similar to the
individual_hyde.py script, the script uses as input
a table of triplets or a filtered results file from a
previous hybridization detection analysis.

The workflow that we envision for these scripts
starts with using the run_hyde.py script to test for
hybridization on all triplets in all possible directions,
and to filter out only those triplets that have significant
evidence for hybridization. Then, using the filtered
output file, users can either test all of the individuals
in each hybrid lineage or perform bootstrap resampling
of the individuals using the individual_hyde.py and
bootstrap_hyde.py scripts, respectively. Users with specific
hypotheses that they want to test can simply create a text
file listing the triplets of interest to be run through any
of the three scripts.

Python API.—Each of the command line scripts described
above makes use of an underlying Python library with
built-in data structures for processing the hypothesis
tests and bootstrapping analyses conducted by HyDe.
This library is exposed through the Python module
phyde (Pythonic Hybridization Detection). The main
data structures that are part of this module are listed
below:

• HydeData: The HydeData class is the primary
data structure for reading in and storing DNA
sequence data and maps assigning individuals to
populations. This class also implements three of



Copyedited by: YS MANUSCRIPT CATEGORY: Software for Systematics and Evolution

[10:54 2/8/2018 Sysbio-OP-SYSB180022.tex] Page: 825 821–830

2018 BLISCHAK ET AL.—HYBRIDIZATION DETECTION WITH HYDE 825

Box 1. Example code to run hybridization detection analyses with HyDe using the Python API. The phyde
module is loaded using the import command:

# import the phyde module
import phyde

Data are read in and stored using the HydeData class by passing the names of the input file, map file, and
outgroup, as well as the number of individuals, the number of populations, and the number of sites.

# read in data using HydeData class
data = phyde.HydeData("data.txt", "map.txt",

"out", 16, 4, 50000)

With the data read in, we can use methods implemented in the HydeData class to test for hybridization at the
population level [test_triple(p1, hyb, p2)], at the individual level [test_individuals(p1, hyb,
p2)], and can bootstrap resample individuals [bootstrap_triple(p1, hyb, p2, nreps)].

# test for hybridization in the "sp2" population
res1 = data.test_triple("sp1", "sp2", "sp3")

# test all individuals in the "sp2" population
res2 = data.test_individuals("sp1", "sp2", "sp3")

# bootstrap individuals in the "sp2" population 200 times
res3 = data.bootstrap_triple("sp1", "sp2", "sp3", 200)

the main methods for detecting hybridization at
the population level [test_triple()] and the
individual level [test_individuals()], as well
as bootstrapping individuals within populations
[bootstrap_triple()] (see Box 1).

• HydeResult: The HydeResult class parses the
results file output by a hybridization detection
analysis and stores the results as a Python
dictionary (key-value pair). Values stored by the
HydeResult class can be accessed by providing the
name of the desired value and the names of the
taxa in the triplet of interest as arguments to the
variable used when reading in the results. For
example, if we read the results of a hybridization
detection analysis into a variable namedresults,
we would access the estimated value of �̂ for the
triplet (sp1, sp2, sp3) using the following code:
results("Gamma", "sp1", "sp2", "sp3").

• Bootstrap: The Bootstrap class is similar to
the HydeResult class except that it has built-in
methods for parsing the format of the bootstrap
output file written by the bootstrap_hyde.py
script. Each bootstrap replicate is printed with
a single line containing four pound symbols
separating each tested triplet (####\n). These
results are parsed into a Python dictionary
that can be used to access the bootstrap
replicates for particular triplets using the
variable name, just like the HydeResult class [e.g.,
bootstraps("Gamma", "sp1", "sp2",
"sp3")].

• phyde.viz: The viz submodule uses the
matplotlib andseaborn libraries to implement
basic functions for plotting the distribution of
bootstrap replicates for any quantity calculated by
the bootstrap_hyde.py script (Z-score, p-value, �,
etc.) for a specified triplet. It does this by taking
the name of a Bootstrap object variable, the name of
the value to be plotted, and the names of the taxa
in the triplet of interest (Supplemental Materials:
HyDe_SysBio.ipynb).

BENCHMARKS

All code used to complete the simulations and
example analyses are available as a Jupyter Notebook
on Dryad (http://dx.doi.org/10.5061/dryad.372sq). We
have also included all output files needed to reproduce
the tables and figures. Note that in this section we use
the names out, sp1, sp2, and sp3 for the names of
the populations, rather than O, P1, Hyb, and P2. We
do this to denote that these taxa have not yet been
tested for hybridization, whereas the model is explicitly
constructed to contain a hybrid species and its parents.

Non-Uniform Hybridization Simulations
To demonstrate the use of the methods in HyDe that

are designed to identify individual hybrids, we set up a
simulated example for four taxa (out, sp1, sp2, sp3)
that intentionally violated the assumption of hybrid
speciation by including a single hybrid individual in
the population being tested for admixture (sp2). We

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy023#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy023#supplementary-data
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simulated gene trees using the program ms (Hudson
2002) with population branch lengths of 1.0 coalescent
unit assuming a model of coalescent independent sites
(i.e., one gene tree per site; Kubatko and Chifman
2015) for 10,000, 50,000, 100,000, 250,000, and 500,000
sites. The parental populations were simulated with
five individuals each and the outgroup had only
one individual. The “admixed” population (sp2) had
four non-admixed individuals that were most closely
related to parental population sp1, and a single hybrid
individual that was a 50:50 (�=0.5) mix between sp1
andsp3. A single DNA base was simulated on each gene
tree for the different numbers of sites using the program
Seq-Gen (Rambaut and Grassly 1997). We rescaled gene
tree branch lengths from coalescent units to mutation
units using a population scaled mutation rate (�=4N0�)
of 0.01 per site and used a GTR+Gamma model of
nucleotide substitution with three rate categories:

seq-gen -mGTR -s 0.01 -l 1
-r 1.0 0.2 10.0 0.75 3.2 1.6
-f 0.15 0.35 0.15 0.35 -i 0.2
-a 5.0 -g 3

Output from Seq-Gen was formatted for input to
HyDe using a Python script (seqgen2hyde.py; available
on Dryad). Hybridization detection was completed for
the simulated data sets with HyDe v0.4.1 using the
run_hyde.py, bootstrap_hyde.py (500 bootstrap replicates),
and individual_hyde.py scripts. Output files were
processed and plotted in Python v2.7 using the phyde,
matplotlib, and seaborn modules.

Results.—Testing for hybridization at the population level
using the run_hyde.py script produced a test statistic
indicating that there was significant admixture in the
sp2 population at the �=0.05 level when the number of

TABLE 1. Results of the population-level hybridization detection
analyses for the non-uniform hybridization simulation using the
run_hyde.py script

# sites Z-score P-value γ̂

10,000∗ 1.100 0.136 0.896
50,000 2.234 0.013 0.897
100,000 3.274 5.310×10−4 0.900
250,000 5.420 2.973×10−8 0.896
500,000 6.808 4.966×10−12 0.905

Note that the result for the simulation with 10,000 sites was not
significant at the �=0.05 level (marked with ∗).

sites was at least 50,000 (Table 1). The estimated values
of �̂ for these tests were close to 0.9, which is inconsistent
with the data that we simulated. The value of � that we
would expect is 0.1. However, because this is an explicit
violation of the coalescent model with hybridization, the
formula for the estimation of � is no longer valid.

If we did not already know that not all of the
individuals were hybrids, we would mistakenly infer
that the sp2 population has ∼90% of its genetic material
inherited from population sp3. However, when we
test each individual using the individual_hyde.py script,
we correctly infer that only one of the individuals is
admixed (individual ‘i10’, �̂≈0.5) and that the rest of
the individuals are not hybrids (Table 2). Bootstrap
resampling of the individuals in population sp2 also
indicates that hybridization is not uniform. Figure 2
shows the distribution of �̂ across all 500 bootstrap
replicates and demonstrates that the value of �̂ jumps
between different values depending on the number of
times the hybrid individual is resampled.

Validating Population-Level Hybridization Detection
To contrast with the previous simulation, and to

validate hybridization at the population level, we
repeated the same procedure as above for simulating
DNA sequence data for four taxa, but this time all
individuals in the sp2 population were 10% admixed.
This maintains the overall level of 10% admixture in
the population, but now it is distributed evenly among
the individuals. We then ran a hybridization detection
analysis on these simulated data using the run_hyde.py,
bootstrap_hyde.py (500 replicates), and individual_hyde.py
scripts.

Results.—At the population level, the analysis with
run_hyde.py detected significant hybridization (�̂=
0.118−0.125) in all cases except for the simulation
with 10,000 sites (Table 3). For this scenario, there
was not enough data to detect the hybridization at
the �=0.05 level. Analyzing each individual in the
sp2 population correctly detected hybridization in all
individuals, with estimates of �̂ slightly over the original
level of 10% admixture (Table 4). Bootstrap resampling of
the individuals in thesp2population also demonstrated
that hybridization was uniform, as can be seen by
the unimodal distribution of �̂ values across bootstrap
replicates in Fig. 3.

TABLE 2. Results of the individual-level hybridization detection analyses for the non-uniform hybridization simulation using the
individual_hyde.py script

10,000 50,000 100,000 250,000 500,000

Individual Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂

i6 0.408 0.342 n.s. 0.054 0.478 n.s. 0.049 0.480 n.s. 0.387 0.349 n.s. −0.015 0.506 n.s.
i7 0.241 0.405 n.s. −0.295 0.616 n.s. −0.289 0.614 n.s. 0.322 0.374 n.s. 0.012 0.496 n.s.
i8 1.128 0.130 n.s. −0.994 0.840 n.s. 0.106 0.458 n.s. 0.773 0.220 n.s. −0.275 0.609 n.s.
i9 0.711 0.239 n.s. −0.445 0.672 n.s. 0.554 0.290 n.s. 0.734 0.231 n.s. −0.130 0.552 n.s.
i10 2.267 0.012 0.562 6.464 5.108×10−11 0.450 9.011 ∼0.0 0.497 14.015 ∼0.0 0.497 20.114 ∼0.0 0.508

n.s. = not significant. Individual ‘i10’ was the only hybrid in the population and was simulated with �=0.5.
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FIGURE 3. Violin plots of the distribution of �̂ across 500 bootstrap
replicates for 50,000, 100,000, 250,000, and 500,000 sites for the uniform
hybridization simulations. The black dots in each violin plot represent
the actual values of �̂ that were estimated by each replicate (black dots
are jittered). The distribution of the estimates across bootstrap samples
indicates that hybridization is uniform. The analyses with 10,000 sites
did not have enough statistical power to detect hybridization and were
therefore left out of the plot.

BIOLOGICAL EXAMPLES

Heliconius Butterflies
DNA sequence data from Martin et al. (2013)

was downloaded for four populations of Heliconius
butterflies (248,822,400 sites; available on Dryad). The
number of individuals per population was as follows:
four individuals of H. melpomene rosina, four individuals
of H. melpomene timareta, four individuals of H. cydno,
and one individual of H. hecale. We tested the hypothesis
that H. cydno is a hybrid between H. melpomene rosina and

TABLE 3. Results of the population-level hybridization detection
analyses for the 10% admixture simulation using the run_hyde.py script

# sites Z-score P-value γ̂

10,000∗ 0.071 0.472 0.008
50,000 2.363 0.009 0.125
100,000 3.677 1.180×10−4 0.125
250,000 5.796 3.401×10−9 0.119
500,000 8.425 ∼0.0 0.118

Note that the result for the simulation with 10,000 sites was not
significant at the �=0.05 level (marked with ∗).

H. melpomene timareta with H. hecale as an outgroup using
the run_hyde.py script. We then conducted bootstrapping
(500 replicates) of the H. cydno individuals, as
well as testing each individual separately using
the bootstrap_hyde.py and individual_hyde.py scripts,
respectively. As a last comparison, we reanalyzed the
data with the run_hyde.py script, but changed the
underlying code so that all missing or ambiguous
sites were ignored in order to test the effect of
including/excluding such data.

Results.—Significant hybridization was detected in
H. cydno at the population level (Z-score=472.599,
P-value=∼0.0, �̂=0.342). Each individual also showed
significant levels of hybridization, with �̂ ranging from
0.324 to 0.393, indicating that hybridization in H. cydno
is mostly uniform across the individuals sampled.
Figure 4 shows a density plot for the estimated values
of �̂ across the 500 bootstrap replicates. Although the
distribution does exhibit some amount of jumping
between different values they are still between the lower
and upper bounds for the individual level estimates
of �̂, providing corroborating evidence that all the
individuals in the H. cydno population are admixed.
When we ignored missing or ambiguous sites, we still
detected significant hybridization, but the value of the
test statistic was less than half of the value from the
original analysis (Z-score=189.073, P-value=∼0.0, �̂=
0.395). This demonstrates the increase in power that can
result from including all relevant data in the analysis.

Swordtail Fish (Xiphophorous)
Transcriptome data from Cui et al. (2013) was obtained

from the authors for 26 species of swordtail fish (25
species of Xiphophorous + 1 outgroup from the genus
Priapella). The data (3,706,285 sites) were first put in
sequential Phylip format for analysis with HyDe. Each
taxon was then analyzed at the individual level, resulting
in

(25
3
)×3=6900 hypothesis tests. Because there were not

multiple individuals per taxon, we only analyzed these
data using the run_hyde.py script. As with the Heliconius
example, we also reanalyzed these data ignoring all sites
with missing or ambiguous bases.

Results.—Out of 6900 tests, 2199 reported significant
levels of hybridization (Bonferroni corrected P-value

TABLE 4. Results of the individual-level hybridization detection analyses for the 10% admixture simulation using the individual_hyde.py
script

10 000 50 000 100 000 250 000 500 000

Individual Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂ Z-score P-value γ̂

i6 0.092 0.463 n.s. 2.141 0.016 0.117 3.967 3.645×10−5 0.133 5.545 1.476×10−8 0.116 8.151 2.220×10−16 0.116
i7 0.089 0.464 n.s. 2.542 0.006 0.132 4.397 5.498×10−6 0.144 6.795 5.450×10−12 0.136 8.092 2.220×10−16 0.115
i8 0.2457 0.399 n.s. 2.155 0.016 0.113 3.326 4.403×10−4 0.117 5.421 2.975×10−8 0.110 8.682 ∼0.0 0.122
i9 – – – 2.663 0.004 0.132 2.458 0.007 0.091 5.538 1.536×10-8 0.115 8.637 ∼0.0 0.119
i10 – – – 2.315 0.010 0.128 4.217 1.241×10−5 0.135 5.664 7.426×10−9 0.118 8.563 ∼0.0 0.119

n.s. = not significant. All individuals were equally admixed with �=0.1.
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FIGURE 4. Density plot of the estimated values of �̂ across
500 bootstrap replicates testing for hybridization in Heliconius cydno
between H. melpomene rosina and H. melpomene timareta.

FIGURE 5. Density plot of the estimated values of �̂ across the
2199 hypothesis tests that detected significant levels of hybridization
in Xiphophorous.

of 0.05
6900 =7.246×10−6). When ambiguous or missing

bases were ignored, only 867 tests were reported as
significant, again demonstrating the increase in power
to detect hybridization when including these sites. The
distribution of the �̂ values for the 2199 significant tests
is plotted in Fig. 5. This plot shows that most of the
admixture occurring in Xiphophorous is at low levels
(�̂ close to either 0.0 or 1.0). However, there are many
instances of higher levels of admixture, which matches
the findings of Cui et al. (2013) regarding the extensive
amount of gene flow and introgression in this group.
Solís-Lumis and Ané (2016) also analyzed these data
and found evidence for an ancestral hybridization event
between X. xiphidium and the northern swordtail clade
(denoted NS in Solís-Lumis and Ané (2016), Fig. 10), a
pattern we recover as well (259 significant hypothesis
tests involving X. xiphidium).

Timing
We timed all analyses for the Heliconius and swordtail

data using the Unix time command. For Heliconius, the
analysis using the run_hyde.py script took 11m 49.377s,
and the analysis that ignored missing or ambiguous
sites took 4m 47.667s. Analyzing the four individuals
of H. cydno separately with the individual_hyde.py script
took 10m 5.120s. Completing 500 bootstrap replicates
for this data set ran the longest of any analysis that
we conducted, taking a total of 4105m 33.312s (2.851
days). For the swordtail data, the analysis with the
run_hyde.py script took 22m 40.673s, almost twice as long
as the analysis for the Heliconius data. This indicates
that analyzing more triplets is more computationally
intensive than analyzing more sites. When ambiguous or
missing sites were ignored, the analysis took 5m 27.889s.

CONCLUSIONS

Hybridization and gene flow are increasingly
recognized as important forces in the evolution
of taxa across the Tree of Life (Seehausen 2004;
Arnold and Kunte 2017; Kagawa and Takimoto 2017).
In addition, for groups such as plants, fish, and
amphibians, hybridization can also be accompanied
by whole genome duplication (allopolyploidy; Otto
and Whitton 2000). Kamneva et al. (2017) recently used
methods based on the coalescent with hybridization
to model haplotypes in allopolyploid strawberries,
and we anticipate that approaches using site pattern
probabilities should be equally applicable in such
situations. Gaining an understanding of when these
complex processes are occurring and how they may
vary among individuals within a population are
important steps to understand the spatial distribution
of shared genetic variation among diverging lineages.
The methods we have implemented in HyDe to detect
hybridization at the population and individual level
provide a set of computationally efficient methods for
researchers to assess patterns of admixture in natural
populations. HyDe also provides an open source Python
library for the calculation of site pattern probabilities
that can easily be extended to calculate additional
statistics that may be developed in the future. As access
to genomic data continues to grow, we anticipate that
methods such as HyDe that use phylogenetic invariants
will play an important role for phylogenomic inferences
in non-model species.

AVAILABILITY

HyDe is available as an open source Python
package distributed under the GNU General
Public License v3 for both Python 2.7 and 3.6.
Developmental code can be found on GitHub
(https://github.com/pblischak/HyDe) with official
code releases uploaded to the Python Package
Index (PyPI: https://pypi.python.org/pypi/phyde).
Documentation for installing and running HyDe can
be found on ReadTheDocs (http://hybridization-
detection.readthedocs.io).

https://github.com/pblischak/HyDe
https://pypi.python.org/pypi/phyde
http://hybridization-detection.readthedocs.io
http://hybridization-detection.readthedocs.io
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