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Diagnosis of feline filariasis assisted 
by a novel semi‑automated microfluidic device 
in combination with high resolution melting 
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Abstract 

Background:  The diagnosis of filariasis traditionally relies on the detection of circulating microfilariae (mf ) using 
Giemsa-stained thick blood smears. This approach has several limitations. We developed a semi-automated microflu-
idic device to improve and simplify the detection of filarial nematodes.

Methods:  The efficiency and repeatability of the microfluidic device was evaluated. Human EDTA blood samples 
were ‘spiked’ with B. malayi mf at high, moderate, and low levels, and subsequently tested 10 times. The device was 
also used for a field survey of feline filariasis in 383 domesticated cats in an area of Narathiwat Province, Thailand, the 
endemic area of Brugia malayi infection.

Results:  In the control blood arbitrarily spiked with mf, the high level, moderate level and low level mf-positive con-
trols yielded coefficient variation (CV) values of 4.44, 4.16 and 4.66%, respectively, at the optimized flow rate of 6 µl/
min. During the field survey of feline filariasis in Narathiwat Province, the device detected mf in the blood of 34 of 383 
cats (8.9%) whereas mf were detected in 28 (7.3%) cats using the blood smear test. Genomic DNA was extracted from 
mf trapped in the device after which high-resolution melting (HRM) real-time PCR assay was carried out, which ena-
bled the simultaneous diagnosis of filarial species. Among the 34 mf-positive samples, 12 were identified as B. malayi, 
15 as Dirofilaria immitis and 7 as| D. repens.

Conclusions:  We developed a semi-automated microfluidic device to detect mf of filarial parasites that could be 
used to diagnose lymphatic filariasis in human populations. This novel device facilitates rapid, higher-throughput 
detection and identification of infection with filariae in blood samples.
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Background
The filariae are a group of parasitic nematodes that 
belong to the family Onchocercidae. Filarial species that 
parasitize cats and dogs including Dirofilaria immitis, D. 
repens, Brugia malayi and B. pahangi are of worldwide 
zoonotic and veterinary significance and are recognized 

as emergent human pathogens [1–4]. Accurate and 
prompt diagnosis is essential for the management of filar-
ial infection at the individual level and for disease control 
in populations living in endemic regions. Traditionally, 
the diagnosis of filariasishas relied on the detection of 
microfilariae in peripheral blood, using microscopical 
examination of stained, thick blood smears. According 
to the World Health Organization (WHO), the drying 
step of the thick blood smear may require 12 hours in the 
dry season while 24–48 hours may be needed in the high 
humidity during the rainy season [5].
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Over the past decade, microfluidic technologies, i.e. the 
precise control of fluids and samples at sub-millimeter 
scale, adapted for the detection of pathogens in mam-
malian bodily fluids, have emerged as powerful, facile 
tools. The microfluidic approach has been applied for the 
detection of diverse pathogens including blood stages of 
malarial parasites [6–9]. The premise of microfluidic tech-
nologies is the manipulation and analysis of fluids within 
micro-channels. The construction of the device is accom-
plished using microfabrication processes, such as photo-
lithography (PL), deep reactive ion etching (DRI), replica 
casting, silicon (Si) molds, and others [10]. Microfluidic-
based platforms offer advantages in comparison to thick 
blood smear staining technique, including speed, cost, 
portability, high throughput and automation [9]. Moreo-
ver, microfluidic devices require and consume only min-
ute amounts of samples and reagents, which minimizes 
waste and expense, and they offer the unique physical 
advantage of microscale fluid flow [10]. Microfluidic tech-
nologies have also been used in research on other parasitic 
nematodes, including the deployment of a chip device that 
integrates microfluidics and electrophysiology to provide 
real-time records of the nano-scale electrical signals emit-
ted by nematode muscles and neurons [11], and a micro-
fluidic electropharyngeograms to screen anthelmintic 
candidates and investigate feeding behaviors by nematodes 
for the discovery of novel anthelmintics [12].

In this study, we report a novel, semi-automated 
microfluidic device that integrates real-time and high 
resolution melting PCR for the simultaneous detection 
and differentiation of species of filariae, in the blood of 
domesticated cats naturally infected with species of Bru-
gia and Dirofilaria.

Methods
Study samples
To study the efficiency and reproducibility of the semi-
automated microfluidic device, three groups of samples 
were prepared by spiking microfilariae (mf) of B. malayi 
into EDTA blood obtained from a healthy subject. For 
the survey of feline filariasis in Narathiwat, blood was 
collected from 383 cats residing in Su-ngai Padi and Tak 
Bai districts of Narathiwat Province (Fig. 1).

Detection of microfilariae using a semi‑automated 
microfluidic device
Microfluidic chip design and fabrication
The four-channeled microfluidic chip used in this study 
was adapted from the microfluidic chip reported earlier 
[13]. In brief, the microfluidic chip was fabricated from 
polydimethylsiloxane (PDMS) with patterned Photoresist 
on a silicon wafer [14]. For the present investigation, the 
pattern features were created on a Si wafer through PL 

and DRIE processes. The resulting Si master is a mold-
ing template for casting PDMS. A 10:1 mixture of PDMS 
pre-polymer and curing agent was cast with the Si mas-
ter and the polymer cured at 60 °C for 3 h. Subsequently, 
the cured polymer from the PDMS replica was removed 
from the master, and cut to the required shape using a 
sharp cutter. Inlet and outlet ports were constructed by 
punching holes through the PDMS chip. The PDMS rep-
lica was sealed to a glass slide after the interface bonding 
process to promote the oxygen plasma process. Silicone 
tubing was inserted into the holes and sealed with epoxy 
resin. Figure  2 depicts the microfluidic system, which 
consists of an infusion pump with an adapter and a 1 ml 
syringe with a bespoke 5  mm long needle with a blunt 
end that serves as the injector port for the samples. Up to 
10 samples can be processed simultaneously.

Optimization of flow rate
To optimize the flow rate, testing of the microfluidic 
device was performed using the same set of mf-positive 
blood samples. The average number of mf in the blood 
samples was 60 mf per 50 µl of sample. The device was 
tested with flow rates of 6, 8 and 10  µl/min. Duplicate 
flow rates were performed. The run time and the num-
bers of the trapped mf in the chip were recorded. The 
choice of optimal operating flow rate was established 
based on duration of the run and numbers of trapped mf.

Sample preparation and mf detection by the microfluidic 
device
Before testing, 50  µl of EDTA-treated blood was sus-
pended into 150  µl of the specifically-formulated lysis 
buffer A, which contained a Triton X-100 and bromo-
phenol blue, mixed and incubated at room temperature 
for 10 min. The prepared sample was drawn, followed by 
15  µl of buffer B containing a chaotropic salt and PBS, 
into a 1 ml syringe with a specially designed 5 mm long 
blunt end needle that connects the syringe to the adapter 
and to the inlet port. The pump was started and the sam-
ple solution was introduced into the microfluidic device 
via the inlet port. The microfilariae were trapped in the 
microfluidic chip while the remaining solution exited the 
microfluidic chip via the outlet port and into the waste 
tube. The trapped mf were inspected by light microscopy 
at 10× magnification. The semi-automated microfluidic 
device and the microfluidic chip are shown in Figs. 2, 3.

Evaluation of the efficiency and repeatability 
of the microfluidic device
To evaluate the efficiency of the microfluidic device, 
blood donated by a healthy human was collected in 
EDTA and subsequently ‘spiked’ with microfilariae of 
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B. malayi to prepare high level (average 30 mf/50  µl), 
moderate level (average 15.5 mf/50  µl) and low level 
(average 7.5 mf/50  µl) mf-positive control blood sam-
ples. To study the intra-assay variation, 10 replicates of 
each of these three mf-positive controls were tested in 
the microfluidic device, which was operated at a flow 
rate of 6  µl/min. The mean, SD, % CV and range of 
both the trapped mf and leaked mf were calculated for 
intra and inter assay variation. Inter assay variation was 
calculated from the average mf/sample on each of five 
consecutive days.

Microscopic detection of microfilariae (mf) using Giemsa 
staining
Giemsa staining of thick blood smears was performed 
according to the standard WHO procedure [5]. Briefly, 
50  µl of EDTA blood was dropped/spotted onto a glass 
slide, then smeared in a circular shape using the edge of 
a fresh microscope slide, and then the smeared slide was 
air-dried overnight (15–18 h) at room temperature. Sub-
sequently, the slide was immersed in water followed by 
staining for 45–60 min with a freshly prepared working 
solution of Giemsa stain. After air-drying, the slides were 

Fig. 1  Map of Narathiwat Province, Thailand showing the study areas and brugian filariasis endemic areas

Fig. 2  The microfluidic device for detection for diagnosis of the microfilarial stage of filarial parasites. The sample injector consists of an infusion 
pump with an adaptor and ten syringes with a 5 mm long blunt ended needle connected to the inlet of the microfluidic chips (1, 2, 3) using 
silicone tubing. a Microfluidic device. b Microfluidic chips
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examined under a microscope (40×) for mf by skilled 
technicians.

Field survey of feline filariasis
Samples of blood from a total of 383 domesticated cats 
were obtained from an annual survey of filarial infec-
tion in the Su-ngai Padi and Tak Bai districts of Nar-
athiwat Province, the endemic areas of brugian filariasis, 
conducted by the Filariasis Project, Pikhunthong Royal 
Development Study Center, Narathiwat, Thailand. A sin-
gle thick smear slide was prepared from blood obtained 
by ear prick from each cat. Additional blood was col-
lected from each cat and dispensed into heparinized 
capillary tubes. The thick blood smear staining tech-
nique was performed in the laboratory of the Filarial 
Project, Phikhunthong Royal project, Narathiwat Prov-
ince. Microfluidic device testing was performed in the 
laboratory of the Department of Parasitology, Faculty of 
Medicine Siriraj Hospital, Mahidol University, Bangkok. 
All of the study cat blood samples, which were tested 
for microfilarial detection using the microfluidic device, 
were blindly performed.

Species identification of the trapped microfilariae (mf) 
using HRM real‑time PCR analysis
Extraction of filarial DNA from trapped mf in the microfluidic 
chip
To identify species of the trapped mf in the microfluidic 
chips, 100  µl Tris-EDTA buffer was dispensed into the 
chip via the inlet port. The chip was placed on a hot plate 
at 56  °C for 15 min, after which the solution containing 
the trapped mf was withdrawn through the outlet port 
and transferred to a 1.5 ml Eppendorf tube. The tube was 
subjected to centrifugation at 15,520× g for 10 min. The 
supernatant was discarded, and DNA was extracted from 
the pelleted material using the Roche high pure PCR 
template preparation kit, according to the manufacturer’s 
instructions (Roche Diagnostics GmbH, Penzberg, Ger-
many). DNA concentration was determined using a Nano 
Drop (Thermo Fisher Scientific) after which the DNA 
was employed as the template for HRM real-time PCR 
analysis. The DNA concentration of the 34 mf-positive 
samples is range between 5.9–11.4 ng per µl.

HRM real‑time PCR assay
The HRM real-time PCR assay was performed on a Light-
Cycler LC480 instrument (Roche, Penzberg, Germany) 

Fig. 3  Microfluidic chip for detecting microfilariae of filarial parasites. a The chip contains four testing channels; each channel consists of four 
components: the inlet, rough filters, detection zone and outlet from left to right. b Photomicrograph of microfilariae of lymphatic filariae trapped in 
the rough filter area. c Photomicrograph of microfilariae of lymphatic filariae trapped in the detection zone of the device (10× magnification)
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with primers reported previously [15]. To identify B. 
malayi, B. pahangi, D. immitis and D. repens, DNA of 
these four filarial species were used as positive controls 
(Fig. 4). Nuclease-free water replaced the DNA template 
for the negative control. Reaction conditions included an 
activation step at 95  °C for 5 min followed by a 40-step 
amplification of 10  s at 95  °C, 10  s at 58  °C and 10  s at 
72  °C. Subsequently, the products were heated to 95  °C 
for 1 min and then cooled to 40 °C for 1 min, followed by 
HRM from 65 to 95 °C. The LightCycler 480 gene scan-
ning software (Roche) was employed to construct melt-
ing curves, which were normalized, temperature-shifted 
and converted to difference plots. Little difference in 
melting temperature (Tm’s) (< 0.5 °C) was found between 
melting curves for D. immitis and D. repens and hence it 
was necessary to distinguish these two species of Diro-
filaria by PCR. This was done targeting the cytochrome 
oxidase subunit 1 (cox1) gene, using the following prim-
ers specific for the cox1 gene of D. repens: 5′-AGT GTT 
GAT GGT CAA CCT GAA TTA-3′ and 5′-GCC AAA 
ACA GGA ACA GAT AAA ACT-3′ [16]. The HRM was 
performed as previously described [16].

Results
Microfluidic chip design and fabrication
The fabricated microfluidic chip consists of four paral-
lel microfluidic channels, each of which contains an inlet 
and outlet, and an enclosed chamber in the middle of 
each channel (Figs.  2, 3). The height of the microfluidic 
channels is 50 μm and the width of the inlet and outlet 

channels is 200 μm. Each enclosed area has a diameter of 
2.0 mm and contains an integrated flow-through micro-
filter. The microfilter has a distance of 3 μm between rec-
tangular pillars.

Flow rate optimization
The number of trapped mf and elapsed time were 
recorded at specified flow rates. The elapsed time at a 
flow rate of 6 µl/min was 37 min while the elapsed times 
at flow rates of 8  µl/min and 10  µl/min were 25 and 
17 min, respectively. The number of trapped mf at 6 µl/
min was 59.5, while 45 mf were trapped at 8 µl/min and 
28.5 mf were captured at 10  µl/min (Fig.  3). The flow 
rate of 6 µl/min was chosen since it trapped the highest 
amount of mf.

Microfluidic device testing time per sample
The operator required 15  min to prepare 10 samples, 
37 min to perform the testing, and 5 min for mf obser-
vation under the microscope. Therefore, approximately 
5.7 min were needed to complete one sample.

Evaluation of the efficiency and repeatability 
of the microfluidic device
To evaluate intra-assay and inter-assay variation, the 
mean ± SD of the trapped mf and the mean ± SD and % 
CV of the mf from the outlet (leaked mf) of blood sam-
ples with high, moderate and low mf levels were recorded 
(Table 1).

Fig. 4  Alignment of nucleotide sequences of the partial mitochondrial 12S rRNA gene of B. malayi, B. pahangi, D. immitis and D. repens, as well 
as alignment of the cox1 gene of D. repens. Dots indicate identity and dashes indicate deletion from the above consensus sequence. Gray areas 
indicate PCR primer sequences
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Microfilariae detection in cat blood samples 
by the microfluidic device
Microfilariae were detected in the blood of 34 of 383 cats 
(8.9%) using the microfluidic device, whereas mf were 
detected in blood of 28 cats of these 383 cats (7.3%) by 
the Giemsa-stained thick blood smear technique. The 
species of the mf trapped in the microfluidic chamber 
were identified by real-time PCR with HRM analysis 
(Table 2).

HRM real‑time PCR assay
Figure  5 presents a representative HRM finding with 
amplicons from mf-positive blood and the studied sam-
ples, including the melting curve analysis and the nor-
malized and temperature-shifted difference plot. Using 
the primers of Wongkamchai et  al. [15] the amplicons 
for the positive controls (Bm, B. malayi; Bp, B. pahangi; 
Di, D. immitis and Dr, D. repens) obtained from the Light 
Cycler 480 software, were recognized by the HRM assay 
at melting peaks (Tmʼs) of 75.6 ± 0.08 °C, 77.19 ± 0.12 °C, 
74.07 ± 0.21 and 74.15 ± 0.16 °C, respectively. Twelve mf-
positive cats were determined to be positive for B. malayi 
mf whereas 22 mf-positive cats were confirmed to be 
infected with either D. immitis or D. repens. Thereafter, 
the DNAs from these 22 mf-positive samples were inves-
tigated using the cox1 gene-specific primers for D. repens 
[16]. The amplicon from the D. repens positive control 
was recognized in the HRM assay at melting peak (Tmʼs) 
of 75.32 ± 0.12  °C whereas the findings were negative 
when tested with D. immitis and with negative control 
cat blood samples (Fig.  5). In total, 15 mf-positive cats 
were identified as infected with D. immitis and seven mf-
positive cats with D. repens.

Discussion
The analysis of diverse analytes using a single biochip has 
gained wide utility over the past decade due to its effi-
cacy in the process of identification, diagnosis and dis-
covery, especially for clinical samples [9]. We developed 
a semi-automated microfluidic device to detect micro-
filariae of filarial worms. Microfluidic channels within the 

device facilitated the sieve-like sorting of the microfluidic 
device. The flow control was achieved by the application 
of an infusion pump. For the pressure-driven flow used in 
microfluidics-based assays, it is important to determine 
the maximum flow rate that allows retention of mf within 
the chip. Improvements in assay speed attempted by rais-
ing the flow rate excessively may cause more mf to be 
forced through the filter to the outlet, thereby decreasing 
sensitivity and efficiency. We deployed a flow rate of 6 µl/
min as a compromise rate because no mf were found in 
the outlet and the time spent for one run was not signifi-
cantly longer than those obtained with higher flow rates.

Sample preparation on microfluidic devices is a con-
tinuing challenge and a necessary component of devel-
oping fully integrated and facile microfluidic diagnostic 
approaches [17]. When working with biological or clini-
cal samples that are in limited supply, sample prepara-
tion remains a weak link in microfluidics chip assays 
[18]. In our study, lysis of the blood cells is necessary 
to overcome high concentrations of blood cell compo-
nents, which can obstruct the flow. Triton X, a non-
ionic detergent [19], was used as the lytic reagent in the 
sample buffer, and a chaotropic salt was included in the 
microfluidic chip to facilitate extraction of nucleic acids 
within the chip [20]. For the sample injection, we applied 
an adapter to the syringe pump that enabled testing of 

Table 1  The efficacy and repeatability of the microfluidic device in the laboratory

Abbreviations: CV, coefficient of variation; mf, microfilariae; SD, standard deviation

Microfilariae level/50 µl 
blood

Number of microfilariae

Intra-assay variation Inter-assay variation

Trapped mf (mean ± SD) CV (%) Leaked mf (mean ± SD) CV (%) Trapped mf 
(mean ± SD)

CV (%) Leaked mf (mean ± SD) CV (%)

High (mean 30) 27.22 ± 2.94 10.8 1.25 ± 0.83 66.4 31 ± 1.22 4.44 1.61 ± 0.55 34.16

Moderate (mean 15.5) 15.44 ± 1.3 8.42 1.56 ± 1.2 76.9 15.6 ± 0.89 4.16 1.4 ± 0.55 32.49

Low (mean 7.5) 5.25 ± 0.5 9.38 0.5 ± 0.58 94.6 5.8 ± 0.45 4.66 0.4 ± 0.55 45.8

Table 2  The prevalence of filarial detection in domestic cats in 
Narathiwat Province, Thailand by microfluidic device compared 
with the Giemsa staining method, showing species of the 
detected filariae

Abbreviations: mf, microfilariae

Method No. of 
samples (%)

Species of mf

Giemsa 
stain

Microfluidic 
chip

B. malayi D. immitis D. repens

+ + 28 (7.3) 9 13 6

− + 6 (1.6) 3 2 1

+ − 0 0 0 0

− − 349 (91.1) – – –
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up to ten samples in a single run. The sample-injector 
was constructed to include a 1 mm syringe fitted with a 
blunt ended needle of the desired size. The commercially 
available needle is 7 cm (2.5 inches) in length bearing a 
standard, needle-sharp point. In place of the commer-
cial needle, we inserted a short (5  mm), blunt-ended 
needle, which was simple to construct. This modifica-
tion rendered the sample-injector safer for the opera-
tor to insert into the silicone tube, and also reduced the 
sample loading time. Another advantage of this bespoke 
device is the glass slide size of the chip. It includes four 
channels in concert with the clear background. The mean 
time per sample was 7.5 minutes. By using the device, a 
larger number of blood samples could be managed, and 
results could be obtained within an hour. Since 50 µl of 
EDTA-treated blood was used per sample, the detection 
limit (sensitivity) of our developed device was ≥ 20 mf in 
1 ml of blood. Moreover, no false positive was found. The 
device can also be applied for the screening of lymphatic 
filariasis in human blood. The microfluidic device is port-
able and weighs three kilograms. However, it requires 
electrical power to operate, which may restrict its use 
in more remote settings. Fewer mf were detected using 
the thick blood smear staining technique compared to 
the microfluidic device. In an early report on the use of 
stained thick blood smears for parasitological diagnosis 
of filariasis, Southgate [21] compared the counting cham-
ber technique with stained thick blood smear technique 
to detect microfilariae of W. bancrofti in human blood; 
all mf-positives by the counting chamber technique were 
positive by blood film staining technique whereas 77 mf-
positive blood samples by counting chamber technique 
were negative by thick blood smear staining. Southgate 
concluded that the 77 mf-negative blood obtained from 
thick blood smear staining technique was due to the 
loss of mf from the slide during slide preparation [21]. 
Moreover, losses of microfilariae from blood films result 
from errors with slide preparation including the use of 
glass slides that are not clean, blood smears that are too 
thick, and importantly, insufficiently dried blood films [5, 
22]. From our own experience with thick blood smears, 
human error resulting in false negative mf results is an 
important problem. This is because performing large 
numbers of blood samples is tedious, laborious and time 
consuming. The presence of stained red blood cells in the 
Giemsa stained smears causes eye fatigue and dizziness 
in many operators, and can reduce the efficacy and sensi-
tivity of the assay.

Nevertheless, application of the microfluidic device 
for filarial detection in cats causes a concern since cats 
may be infected with both human and zoonotic filariae. 
Although the mf can be differentiated as sheathed or 
non-sheathed, the identity of the species may not be clear 

Fig. 5  Melting peaks (a), normalized difference curves (b) and 
the normalized and temperature-shifted difference plot (c) of 
the amplified product of control species (B. malayi, B. pahangi 
and D immitis/D. repens) and S1-S11 representative DNAs from 34 
mf-positive samples of cat blood and DNA from the 22 mf-positive 
samples using cox1 specific primers for D. repens, S1; S2; S5 
represented the 22 mf-positive cat samples (d), as obtained with the 
LightCycler 480 gene scanning software. Abbreviations: Bm, B. malayi; 
Bp, B. pahangi; Di, D immitis/D. repens 
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for non-sheathed filariae in cat blood. Moreover, it is par-
ticularly difficult to differentiate mf of B. malayi (human 
filaria) and B. pahangi (feline species) by Giemsa stain-
ing due to their similar morphology [23]. To obviate this 
concern, we integrated a HRM real-time PCR assay for 
species differentiation of the trapped mf. Advantages of 
this technique include that the initial step of DNA extrac-
tion can be performed within the chip, and the PCR with 
HRM analysis can be performed in a single tube using a 
single pair of primers with no specific probes required. 
The assay can be performed with sets as large as 384 
samples in a single run and without the need for a down-
stream follow-up PCR step [24, 25]. Furthermore, the 
assay is sensitive and detects as little as a 19.4 pg genomic 
DNA/reaction for B. malayi and a 16.4  pg/reaction for 
D. immitis [13]. The filarial species in all 34 positive cat 
blood samples were identified satisfactorily.

To conclude, we have developed a semi-automated 
microfluidic device to detect mf of filarial parasites that 
could be used to diagnose lymphatic filariasis in human 
populations. Although there are numerous reports deal-
ing with DNA-based detection of filariasis, including 
the rapid differentiation of D. immitis and D. repens [26, 
27], our study is the first to link the microfluidic system 
with the HRM real-time PCR to achieve a reliable and 
cost-effective method for rapid identification of feline 
filarial parasites. This novel device facilitates rapid, 
higher-throughput detection and identification of infec-
tion with filariae in blood samples.

Conclusions
We developed a high-throughput, semi-automated 
microfluidic device integrated with HRM real-time 
PCR assay for detection and identification of filarial 
worms in peripheral blood sampled from cats. The 
microfluidic device paired with the HRM real-time 
PCR assay enabled rapid simultaneous diagnosis of up 
to ten discrete blood samples. Device and constituent 
reagent patents are being sought in Thailand, Patent 
Request Number 1701001524.

Abbreviations
Bm: B. malayi; Bp: B. pahangi; Di: D immitis; Dr: D. repens; partial mitochondrial 
12S rRNA gene: partial mitochondrial 12 subunits of ribosomal ribonucleic 
acid; cox1: cytochrome c oxidase subunit 1; HRM: high resolution melting; 
PCR: polymerase chain reaction; PL: photolithography; DRIE: deep reactive ion 
etching process.
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