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Abstract.—We give a non-technical introduction to convergence–divergence models, a new modeling approach for
phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge,
i.e. become more similar over time. By examining the 3-taxon case in some detail, we illustrate that phylogeneticists have
been “spoiled” in the sense of not having to think about the structural parameters in their models by virtue of the strong
assumption that evolution is tree-like. We show that there are not always good statistical reasons to prefer the usual class
of tree-like models over more general convergence–divergence models. Specifically, we show many 3-taxon data sets can
be equally well explained by supposing violation of the molecular clock due to change in the rate of evolution along
different edges, or by keeping the assumption of a constant rate of evolution but instead assuming that evolution is not
a purely divergent process. Given the abundance of evidence that evolution is not strictly tree-like, our discussion is an
illustration that as phylogeneticists we need to think clearly about the structural form of the models we use. For cases
with four taxa, we show that there will be far greater ability to distinguish models with convergence from non-clock-like
tree models. [Akaike information criterion; convergence–divergence models; distinguishability; identifiability; likelihood;
molecular clock; phylogeny.]

It is commonly accepted that although evolution is
primarily well described by a tree-like model, there
are many important evolutionary processes that are
not tree-like. At the genomic level these processes
include hybridization, introgression, and horizontal
gene transfer (HGT) (Huson and Bryant 2005). At the
level of morphological characters convergent selection
is a process that can disrupt the tree-like pattern of
evolution by acting to make different taxa more similar.
In this article, we explore an alternative to strictly tree-
like phylogenetic models of character evolution that
allows for the possibility of taxa gradually becoming
more similar over time.

We will use the term convergent evolution broadly
to mean any process by which a set of homologous
characters (either morphological or genomic) measured
for different taxa become more similar over time.
The convergence–divergence models we present here
assume that characters are binary, that characters evolve
independently, and that evolution is clock-like. We give
a deliberately abstract model in terms of how characters
behave to allow for the possibility of it being applied
to both genotypic or phenotypic characters. Later in the
article, we give a range of biological scenarios where the
model may be appropriate.

The model that we explore was initially presented in
Sumner et al. (2012). There the authors introduced a
new model class that generalizes the standard Markov
model of character evolution on a phylogenetic tree.
The results given in Sumner et al. (2012) are valid for

the general Markov model, although so far exploration
of the model has focused on the binary symmetric
case (Mitchell 2016). The formulation is similar to
the idea of an n-taxon process (Bryant 2009), where the
Markov process acts on the state space of all possible
character patterns for n taxa. Both constructions are
capable of capturing standard phylogenetic scenarios
where, following lineage-splitting, lineages evolve
independently (divergence). More significantly for the
discussion we present here the results given in Sumner
et al. (2012) can also be used to model convergence.

In his wonderfully entitled article “Should
phylogenetic models be ‘trying to fit an elephant”’
Steel (2005) suggested two key points to keep in mind
when developing new phylogenetic models. His two
points were:

1. Are they capturing a process that is biologically
important?

2. Do they over-fit the data?

With regard to Steel’s first point, we believe that
convergence–divergence models have potential to be a
useful addition to the phylogeneticists’ toolkit. There
are several biological processes that could be better
modeled by considering possible convergence of taxa.

For instance, species might become more similar
over time as a result of introgression; for example,
from Neanderthals (Homo neanderthalensis) into humans
(Homo sapiens) (Green et al. 2010) or among domesticated

905



[11:16 2/8/2018 Sysbio-OP-SYSB180038.tex] Page: 906 905–0

906 SYSTEMATIC BIOLOGY VOL. 67

and wild plants (Ellstrand et al. 1999). In the extreme
case, despeciation, the loss of unique species, can occur.
Rhymer and Simberloff (1996) describe how over time
introduced species can lead to despeciation of closely
related native species through introgression. Taylor
et al. (2006) described a case where environmental
changes may be resulting in the convergence of three-
spined sticklebacks (Gasterosteus aculeatus) in Enos Lake,
Vancouver Island. Sheppard et al. (2008) and Sheppard
et al. (2011) identified a case in which two species
of bacteria, Campylobacter jejuni and Campylobacter coli,
appear to be in the process of undergoing convergence
through HGT. Seehausen et al. (2008) argued that a
loss of diversity can break down ecological boundaries,
allowing more opportunities for the exchange of genetic
material among previously independent populations,
which can in turn lead to convergence. In some
sense, convergence–divergence models can be thought
of as a species-level analogue to the population-level
isolation/migration model of Hey (2010).

A further scenario where we might consider applying
convergence–divergence models is for morphological
data where selection acts similarly on different
taxa, causing some of the morphological characters
to converge. Convergent evolution of morphological
characters can lead to organisms possessing analogous
traits; traits that perform similar functions despite
evolving independently (Holland et al. 2010; Reece et al.
2014). Reece et al. (2014) describe the sugar glider
(Petaurus breviceps), an Australian marsupial, and the
flying squirrels, North American placental mammals, as
an example of species sharing morphological similarities
as a result of convergent evolution. There are numerous
other examples of convergent evolution, including
intelligence in corvids and apes (Emery and Clayton
2004), echolocation in bats and dolphins (Liu et al. 2010),
wings in birds and bats (Norberg 1986), and skull shape
in marsupials and placental mammals (Werdelin 1986),
in particular a similarity between the extinct thylacine
(Thylacinus cynocephalus) and the red fox (Vulpes vulpes).
Convergent evolution is not necessarily rare. Lengyel
et al. (2010) found at least 101 examples of myrmecochory
(seed dispersal by ants) in plants. Sage (2004) found C4
photosynthesis evolved at least 45 times in 19 families of
angiosperms.

Lewis (2001) was the first to apply Markov models
and likelihood methods to morphological character data.
He introduced the Mk model, a Markov model for
transitions between states of morphological characters.
The simplest version of the Mk model assumes all
transitions between states occur with the same rate. The
model we will discuss can be considered as an extension
of the two-state equal-rate Mk model.

While convergence as we have defined it may occur
for several reasons, the model that we propose will
not always be appropriate. The sorts of scenarios
in which we think convergence–divergence models
may be appropriate include: 1) modeling the presence
or absence of genes in bacterial genomes, which
are experiencing ongoing HGT; 2) modeling the

presence/absence of homologous fragments of DNA,
e.g., double digest restriction-associated DNA (ddRAD)
data (Jaccoud et al. 2001), for taxa that are undergoing
introgression; and 3) modeling binary morphological
characters for taxa undergoing convergent selection,
provided the characters are independent (we note that
this may not be the case (Felsenstein 2013)). There are also
scenarios where the model does not seem appropriate.
For instance, the model would not be appropriate for
hybrid speciation where a non-gradual event creates a
new species; likewise it would not make sense to apply
the model to a single HGT event. Our model is also
not useful for studying recombination or hybridization
events that affect a contiguous DNA sequence alignment;
such scenarios would clearly violate the assumption of
character independence.

The second point of Steel (2005), regarding models
over-fitting the data, is possibly more worrying. As
noted in Sumner et al. (2012) convergence–divergence
models have a lot of flexibility; in principle there can
be arbitrarily many epochs in which arbitrary groups of
lineages can either converge or diverge. However, under
some reasonable restrictions, convergence–divergence
models need not necessarily be more parameter rich
than trees. For example, while an n-taxon clock-like
tree has n−1 height parameters that define the edge
lengths and an n-taxon non-clock-like tree has 2n−3
edge parameters, a clock-like convergence–divergence
model has at least n epoch length parameters. For
large n, 2n−3≈2

(
n−1

)
and the number of edge

parameters will approximately double if we keep the tree
assumption but remove the molecular clock assumption.
Alternatively, we have far more flexibility in the number
of parameters if we keep the molecular clock assumption
but remove the assumption that once lineage-splitting
occurs lineages are strictly diverging. We could then
increase the number of parameters one at a time until
we have optimized the fit.

Convergence–divergence models are not the only
way to achieve an intermediate number of parameters
between a strict clock and a non-clock-like tree. When
evolutionary timescale is of interest, phylogeneticists
commonly adopt a relaxed clock, such as in the models
of Drummond et al. (2006) and the models reviewed
by Lepage et al. (2007). The relaxed clock models of
Drummond et al. (2006) have been popular and effective
in terms of giving the flexibility to fit data without
requiring too many extra parameters.

In the next section, we give details of how
convergence–divergence models are constructed.
Following that, we illustrate their use in the 3-taxon case
and, briefly, the 4-taxon case.

MODELING EVOLUTION WITH CONVERGENCE-DIVERGENCE

MODELS

The convergence–divergence models of Sumner et al.
(2012) can be understood in the context of n-taxon
processes (Bryant 2009), processes on patterns. For the
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FIGURE 1. Three epochs of a 3-taxon process. (Top) Divergence of lineages is represented by straight lines emanating from a node, while
convergence in the third epoch in Figure 1c is represented by curved lines. (Bottom) State transition diagrams for the last epoch of each subfigure.
Dark gray nodes indicate possible states during the epoch, while light gray nodes indicate impossible states. In Figure 1a impossible states are
those where lineages 2 and 3 are not identical. Solid lines indicate “regular” transitions, dotted lines in Figure 1a indicate transitions that cannot
occur since they involve impossible states and dashed lines indicate “correction” transitions responsible for convergence in Figure 1c.

binary symmetric model there are 2n possible patterns.
For example, for n=3 taxa there are 23 =8 possible
combinations of states: 000, 001, 010, 011, 100, 101, 110,
and 111. The first entry is the state of taxon 1, the
second entry is the state of taxon 2 and the third entry
is the state of taxon 3. We call theoretical probabilities
of combinations of states occurring character pattern
probabilities and empirical probabilities character pattern
frequencies.

To determine expressions for each character pattern
probability on a tree or convergence–divergence model
we start with a probability distribution at the root
(e.g., the stationary distribution). We then have an
instantaneous splitting event described by the splitting
operator of Sumner et al. (2012) that splits the root
lineage into two descendant lineages (or more if
multifurcations are to be considered), followed by
Markov processes acting on the lineages directly
below the root lineage over some period of time.

A phylogenetic tree or convergence–divergence model
can then be constructed from a series of splitting
events and Markov processes, with each Markov
process occurring in a separate epoch. The epochs
are separated by lineage splitting events or the start
or end of convergence periods. The interested reader
should consult the Supplementary Appendix available
on Dryad at https://doi.org/10.5061/dryad.n8m9c,
Sumner et al. (2012) or Mitchell (2016) for more
mathematical details on the splitting operator and
constructing the required rate matrices in general.

In the 3-taxon binary character-state case shown in
Figure 1 each epoch has an associated 8×8 rate matrix,
corresponding to the 23 =8 character states possible in
this case. In the first epoch lineages 2 and 3 are yet
to diverge and therefore it is only possible to be in
states where lineages 2 and 3 are identical. Furthermore,
transitions such as from state 011 to 000 are possible
in a single step. In the second epoch the situation is

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy038#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syy038#supplementary-data
https://doi.org/10.5061/dryad.n8m9c
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equivalent to the standard phylogenetic model where
all lineages are diverging independently. In this case the
8×8 rate matrix can be constructed from three 2×2 rate
matrices by assuming that only single-step transitions
are possible. In the third epoch taxa 1 and 2 are
converging, so states in which 1 and 2 are mismatched,
e.g., 011, can transition back to being in a matched state:
001 or 111, but the reverse transitions, from 001 or 111 to
011, are not permitted.

Convergence–divergence models are not equivalent to
any previous phylogenetic network approaches. Unlike
splits-based methods such as Neighbor-Net (Bryant
and Moulton 2002), or split decomposition (Bandelt
and Dress 1992), convergence–divergence models are
directed in time and lead to specific predictions
regarding character pattern probabilities. They are
also different from the approaches for implementing
maximum likelihood on networks (Nakhleh 2010). As
described in Nakhleh’s review, a directed network is
typically thought of as encoding a set of trees (those
displayed by the network). The likelihood is then either
a mixture model over these trees (Jin et al. 2006), or each
site is allowed to pick the tree that suits it best. Given their
stated properties, the convergence–divergence models
have different limiting properties to either of these
frameworks. For instance, if the convergence process is
run for a long enough period of time then the taxa that
are converging become arbitrarily close. This is not the
case in the mixture-model setting.

Related to the question of whether a model over-fits
the data are the fundamental issues of identifiability
and distinguishability. In this article, we use the term
identifiable in the sense of Allman and Rhodes (2008)
to mean that there is an (essentially) one-to-one map
between the parameters (e.g., edge lengths or epoch
lengths) and the distribution of character pattern
probabilities. That is, for every set of parameters there
is one possible set of character pattern probabilities and
vice versa.

We say that two models with different structural
parameters (e.g., a clock-like tree versus a non-clock-
like tree) are distinguishable if there is some choice of
parameters on one of the models that gives character
pattern probabilities which cannot arise on the other
model. We say that two models with different structural
parameters are distinguishable with respect to a specific set
of character pattern probabilities if it is possible for those
character pattern probabilities to arise on one model but
not the other.

Sumner et al. (2012) raised many questions regarding
both identifiability of model parameters and whether
or not the induced character pattern probabilities
would be distinguishable from character pattern
probabilities arising from tree models. These questions
were explored in the thesis of Mitchell (2016). To
address these questions the sets of constraints on the
character pattern probabilities were determined for
trees and convergence–divergence models of interest
by transforming the character pattern probabilities into
the Hadamard basis of Hendy and Penny (1989) and
Hendy (1989). For example, one (trivial) constraint that

arises on all models is that the sum of all character
pattern probabilities must be 1. The sets of constraints
were compared for different trees and convergence–
divergence models to determine whether they were
distinguishable. Two models with non-identical sets of
constraints are distinguishable, while two models are
distinguishable with respect to a specific set of character
pattern probabilities if the constraints on one model are
met, but not on the other model.

For the 3-taxon case, Mitchell (2016) found
some scenarios that were neither identifiable nor
distinguishable in general from clock-like trees as well
as some scenarios that were both identifiable and
distinguishable from trees. In the next sections, we
explore a simple 3-taxon scenario and show an example
of character pattern probabilities where a non-clock-like
tree and convergence–divergence model cannot be
distinguished on statistical grounds. Following that,
4-taxon convergence-divergence models are presented
that can be distinguished from all trees.

CHOOSING BETWEEN MODELS

Many models can be ruled out by an Occam’s razor
argument—we do not want to consider models that are
not identifiable. Furthermore, if two scenarios produce
the same character pattern probabilities then we prefer
the scenario with the smaller number of parameters.

An example of a clock-like tree and a convergence–
divergence model with the same character pattern
probabilities is given in Figure 2; there are two taxa and
the Markov model of interest is the binary symmetric
model. For a clock-like tree the probabilities of
combinations of states depend on the height parameters,
while the probabilities for a convergence–divergence
model depend on the epoch lengths and whether there
is convergence or divergence in the epoch. The 2-taxon
clock-like tree is identifiable as the specific probabilities
can only be achieved by a single edge length.
However, since the 2-taxon convergence–divergence
model has two parameters, a divergence parameter and a
convergence parameter, there are infinitely many pairs of
divergence/convergence parameters that give rise to the
same probabilities. The 2-taxon convergence–divergence
model is neither identifiable nor is it distinguishable
from the 2-taxon clock-like tree. As long as the divergence

1 2 1 2

a) b)

FIGURE 2. A 2-taxon clock-like tree in Figure 2a and a 2-
taxon convergence-divergence model in Figure 2b. The length of the
convergence epoch is dependent on the length of the divergence
periods on the tree and the convergence–divergence model. The
convergence–divergence model is neither identifiable, nor is it
distinguishable from the tree.
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parameter is at least as long in the convergence–
divergence model as in the clock-like tree there will
always be a convergence parameter that gives equal
probabilities under the two models. For a proof see
page 77 of Mitchell (2016). The longer the divergence
parameter in the convergence–divergence model, the
longer the convergence parameter will need to be to
“undo” the extra divergence such that the probabilities
are equal to those on the clock-like tree.

Furthermore, for the binary symmetric model Mitchell
(2016) argued that if the 2-taxon convergence–divergence
model is embedded within a larger model then that
model will not be identifiable. It will also not be
distinguishable from the model created by removing the
convergence period.

Referring back to the 3-taxon case, from Mitchell
(2016) the following scenarios are distinguishable in
general: the clock-like tree (which has two height
parameters), the non-clock-like tree (which has three
edge parameters), and the convergence–divergence
model with convergence between non-sister taxa (which
has three epoch length parameters) (Fig. 1c). We
do not consider the model in which the two sister
taxa converge as it is not identifiable (as mentioned
above). We also do not consider 3-taxon convergence–
divergence models with taxa involved in multiple
convergence groups or convergence–divergence models
with more than three epochs, i.e. there is at most one
period in which previously diverging taxa experience
convergence. Considering the taxon labeling choices for
three taxa, there are three clock-like trees, a single non-
clock-like tree and six convergence–divergence models
with convergence between non-sister taxa.

As with trees, counts of character patterns for
convergence–divergence models will have multinomial
distributions dependent on the specific models. The
character pattern probabilities for 3-taxon and 4-
taxon convergence–divergence models are described in
detail in Mitchell (2016). To determine a best-fitting
model traditional likelihood methods such as Akaike
information criterion (AIC) can be applied for model
selection.

To choose between the ten models for three taxa given
a particular data set (character pattern frequencies) we
fit the parameters (node heights, edge lengths or epoch
lengths) using a maximum likelihood approach and
then calculate AIC=−2

(
ln

(
likelihood

))+2K, where K
is the number of parameters (Burnham and Anderson
2002). Note that the non-clock-like tree and the non-sister
convergence–divergence model have the same number
of parameters (three edge or epoch length parameters
respectively), whereas the clock-like tree has just two
height parameters and so may still be preferred by AIC
even if it has a lower likelihood.

EXPLORING THE 3-TAXON CASE

In one of the earliest articles introducing maximum
likelihood to phylogenetics, Felsenstein (1981) proposed
that one test of the molecular clock hypothesis would

be to compare the likelihood of models where all
edges are free to models with a clock imposed. We
extend this idea here by adding an extra possible
scenario. Convergence–divergence models offer another
possibility for explaining apparent violations of the
molecular clock (i.e., distances that do not obey the
three-point condition, where for any three taxa two of
the pairwise distances are equal and no less than the
third pairwise distance)—evolution may not be strictly
divergent.

From the results of Mitchell (2016), we know that
the clock-like tree, non-clock-like tree, and non-sister
convergence–divergence model are distinguishable
in general. That is, there exist character pattern
probabilities that can arise on the non-sister
convergence–divergence model that cannot arise on the
non-clock-like tree. However, this does not guarantee
that the different models will be distinguishable
with respect to a particular set of character pattern
probabilities.

A question that arises is how to compare the 3-
taxon non-clock-like tree to the 3-taxon clock-like non-
sister convergence–divergence model, as both have
three parameters, one more than the 3-taxon clock-
like tree. We wish to know whether there are any
circumstances in which we have a choice of a non-clock-
like tree or a clock-like convergence–divergence model.
To answer this question, we explored whether character
pattern probabilities that arose on the non-clock-like tree
could have also arisen on the clock-like convergence–
divergence model and whether character pattern
probabilities that arose on the clock-like convergence–
divergence model could have also arisen on the non-
clock-like tree. This involved finding algebraic conditions
for the character pattern probabilities expected under
a given model and comparing these conditions for
different models. This approach has been explored
by Klaere and Liebscher (2012), who looked at the
conditions for the two-state general Markov model on
tripod and quartet trees.

Figure 3 shows an example where particular choices
of edge lengths for the non-clock-like tree and epoch
lengths for the convergence–divergence model give
rise to exactly the same set of character pattern
probabilities. Additionally, there are two different non-
sister convergence–divergence models that both give
rise to the same character pattern probabilities. The
same data can be explained either by a violation of the
molecular clock, or by supposing convergence between
some of the taxa. In some circumstances convergence-
divergence models and non-clock-like trees cannot be
distinguished for relatively small convergence epochs
compared to the second divergence epoch.

An interesting feature of the three scenarios shown in
Figure 3 is that in each scenario taxon 2 and taxon 3 are
always diverging. Indeed, the path distance from taxon 2
to taxon 3 in the non-clock-like tree (1.43) is equal to twice
the sum of the epoch lengths in both the convergence–
divergence models. The distance between taxon 1 and
taxon 2 is the smallest but this is achieved in different
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FIGURE 3. Three biologically different scenarios that are indistinguishable based on the character pattern probabilities that they induce. All
edge and epoch lengths are drawn to scale.

ways in the two models. In Figure 3b taxon 1 and taxon
2 have only been diverging for a height of 0.418+0.013=
0.431 time units, whereas in Figure 3c these taxa have
been diverging for a height of 0.033+0.528=0.561 time
units, but then have subsequently converged for 0.154
time units.

Now suppose we fix a 3-taxon non-clock-like tree. We
wish to determine whether an equivalent set of epoch
lengths on a 3-taxon clock-like non-sister convergence–
divergence model can be found. That is, we want to
find whether there is a set of epoch lengths on the
convergence–divergence model, such that all character
pattern probabilities for the convergence–divergence
model are equal to those for the non-clock-like
tree.

We start by finding expressions for the character
pattern probabilities in terms of the edge lengths for
the non-clock-like tree and in terms of the epoch lengths
for the convergence–divergence model. By equating the
character pattern probabilities for the non-clock-like tree
and the convergence–divergence model, we can find
expressions for the epoch lengths of the convergence–
divergence model in terms of the edge lengths of the
non-clock-like tree. Placing no restrictions on the set of
edge lengths for the non-clock-like tree, there will always
be one edge length that is less than or equal to the other
two edge lengths. If we choose the taxon on this edge to
be the taxon on the convergence-divergence model that is
both in the cherry and involved in convergence (taxon 2
of Fig. 1c) then a set of epoch lengths on the convergence-
divergence model can always be found that preserves the
character pattern probabilities.

We are free to choose between the two choices
of where we will place the remaining two taxa on
the convergence–divergence model. The convergence–
divergence models will always come in pairs, as seen in
the example in Figure 3. Note however, that the epoch
lengths on the two convergence–divergence models
are not generally equal, but the character pattern
probabilities are.

As a consequence, we are always free to choose
between two taxon labelings on the convergence–
divergence model. We can choose a convergence–
divergence model where two lineages split well after the
root, with only a short period of convergence between
two non-sister taxa at the leaves, as shown in Figure 3b.
Alternatively, we can choose a convergence–divergence
model where the three lineages split from each other
soon after the root, with a long period of convergence
between the two non-sister taxa at the leaves, as shown
in Figure 3c. These two convergence–divergence models
will have identical likelihoods. In some situations
there may be strong reasons to prefer one scenario,
e.g., sympatric species would have more opportunity
to become more similar via introgression than non-
sympatric species. In the absence of any guiding
information it perhaps seems more parsimonious to
prefer the member of the pair that has the shortest
convergence period.

We simulated edge lengths from a non-clock-like
tree to determine whether there are sets of epoch
lengths on the two convergence–divergence models
such that all three models have the same character
pattern probabilities and likelihoods. The edge lengths
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for the non-clock-like tree could represent any biological
scenario where a non-clock-like tree is appropriate. For
all simulations edge length parameters were randomly
drawn from a uniform distribution from 0 to 1.
The character pattern probabilities on this tree were
determined and we then checked to see if we could
find non-sister convergence–divergence models that
achieved the same character pattern probabilities. Again,
no specific biological scenario is assumed and the
convergence–divergence model could represent any
appropriate process.

Of 1000 random non-clock-like trees, all 1000 gave
character pattern probabilities that could be matched on
a convergence–divergence model. Although not shown
here, it can be proven that a matched convergence–
divergence model exists for all choices of edges on
the non-clock-like tree. Note that in Mitchell (2016) the
potential for character pattern probabilities that could
have arisen on the non-clock-like tree, but not on the non-
sister convergence–divergence model, was left open. It is
now known that these character pattern probabilities do
not occur and that character pattern probabilities that
arose on a non-clock-like tree can always be matched to
character pattern probabilities that arose on a non-sister
convergence–divergence model.

We then did a similar simulation, but beginning
instead with random choices of epoch lengths on a non-
sister convergence–divergence model. The epoch lengths
were samples from a uniform distribution from 0 to
1
3 . The arbitrary truncation of epoch lengths at 1

3 was
chosen so that when matched to non-clock-like trees
the edge lengths on the non-clock-like trees would on
average be similar to the edge lengths on the non-clock-
like trees in the first simulation, which were uniform
from 0 to 1. The character pattern probabilities on the
model were determined and we then checked to see if we
could find a non-clock-like tree that achieved the same
character pattern probabilities. Of 1000 random models,
873 gave character pattern probabilities that could be
fit equally well on a non-clock-like tree. Note that this
proportion would be different if we chose not to sample
epoch lengths from a uniform distribution from 0 to 1

3
but instead from a different distribution.

These results are consistent with the non-clock-
like tree and the convergence–divergence model being
distinguishable since there are some character pattern
probabilities that could have only arisen on one and not
on the other. However, the two models are not always
distinguishable with respect to a specific set of character
pattern probabilities. There are some character pattern
probabilities that could have arisen on either model and
some character pattern probabilities that could have only
arisen on the convergence–divergence model and not on
the non-clock-like tree.

Distances between leaves can be used to determine
whether the convergence–divergence model is
distinguishable from the clock-like tree or the non-
clock-like tree. The distances between pairs of leaves
on trees must all satisfy the triangle inequality. That

3
0.550

1

0.000

2

0.924

0.283

0.149

0.313

23 1

b)a)

FIGURE 4. A convergence–divergence model and a non-clock-like tree
with different likelihoods despite having optimized edge and epoch
lengths. Edge and epoch lengths are not drawn to scale.

3
0.494

1

0.000

2

0.440

0.331

0.001

0.219

23 1

a) b)

FIGURE 5. A second convergence–divergence model and a non-clock-
like tree with different likelihoods despite having optimized edge and
epoch lengths. Edge and epoch lengths are not drawn to scale.

is, the distance between any two leaves must be less
than or equal to the sum of the other two distances
between leaves. For the convergence–divergence model
the triangle inequality is broken when the convergence
period is sufficiently large.

Consider the taxon labeling in Figure 1c. One of
the distance constraints from the triangle inequality is
d
(
1,3

)≤d
(
1,2

)+d
(
2,3

)
. d

(
1,3

)
and d

(
2,3

)
are simply

twice the sum of the relevant epoch lengths since there
is no convergence involved. For the triangle inequality
to be met on the convergence–divergence model this
is equivalent to d

(
1,2

)≥2�1, where �1 is the length
of the epoch starting at the root. When the length of
the convergence epoch �3 is large in comparison to
the second epoch �2, then d

(
1,2

)
<2�1. The triangle

inequality is broken and the distances are no longer
true distances. Since the triangle inequality must be met
for 3-taxon trees, when the convergence epoch is large
enough character pattern probabilities that arose on the
convergence–divergence model will not be consistent
with any tree. When the amount of convergence is large
enough the non-clock-like tree will not be a good fit to
the data if the data arose on the convergence–divergence
model. Simulated examples are shown in Figures 4 and 5
where the fit of the convergence–divergence model is
better than the fit of the non-clock-like tree. In both
examples, neither the likelihoods nor the distances
between taxa are equal for the convergence–divergence
model and the non-clock-like tree.

The 3-taxon clock-like tree is nested within both
the non-clock-like tree and the convergence–divergence
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TABLE 1. Summary of 3-taxon models, with the number
of parameters and the other models that are consistent or possibly
consistent with having character patterns arise on them

Models Parameters Overlap

Clock-like tree (a) 2 b, c
Non-clock-like tree (b) 3 c
Non-sister convergence–divergence model (c) 3 b

model. As such, if character patterns arose on the clock-
like tree they will always be consistent with having arisen
on both the non-clock-like tree and the convergence–
divergence model as well. The converse is not generally
true. Character patterns probabilities that arose on a
non-clock-like tree or a convergence–divergence model
will not be consistent with having arisen on a clock-like
tree unless certain distance constraints are met, such as
the convergence epoch being zero. If the convergence
epoch is non-zero the three-point condition will not
be met, despite the convergence–divergence model still
retaining the molecular clock assumption. For three taxa,
if the character patterns arose on the non-clock-like tree
they will always be consistent with having arisen on
the convergence–divergence model. In contrast, if the
character patterns arose on the convergence–divergence
model they will only sometimes be consistent with having
arisen on the non-clock-like tree. These scenarios are
summarized in Table 1. Note that character pattern
probabilities that arose on a convergence–divergence
model are only sometimes consistent with having arisen
on a non-clock-like tree.

EXTENSION TO FOUR TAXA

In cases with four or more taxa the four-point
condition can be used to check the distinguishability of
convergence–divergence models and tree-like models.
For convergence–divergence models the notion of
distance is generalized in Mitchell (2016) as follows.
d
(
i,j

)=−ln
(
qA

)
is the distance between leaves i and j,

where A is the string of 0’s and 1’s with the 1’s in the
i and j positions and qA is the corresponding character
pattern probability in the Hadamard basis. For example,
for four taxa, d

(
1,3

)=−ln
(
q1010

)
is the distance between

leaves 1 and 3 on any tree or convergence–divergence
model. The four-point condition states that of the three
sums of distances relating four leaves: d

(
1,2

)+d
(
3,4

)
,

d
(
1,3

)+d
(
2,4

)
, and d

(
1,4

)+d
(
2,3

)
, two are equal and

the third is less than or equal to the other two.
The four-point condition is satisfied for phylogenetic

trees, however, it is not immediately obvious whether it is
satisfied for convergence–divergence models. In Mitchell
(2016) 4-taxon clock-like trees, convergence–divergence
models and the non-clock-like tree were compared
under the binary symmetric model with the four-point
condition. For simplicity, only convergence–divergence
models with convergence immediately before the
leaves between two taxa were considered. Convergence
between sister taxa was not considered as these models

3 41 2

FIGURE 6. A 4-taxon convergence–divergence model that satisfies
the four-point condition, yet is distinguishable from clock-like trees
and the non-clock-like tree. There are character pattern probabilities
that are consistent with this convergence–divergence model that are
not consistent with a tree.

are not identifiable or distinguishable from the clock-like
trees that result from removing the convergence.

Of the four possible convergence–divergence models,
three did not satisfy the four-point condition. For
these convergence–divergence models the four-point
condition could be used to determine whether they
are distinguishable from a tree. Interestingly, the
convergence–divergence model with an underlying
clock-like caterpillar tree shown in Figure 6 also satisfies
the four-point condition:

d
(
1,2

)+d
(
3,4

)≤d
(
1,3

)+d
(
2,4

)=d
(
1,4

)+d
(
2,3

)

Since all pairs of taxa other than taxa 1 and 2 are always
diverging,

d
(
1,3

)+d
(
2,4

)=d
(
1,4

)+d
(
2,3

)=2�1 +4�2 +4�3 +4�4,

where �1 to �4 are the lengths of the epochs starting at
the root and moving down. The distance between taxa 1
and 2 will be

d
(
1,2

)=2�1 +2�2 +2�3 −�,

where � increases from 0 to 2�1 +2�2 +2�3 as the
convergence period increases from 0 to being infinitely
long. Then

d
(
1,2

)+d
(
3,4

)=2�1 +2�2 +4�3 +2�4 −�

≤2�1 +4�2 +4�3 +4�4

=d
(
1,3

)+d
(
2,4

)=d
(
1,4

)+d
(
2,3

)
,

and the four-point condition is met for all sets of epoch
lengths.

However, this convergence–divergence model is
still distinguishable from a clock-like caterpillar tree
obtained by removing the convergence since the
distances between pairs of leaves sharing the root as the
ancestral node are not all equal, with

d
(
1,2

)=2�1 +2�2 +2�3 −�≤2�1 +2�2 +2�3 +2�4

=d
(
1,3

)=d
(
1,4

)
.

Similarly, this convergence–divergence model is
distinguishable from the non-clock-like tree since
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d
(
1,3

)=d
(
1,4

)
and d

(
2,3

)=d
(
2,4

)
. For non-clock-like

trees, generally the distance between a pair of leaves
will not equal the distance between any other pair of
leaves since all edge lengths are free to vary. Character
pattern probabilities that are consistent with the non-
clock-like tree will not generally be consistent with the
convergence–divergence model.

In Mitchell (2016) it is shown that the four 4-taxon
convergence–divergence models, the non-clock-like tree
and the two clock-like trees (caterpillar and balanced)
are distinguishable from each other. There are possible
character pattern probabilities that could have arisen on
one, but not on another.

Character pattern probabilities that are consistent with
one of the 4-taxon convergence–divergence models with
a non-zero convergence epoch will not be consistent with
a clock-like tree since the distance between one pair
of leaves has been decreased by the convergence and
the three-point condition will not be met. The distance
between converging leaves on the 4-taxon convergence-
divergence model is now less than twice the sum of the
relevant epoch lengths, the distance between leaves on a
clock-like tree.

As in the 3-taxon case, character pattern probabilities
that are consistent with a 4-taxon convergence–
divergence model are only sometimes consistent with
a non-clock-like tree. For those 4-taxon convergence–
divergence models that don’t satisfy the four-point
condition, character pattern probabilities will not be
consistent with any tree. It is only the 4-taxon
convergence–divergence model of Figure 6, which
satisfies the four-point condition, that may have
character pattern probabilities consistent with a non-
clock-like tree.

Subject to our restrictions, all of the 4-taxon
convergence–divergence models we consider have the
3-taxon convergence–divergence model embedded in
them. Since there are character pattern probabilities
that could have arisen on the 3-taxon convergence–
divergence model but not on the 3-taxon non-clock-like
tree, the same must be true for the 4-taxon case. As in the
3-taxon case, when the convergence epoch of Figure 6
is large enough character pattern probabilities that
are consistent with a 4-taxon convergence–divergence
model are not consistent with a non-clock-like tree since
the triangle inequality is not met. In contrast to the
3-taxon case, character pattern probabilities that are
consistent with a non-clock-like tree will almost always
not be consistent with a convergence–divergence model,
unless the appropriate distances between pairs of taxa
on the non-clock-like tree are equal.

EXTENSION TO n TAXA

For n-taxon convergence–divergence models
tests of distances between leaves can be used to
determine distinguishability from trees. The four-point
condition can be used as a simple test to determine
distinguishability between convergence–divergence

models and all trees. We have shown for 4-taxon
convergence–divergence models that the four-point
condition is sometimes met even though a tree is not
present. However, when the four-point condition is met
on an n-taxon convergence–divergence model there will
still be distances between leaves that are not consistent
with a clock-like tree. The distances may also not be
consistent with a non-clock-like tree.

For clock-like trees the distances between any pair
of leaves sharing an ancestral node must be equal.
Provided some assumptions are made, this will never
be true for convergence–divergence models. We will
assume the only convergence epoch is the last epoch
in time, no lineage is involved in multiple convergence
groups and not all lineages are converging together, such
as in Figure 2b. Convergence decreases the distances
between some pairs of leaves, while leaving distances
between taxa that diverge from each other unchanged.
Provided these assumptions are met, convergence–
divergence models will be distinguishable from clock-
like trees since the three-point condition is not met.
Character pattern probabilities that are consistent with
convergence–divergence models will not be consistent
with clock-like trees provided there is some convergence.
On the other hand, character pattern probabilities
that are consistent with clock-like trees will be
consistent with convergence–divergence models with no
convergence.

Subject to these same restrictions, there are always
embedded 3-taxon convergence–divergence models
which have two taxa involved in convergence and
one diverging from both of the other two. This is
either the convergence–divergence model of Figure 1c
or the convergence–divergence model with convergence
between taxa 2 and 3. Since both convergence–
divergence models are distinguishable from the 3-taxon
non-clock-like tree, n-taxon clock-like convergence–
divergence models must also be distinguishable from
n-taxon non-clock-like trees. The constraints on the
distances involving only these three taxa differ between
convergence–divergence models and non-clock-like
trees. As in the 3-taxon and 4-taxon cases, character
pattern probabilities that are consistent with an n-
taxon convergence–divergence model may or may not
be consistent with a non-clock-like tree depending on
the length of the convergence epoch and whether the
four-point condition is met. If the convergence epoch
is large enough then the triangle inequality breaks
down. Similarly, character pattern probabilities that are
consistent with a non-clock-like tree will almost always
not be consistent with a convergence–divergence model,
unless some distances between pairs of taxa are equal to
each other on the non-clock-like tree.

In summary, clock-like convergence–divergence
models that meet our restrictions will be distinguishable
from all clock-like trees and non-clock-like trees. There
will always be some character pattern probabilities
that could have arisen on a clock-like convergence–
divergence model, but not on a clock-like tree or a
non-clock-like tree.
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DISCUSSION

Under the assumption of tree-like evolution, the
number of structural parameters needed is determined
by the number of taxa under consideration (e.g., in a non-
clock-like binary tree with n taxa we have 2n−3 edges).
Thus phylogeneticists usually need not think about the
number of structural parameters required. However,
when we remove the tree assumption we have to think
more carefully about parameter selection (Holland 2013).

It is increasingly apparent that there are many
biologically reasonable causes of non-tree-like evolution,
so it seems clear that we should consider a broader range
of models. In many cases, it is possible to choose between
competing scenarios on the basis of AIC, however, an
example we give here shows that this will not always
be the case. In the scenario presented here we show
two competing biologically reasonable scenarios that
give identical likelihoods and have the same number
of parameters. Which should we prefer? In the end it
depends if we believe more in a molecular clock or if
we believe more strongly in a divergence-only model.
Sometimes we may be able to bring extra information
to the problem. For example, to choose between two
pairs of models we might know that two species are
sympatric and that there is some opportunity for gene-
flow, whereas two other species are not. Note, however,
that we don’t have a statistical way to choose between
models and cannot escape the need for knowledge of the
underlying biology/geography. It is possible that this
issue could be addressed with Bayesian methods that
assign different prior probabilities to different models
based on expert opinion of which scenarios are most
plausible.

As discussed earlier, Steel (2005) raised two important
issues regarding model fit. We want a model that has
both enough parameters to be biologically realistic and
few enough parameters to not over-fit the data. In the
past, phylogeneticists have often rejected models with
the molecular clock hypothesis due to their tendency to
not have enough parameters to be biologically realistic.

An alternative to the molecular clock assumption is
a non-clock-like tree. Removing the molecular clock
approximately doubles the number of parameters for
large numbers of taxa, which can result in over-fitting
the data. If both a clock-like tree under-fits the data
and a non-clock-like tree over-fits the data then a model
with an intermediate number of parameters may be
more appropriate, such as a relaxed clock model of
Drummond et al. (2006). Our clock-like convergence–
divergence models provide an alternative approach to
relaxed clock models when clock-like trees under-fit the
data. Any number of extra parameters beyond those on
clock-like trees can be introduced. Extra parameters can
be added one at a time until there is no statistically
significant improvement to the fit of the model to the
data, as judged by the AIC. One must take care in the
order of introduction of convergence epochs as there
are many possible scenarios that could be modeled with
convergence–divergence models.

A challenge that arises is determining which
convergence–divergence model fits the data best. For
a small number of taxa an exhaustive search over all
possible convergence–divergence models according to
our restrictions is possible. For a large number of taxa
we need to be more targeted. One potential approach
could be to first optimize the fit for a clock-like tree
and then “perturb” the clock-like tree slightly by adding
convergence on parts of the tree where the molecular
clock appears to be insufficient in explaining all of the
variance in the data. It is possible that this approach will
not result in the optimal convergence–divergence model,
however, it may still result in a convergence–divergence
model that fits the data better than a clock-like tree.

Francis and Steel (2015) found that the four-point
condition may be satisfied for hybridization and HGT
networks. They argued that this is consistent with the
four-point condition being met if and only if there is a
tree metric, since any distances that satisfy the four-point
condition must be consistent with a tree, even if they are
also consistent with a hybridization or HGT network.
Our convergence-divergence models are fundamentally
different to hybridization and HGT networks since the
four-point condition can be met for some convergence–
divergence models despite the distances not fitting on
any tree. The four-point condition is met for all sets
of epoch lengths for the convergence–divergence model
of Figure 6. However, as we have argued earlier, when
the convergence epoch is large enough the character
pattern probabilities (and also the distances) will not
be consistent with a tree. For n taxa there will be some
character pattern probabilities that are consistent with a
convergence–divergence model but not with a non-clock-
like tree, regardless of whether the four-point condition
is met or not.

Future work will involve exploring more than three
and four taxa, as well as examining more biologically
realistic Markov models than the binary symmetric
model. The Python script supplied in the Supplementary
material available on Dryad is capable of comparing
models for n taxa, although only 3-taxon and 4-taxon
examples were explored here. The binary symmetric
model was chosen to clearly illustrate our salient points,
however, in principle the same mathematical techniques
can be applied to the general Markov model on any
number of states. In particular, the results could be
extended to the two-state general Markov model. The
two-state general Markov model is of interest because it
could be applied to the binary presence/absence data of
ddRAD or for morphological data.
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