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Abstract

Chronic pain is commonly accompanied with anxiety disorder, which complicates treatment. In this study, we
investigated the analgesic and anxiolytic effects of Formononetin (FMNT), an active component of traditional
Chinese medicine red clover (Trifolium pratense L) that is capable of protecting neurons from N-methyl-D-aspartate
(NMDA)-evoked excitotoxic injury, on mice suffering from complete Freund's adjuvant (CFA)-induced chronic
inflammatory pain. The results show that FMNT administration significantly reduces anxiety-like behavior but does
not affect the nociceptive threshold in CFA-injected mice. The treatment reverses the upregulation of NMDA,
GluA1, and GABA, receptors, as well as PSD95 and CREB in the basolateral amygdala (BLA). The effects of FMNT on
NMDA receptors and CREB binding protein (CBP) were further confirmed by the potential structure combination
between these compounds, which was analyzed by in silico docking technology. FMNT also inhibits the activation
of the NF-kB signaling pathway and microglia in the BLA of mice suffering from chronic inflammatory pain.
Therefore, the anxiolytic effects of FMNT are partially due to the attenuation of inflammation and neuronal
hyperexcitability through the inhibition of NMDA receptor and CBP in the BLA.

Keywords: Inflammation, Chronic pain, Anxiety, Formononetin, Amygdala, NMDA

Introduction

Patients suffering from chronic pain often have emo-
tional comorbidities that affect mood, sleep, activity, and
cognition. Accordingly, the prevalence of anxiety disor-
ders among patients with chronic pain ranges from 20
to 40%, compared to 7-18% in the general population
[1, 2]. Epidemiological studies have reported that the
pervasiveness of pain in subjects with anxiety or depres-
sion, and that of anxiety or depression in subjects with
pain, are higher than in the cohort with either condition
alone [3-5]. Opioids are the most effective treatment for
pain. However, the incidence of anxiety among
opioid-treated chronic pain patients is 48.4% [6]. Thus,
an effective treatment of chronic pain requires a com-
bination of analgesics as well as anxiolytics [7].
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Formononetin (FMNT), one of the main active com-
ponents in Trifolium pratense L. medicinal plant, is de-
scribed as a typical phytoestrogen [8]. It is involved in
the fracture-repair process, as evidenced by its role in
enhancing bone regeneration in a mouse model of cor-
tical bone defect [9]. Moreover, it has hypolipidemic
properties and free radical scavenging activity that pre-
vent the formation of lipid peroxidation [10, 11]. FMNT
is also reported to have a neuroprotective effect against
oxidative stress and excitotoxicity instigated by hydrogen
peroxide and L-glutamate [12, 13]. In a previous study,
we showed that FMNT protected neurons from
N-methyl-D-asparate (NMDA)-induced apoptosis [14].
Nevertheless, the effects of FMNT on analgesia and anti-
anxiety are not well known.

The amygdala, a critical region associated with emo-
tion and motivation, consists of several anatomically and
functionally distinct nuclei, including the lateral (LA)
and basolateral (BLA) nuclei, as well as the central nu-
cleus (CeA) [15]. Among the subnuclei of the amygdala,
the BLA bi-directionally communicates with brain re-
gions that affect pain, cognition, motivation, and stress
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responses, including the anterior cingulate cortex
(ACCQ), prefrontal cortex, hippocampus, and nucleus ac-
cumbens. Therefore, it plays a central role in emotional
and motivational processing [16—18]. An imbalance be-
tween excitation and inhibition (E/I) in the BLA, such as
hyperexcitability, induces anxiety [19, 20]. Inflammation
is another factor that can affect the onset and develop-
ment of anxiety in the amygdala [21, 22]. This study in-
vestigates the effects of FMNT on the treatment of
chronic pain and anxiety. Open field (OF) and elevated
plus maze (EPM) anxiety tests, as well as the Von Frey
and hot plate pain tests were conducted on a model
group of mice injected with complete Freund’s adjuvant
(CFA) to simulate pain- and anxiety-like behaviors. The
influence of FMNT in the BLA, and the underlying
mechanisms, were closely examined.

Materials and methods

Animals

C57BL/6 male mice (age 7-8 weeks) from the Labora-
tory Animal Center of the Fourth Military Medical Uni-
versity (FMMU) were used in all of the experiments.
The mice were divided into four groups, and each group
was kept in a separate cage under standard laboratory
conditions (12 h light/12h dark, temperature 22-26°C,
humidity 55-60%) with water and food provided ad libi-
tum. Mice in the control group were not chemically
treated in any way. The CFA group of mice was given
single-dose injections of CFA, while the CFA + FMNT
group was injected first with CFA, then with FMNT.
FMNT group was only treated with FMNT. Prior to the
beginning of the experiment, the animals were permitted
to acclimate to the laboratory environment for at least 1
week. All of the experiments were carried out in accord-
ance with protocols approved by the Institutional Ethical
Committee of the FMMU.

Chronic inflammatory pain mouse model and drug
treatment

To induce chronic inflammatory pain, a single dose of
CFA (50% CFA, 10 pl; Sigma, St. Louis, MO, USA) was
injected into the plantar surface of the right hind paws
[23] of mice in the CFA and CFA + FMNT groups. One
week after CFA injection, CFA + FMNT mice were ad-
ministered with FMNT (purity >98%, Aladdin, Shang-
hai, China) by intraperitoneal injection (i.p) at a dose
of 25mg/kg, once a day for 8-10 consecutive days.
EMNT was dissolved in olive oil to a concentration
of 10 mg/ml. Equal volume olive oil was intraperito-
neally injected into the control and CFA mice. On
the day of behavior test and sample preparation,
EMNT, or olive oil, was administrated 30 min before
commencing with the testing procedure.
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Open field test

The open field (OF) test was carried out to detect
anxiety-like behavior in CFA-injected mice as described
in previous work [24]. The OF, a square arena (30 cm x
30 cm x 30 cm) with plastic walls and floor, was placed
inside an isolated chamber with illumination. Mice were
put into the central area of the box and allowed to freely
explore for 15 min. Movement loci of mice were re-
corded using a camera fixed above the floor, and ana-
lyzed with a video-tracking system (DigBehv-LR4,
Shanghai Jiliang, China). The OF test was performed be-
fore the elevated plus maze (EPM) test on the same day.

Elevated plus maze (EPM)

To further evaluate anxiety-like behavior, EPM tests
were also conducted, as detailed in a previous study [19].
Briefly, the apparatus (RD1208-EP, Shanghai Mobileda-
tum Corporation, China) consists of two open arms (25
cnx8cm x 0.5cm) and two closed arms (25cm x 8
cm x 12 ¢cm) that extend from a common central plat-
form (8 cm x 8 cm), placed at a height of 50 cm above
the floor. Mice were allowed to habituate to the testing
room for 24 h before the test. For each test, an individual
mouse was placed in the center square, facing an open
arm, and allowed to explore freely for 5 min. The degree
of anxiousness was evaluated based on the number of
entries into and the time spent in the open arms [25].
An entry was defined as having all four paws placed in-
side an arm. Mice movement was monitored using a
video-tracking system composed of a camera fixed above
the maze.

Von Frey test

This test was conducted to assess the pain threshold in
mice. The setup consists of a plastic box with a metal
mesh floor. The mice were individually placed inside this
box and allowed to adjust to the environment for 30 min
before testing. Using Dixon’s up-down paradigm, the
sensitivity of mechanical allodynia was determined based
on the responsiveness of the hind paw to the point of
bending of von Frey filaments. In this study, filaments
with different bending forces (0.008-2 g) were applied to
the middle of the hind paw dorsum in an ascending
order. Licking, biting, and sharp withdrawal of the hind
paw were considered as positive responses. A rest inter-
val of at least 3 minutes was allowed between consecu-
tive stimulations. The results were tabulated and the
pain threshold was assigned at 50% withdrawal.

Hot plate test

To assess thermal nociceptive responses, a commercially
available plantar analgesia instrument (BME410A, Insti-
tute of Biological Medicine, Academy of Medical Sci-
ence, China) was employed. Again, the mice were
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individually placed in plastic boxes and allowed to accli-
mate for 30 min. Thermal hyperalgesia was assessed by
measuring the latency of paw withdrawal (PWL), defined
as the time extending from radiant heat application to
withdrawal of the hind paw [26]. The heat source was
turned off automatically when the mouse lifted its foot.
In order to prevent tissue damage, the heat source was
automatically cut off at 40s even if the mouse did not
lift its hind paw. The experiment was repeated five
times, with a five-minute rest interval between two con-
secutive tests.

Western blot analysis

On the 16th day after CFA injection (Fig. 1a), at 30 min
after the administration of FMNT in CFA + FMNT and
EMNT groups, all mice were anesthetized with 4% iso-
flurane and then decapitated. Coronary slices (300 pum)
of their extracted brains were obtained by Vibratome,
and the bilateral BLA were isolated under anatomical
microscope. Western blot analysis was performed as de-
tailed in Liu et al. [27]. The BLA sample was dissociated
via sonication in RIPA lysis buffer containing phosphat-
ase and protease inhibitors. The protein content of the
collected samples was quantified using the BCA Protein
Assay Kit. Equal amounts of protein (40 pg) were dis-
persed on SDS-PAGE gels then electro-transferred to
PVDF membranes (Invitrogen). The latter were in turn
probed with antibodies after incubation for 1.5h in 5%
non-fat milk. The antibodies used are Anti-B-actin
(1:50000; A5316) purchased from Sigma (St. Louis, MO,
USA); Anti-Iba-1 (1: 1:1000; ab178847), anti-GluN2B
(1:1000; ab65783), anti-phosphorylated GluN2B at the
S1303 site  (p-GluN2B-S1303; 1:1000; ab81271),
anti-GluAl (1:1000; ab31232), anti-PSD95 (1:1000;
ab2723), and anti-GABA a2 (1:1000; ab72445) from
Abcam (Cambridge, UK); Anti-GIuN2A (1:1000; ab1555),
anti-phosphorylated  GluAl at the S845 site
(p-GluA1-5845; 1:1000; ab5849), and anti-phosphorylated
GluAl at the S831 site (p-GluA1-S831; 1:1000; ab5847)
from Millipore (Billerica, MA, USA); Anti-NF-kB p65
(1:750; AF0874) from Affinity Biosciences (USA);
Anti-GABA Y2 (1:500; BS6858) from Bioworld (St. Louis
Park, MN, USA). The following antibodies were pur-
chased from Cell Signaling Technology (Danvers, MA,
USA): glial fibrillary acidic protein (GFAP; 1:1000; #3670),
anti-phosphorylated GIuN2B at the TI1472 site
(p-GluN2B-T1472; 1:1000; #4208 s), anti-cAMP-response
element binding protein (CREB; 1:1000; #9197), and
anti-phosphorylated CREB (p-CREB; 1:1000; #9198). The
membranes were further incubated in media containing
horseradish peroxidase-conjugated secondary antibodies
(anti-rabbit/anti-mouse IgG for the primary antibodies,
Santa Cruz, CA, USA). All of the chemicals and reagents
were commercially available with standard biochemical
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quality. Densitometric analysis of Western-blot was con-
ducted using a ChemiDoc XRS (Bio-Rad, Hercules, CA)
and quantified using Image ] software (NIH, Bethesda,
Maryland), according to the instructions. For data analysis,
the band intensity of each blot was calculated as a ratio,
using [B-actin as reference. The intensity ratio for the con-
trol group was set at 100%, and the intensity ratios of other
treatment groups were expressed as relative percentages.

In silico docking study of Formononetin with NMDA
receptor and CREB binding protein

A study of in silico docking of FMNT with NMDA re-
ceptor and CREB binding protein was conducted. For
this purpose, different ligands were prepared and opti-
mized using the Prepare Ligands module, a protocol of
Discovery Studio 3.5 (Accelrys Inc.), then converted to
the SD file format. NMDA receptor (NMDAR, PDB
code: 4PE5) and CREB binding protein (CBP, PDB code:
5CGP) structures were downloaded from the RCSB Web
site (http://www.pdb.org) in PDB format. Before dock-
ing, the original crystal ligands and water molecules
were removed from the protein-ligand complexes.
Hydrogen atoms were added by application of
CHARMM force field [28] and the Momany-Rone par-
tial charge [29] default settings in Discovery Studio 3.5.
The ligand-binding site was extracted from the PDB site.
Docking analyses of Formononetin with the NMDAR or
CBP in the presence of crystal ligands were performed
by means of the CDOCKER module, which is accurate
when active sites are known. This method meets the re-
quirements of experimental verification. The number of
generated poses was set to 100 for each ligand, and de-
fault settings were selected for other parameters.

Statistical analysis

The obtained data values are presented as mean + SEM.
Statistical analysis of multiple groups was performed by
one-way analysis of variance (ANOVA) followed by least
significant difference (LSD) test or Dunnett’s test for
post hoc comparisons (SPSS 13.0). In all cases, p <0.05
was considered to be statistically significant.

Results

Effect of FMNT on anxiety-like behavior

The anxiety-like behavior in mice was assessed using OF
and EPM tests performed on the 14th day (Fig. 1a). In
the case of OF testing, it was found that mice in the
control group moved longer distances (F3,4 =3.976, P =
0.005, Fig. 1b and d), and for longer periods (F3o4=
3.026, P=0.018, Fig. 1b and c), in the central area of the
setup, than CFA-injected mice. Moreover, mice in the
control group spent more time in the open arms (F3 4 =
6.918, P<0.001, Fig. 1f and g), and less time in the
closed arms (F3,4 = 4.826, P =0.001, Fig. 1f and h) of the
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Fig. 1 FMNT relieved anxiety-like behaviors in mice injected with CFA. a Schedule showing the experimental procedure. b Representative traces
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EPM test setup than the CFA-injected mice. The admin-
istration of FMNT at a dose of 25 mg/kg for 8 consecu-
tive days markedly increased the time (F3,4 =3.026, P =
0.034, Fig. 1c) and distance (F3,4 =3.976, P =0.019, Fig.
1d) traveled in the central area, as well as the time spent
in the open arms (F3,4 = 6.918, P =0.024, Fig. 1g), while

decreasing the time spent in the closed arms (F3,4=
4.826, P=0.03, Fig. 1h). The effects of FMNT in OF and
EPM tests were found to be dose-dependent (Add-
itional file 1: Figure S1). The total distance traveled in
OF tests and the total arm entries in EPM tests were
comparable among the investigated groups of mice,
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indicating that normal locomotor activity is maintained
after CFA injection and FMNT treatment (F35,4 =0.197,
P=0.897, Fig. le; F304=0.338, P=0.798, Fig. 1i; F405 =
0.332, P=0.854, Additional file 1: Figure Slc; Fys5=
0.022, P=0.999, Additional file 1: Figure S1f). These re-
sults suggest that FMINT treatment has anxiolytic effects
in mice injected with CFA.

Effect of FMNT on pain-like behavior

Von Frey and hot plate tests were performed on the
15th day after CFA injection (Fig. 1a) to assess mechan-
ical allodynia and thermal hyperalgesia effects, respect-
ively. The threshold (F;,4=27.671, P<0.001, Fig. 2a)
and latency (F3,4 =10.037, P<0.001, Fig. 2c) of ipsilat-
eral paw withdrawal were significantly reduced in
CFA-injected mice, as compared to the control group.
Surprisingly, FMNT treatment had no significant effect
on either criterion (F3,4 =27.671, P=0.82, Fig. 2a; F34
=10.037, P=0.537, Fig. 2c), even at increased dosage
(Additional file 1: Figure Sla and c). Moreover, neither
CFA nor FMNT affected the threshold (F3 54 =1.415, P =
0.266, Fig. 2b; F4,5=10.694, P=0.603, Additional file 1:
Figure S1b) and latency (F3.4 = 0.074, P =0.973, Fig. 2d;
Fy05=0.598, P=0.667, Additional file 1: Figure S1d) of
the contralateral paw withdrawal. These results confirm
that CFA induces mechanical allodynia and thermal
hyperalgesia; however, FMNT is shown to have no anal-
gesic effect in mice.
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Effect of FMNT on CFA-induced upregulations of NMDA
receptors and CREB in the BLA

The following experiments were focused on the BLA of
amygdala, because, according to behavioral studies, the
BLA is implicated in the onset and development of anx-
iety [30], a behavioral abnormality that has been associ-
ated with synaptic changes [31] and expression
alteration of NMDAR [32]. The levels of NMDAR in the
BLA of mice were examined on the 16th day (Fig. 1a).
CFA injection evidently increased phosphorylated
GluN2B at T1472 (p-GluN2B-T1472, F3,,=10.352, P<
0.001, Fig. 3a and b) and S1303 (p-GIluN2B-51303, F3 5
=20.309, P<0.001, Fig. 3a and c), GluN2B (F3,0=5.79,
P=0.002, Fig. 3a and d), GluN2A (F3,0=19.168, P<
0.001, Fig. 3a and e), and PSD95 (F3,0=12.359, P<
0.001, Fig. 3a and f) levels. The upregulations of
p-GluN2B-T1472 (F3,0=10.352, P=0.002, Fig. 3a and
b), p-GluN2B-51303 (F350 =20.309, P<0.001, Fig. 3a
and ¢), GIuN2B (F3,9=5.79, P=0.002, Fig. 3a and d),
GIluN2A (F350=19.168, P<0.001, Fig. 3a and e), and
PSD95 (F3,0=12.359, P<0.001, Fig. 3a and f) were re-
versed after FMNT treatment. FMNT administration
alone had no effect on the levels of these proteins (Fig.
3a-f).

The cAMP-response element binding protein (CREB)
is activated by the NMDA receptor [33]. The expressions
of phosphorylated CREB (p-CREB, F;,q=356.521, P<
0.001, Fig. 4a and b) and total CREB (F3 4 =24.019, P<
0.001, Fig. 4a and c) increased significantly upon CFA
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injection. These elevated protein levels were abolished
by FMNT treatment (F3,9=356.521, P <0.001, Fig. 4b;
F320=24.019, P<0.001, Fig. 4c). The obtained results
suggest that FMNT treatment might relieve anxiety-like
behavior by inhibiting NMDA/CREB signaling pathways.

Structural interactions of FMNT with NMIDAR and CBP

The results reported in the preceding section suggest
that the NMDA receptor may be an important target for
EMNT. To further investigate the potential mechanism
by which FMNT regulates anxiety-like behavior, molecu-
lar docking analysis of this compound was conducted.
EMNT (cyan sticks in Fig. 5a) was docked to the NMDA
receptor (red and blue ribbon in Fig. 5a) by means of
the CDOCKER module of Discovery Studio (Accelrys
Inc., San Diego, CA, USA). The OH group at the

chromen-one site of FMNT (red arrow in the right of
Fig. 5a) interacts with NMDAR at the GLU236 site
(green symbol in Fig. 5b) via hydrogen-bonding, which
coincides well with the crystal ligand ifenprodil, an
NMDA receptor antagonist (green sticks in Fig. 5a). This
suggests that FMNT could bind to GluN2B. Moreover,
the phenyl moiety of FMNT can form n-mt stacked inter-
actions with TYR109, thus, contributing to the stability
of the protein-ligand complex (pink symbol in Fig. 5b).
The superposition between the crystal structures of
CBP-BDOIA383 (green sticks, BDOIA383: ligand of
CBP) and FMNT (cyan sticks) is shown in Fig. 5c. The
two compounds exhibit totally different conformations
and interactions with CBP (bluish violet ribbon in Fig.
5¢). In particular, the OH group at the chromen-one
moiety of FMNT (red arrow in the top-right of Fig. 7c)
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Fig. 4 FMNT inhibited CREB signaling pathway in the BLA of mice with CFA injection. a Representative Western blot analysis of p-CREB and CREB.
The expressions of p-CREB (b) and CREB (c) were significantly increased in the BLA of mice with CFA injection, which were reversed after FMNT
treatment. n =6 per group. **p < 0.01 vs. control; p < 0.01 vs. CFA




Wang et al. Molecular Brain (2019) 12:36

Page 7 of 12

Fig. 5 Structural interactions of FMNT with NMDA receptor and CBP. a Structural representation of FMNT binding to NMDA receptor (PDB:4PE5;
GIUN2B: blue ribbon; GluNTa: red ribbon) as inferred from docking simulations (left). Ifenprodil was shown as green sticks, and FMNT was shown
as cyan sticks (right). The -OH group of FMNT formed hydrogen-bond with Glu236 of NMDA receptor (red arrow in right). The best-docked pose
of FMNT in the active site coincided well with the crystal ligand ifenprodil (NMDA antagonist). b 2D diagram of interaction between FMNT and
NMDA receptor showed the major binding sites and bonding forces. ¢ Characterization of spatial interactions within the FMNT-CBP (PDB:5CGP,
CBP: bluish violet ribbon) complex (left). FMNT was shown as cyan sticks (top-right) and crystal ligand BDOIA383 (ligand of CBP) was shown as
green sticks (bottom-right). The -OH group of the FMNT formed hydrogen-bond with Met1160 of CBP (red arrow in the top-right). d 2D diagram
showed the major binding sites and bonding forces between FMNT and CBP
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is deeply projected towards MET1160 of CBP (green
symbol in Fig. 5d), and forms a hydrogen-bonding inter-
action with it. This is not observed in the case of crystal
ligand BDOIA383 (bottom-right in Fig. 5c). These re-
sults indicate that FMNT binds more strongly to CBP
than to BDOIA383.

Effect of FMNT on the CFA-induced upregulations of
AMPA receptor in the BLA

The activation of CREB leads to the phosphorylation of
GluAl-containing AMPA [34], another important glutam-
ate receptor closely related to the regulation of anxiety
[35]. Therefore, the expression of the AMPA receptor sub-
unit GluA1 was examined, and it was found that the levels
of phosphorylated GluA1 at S831 (p-GluA1-S831, F3 0=
11.363, P <0.001, Fig. 6a and b) and S845 (p-GluA1-S845,
F3.0=35.255, P<0.001, Fig. 6a and c), as well as total
GluAl (F350=11.906, P<0.001, Fig. 6a and d), were sig-
nificantly enhanced in the BLA of mice after CFA injec-
tion. FMNT  administration resulted in  the
downregulation of p-GluA1-S831 (F3,0=11.363, P<
0.001, Fig. 6a and b), p-GluA1-S845 (F;,0=35.255, P<
0.001, Fig. 6a and c), and GluAl (F3,0=11.906, P < 0.001,
Fig. 6a and d) expressions, but had no influence on the

levels of phosphorylated and total GluAl. These results
implied that the antianxiety effect of FMNT was related to
the inhibition of AMPA receptors in the BLA.

Effect of FMNT on CFA-induced upregulations of GABA,
receptors in the BLA

The GABA,4 receptor is a crucial drug target for anxio-
lytics such as benzodiazepines. Therefore, the expres-
sions of GABA, a2 and GABA, y2, two subunits of the
GABA, receptor in the BLA, were assessed. The ob-
tained results show that the levels of GABA, a2 (F3,0 =
7.493, P=0.001, Fig. 7a and b) and GABA, Y2 (F340 =
11.281, P<0.001, Fig. 7a and c) were unexpectedly en-
hanced in the BLA of mice after CFA injection. These
increased expressions were blocked upon treatment with
EMNT. It may be concluded that alteration of the
GABA, receptor is part of the regulating effect of
EMNT on anxiety in the BLA.

Effect of FMNT on the NF-kB signaling pathway and
microglia activation in the BLA

Inflammation plays a key role in anxiety [36]. Thus, it is
important to assess whether or not FMNT treatment is
related to inflammatory inhibition as part of its
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Fig. 6 FMNT reversed the increased level of AMPA receptor in the BLA induced by CFA. a Representative Western blot analysis of p-GluA1-S831,
p-GluA1-S845, and GIuAT. CFA injection increased the expressions of p-GluA1-S831 (b), p-GluA1-S845 (c), and GIuAT (d), and FMNT (25 mg/kg)
markedly reduced the overexpression of -GluA1-S831 (b), p-GIuA1-5845 (c), and GIuAT1 (d) in the BLA of CFA-injected mice. n =6 per group. **p <
0.01 vs. control; *p < 0.01 vs. CFA

anxiolytic effect. For this purpose, the levels of NF-xB
p65, a protein complex in the BLA that plays an import-
ant role in regulating the immune response to infection
[37], were determined. The results showed that CFA in-
jection (F3,0=10.434, P<0.001, Fig. 8a and b) upregu-
lated these levels, and that this effect was reversed by
FMNT treatment (F350=10.434, P=0.002, Fig. 8a and
b). Furthermore, knowing that the activation of astrocyte
and microglia is required for the onset and progression
of inflammation in the central nervous system (CNS)
[38, 39], these cells were also examined. Specifically,
GFAP and Iba-1 markers of astrocyte and microglia, re-
spectively, which are known to be upregulated during in-
flammation period [40], were monitored. Interestingly,

Iba-1 levels (F350=9.427, P=0.001, Fig. 8a and d) were
enhanced in the BLA of CFA-injected mice, but not
GFAP levels (F350=0.955 P=0.717, Fig. 8a and c).
FMNT administration reduced the expression of Iba-1
(F320=9.427, P <0.001, Fig. 8a and d), but had no effect
on GFAP levels (F3,0=0.955, P=0.867, Fig. 8a and c).
These results suggest that FMNT alleviates
inflammation-induced anxiety-like behaviors by blocking
the NF-kB signaling pathway and microglia activation.

Discussion

Many studies have shown that chronic pain is often ac-
companied with anxiety. For example, lipopolysaccharide
(LPS)-induced pulmonary inflammation is accompanied
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Fig. 7 FMNT blocked CFA-induced upregulations of GABA4 receptors in the BLA. a Representative Western blot for GABAA a2 and GABA, y2. The
levels of GABAA a2 (b) and GABA4 v2 (c) were significantly increased in the BLA of CFA-injected mice, which were downregulated by FMNT (25
ma/kg). n=6 per group. **p < 0.01 vs. control; p < 0.01 vs. CFA
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with anxiety-like behavior in rats [41]. Chronic pain acts
as an inescapable stressor on the hypothalamo-pituitary-a-
drenal axis to induce emotional disorder [42, 43]. There-
fore, pain and emotional disorder possibly share the same
biological pathways and neurotransmitters, which influ-
ences concurrent treatments [44, 45]. In the present study,
CFA-injected mice exhibited obvious pain and anxiety-like
behaviors. Treatment with FMNT, a medicinal drug ex-
tracted from Trifolium pratense L., relieved CFA-induced
anxiety-like behaviors in mice, but had no effect in allevi-
ating pain-related behaviors. Knowing that the amygdala
is an important brain area for anxiety modulation [46, 47],
and that the BLA of the amygdala is involved in the devel-
opment of anxiety in mice [19], our research regarding the
effect of FMNT on pain and anxiety was performed in the
BLA.

The excitatory/inhibitory (E/I) neuronal network
maintains a finely tuned balance of neural activity that is
critical for central physiological function. Imbalance of
E/I signaling instigates patterns of seizure, schizophre-
nia, and autism [48, 49]. NMDA and AMPA are crucial
excitatory postsynaptic receptors that exhibit enhanced
activity due to neurotransmitter hyperexcitability, a con-
dition that is associated with increased anxiety [50].
PSD95 is a postsynaptic anchor protein that binds to
NMDA and AMPA receptors [51]. In this study, it was
shown that CFA injection results in the upregulation of

NMDA receptors, AMPA receptors, and PSD95, which
leads to increased excitability in the BLA, thereby insti-
gating anxiety-like behavior in mice. Moreover, excita-
tory activity in the BLA is tightly regulated by a
relatively small population of GABAergic inhibitory neu-
rons [52]. Among the three subtypes of GABA receptors
(GABA,, GABAg, and GABA( subtype), GABA, recep-
tors are typical ligand-gated ion channels that play the
most important role in GABAergic inhibitory function,
which is closely connected with anxiety modulation [17,
50]. Reduced GABAergic inhibition in the BLA usually
underlies anxiety disorders. For example, postpartum es-
trogen withdrawal impairs GABA, receptor-mediated
inhibition in the BLA and causes anxiety [53]. Two
highly expressed subunits of GABA, receptors—
GABA 02 and GABA,y2—were examined in this pro-
ject. The levels of these receptors were surprisingly en-
hanced in the BLA of CFA-treated mice, then returned
to normal after FMNT treatment. The results obtained
in this study are consistent with those reported previ-
ously [24] concerning the protective effect of GABA a2
and GABA,y2 upregulations on the E/I balance in the
BLA of CFA-injected mice. FMNT reduces the neural
excitability and the protective upregulation of GABA,
receptors.

In silico docking analyses conducted using
computer-assisted drug design showed that FMNT could
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bind to NMDA receptors (NMDAR) as well as CREB
binding proteins (CBP). In this work, the binding poten-
tial of FMNT was explored only at the active site, since
docking to this site makes it easy to speculate whether
the compound is active or not. Interestingly, FMNT had
better potential interactions with CBP than BDOIA383,
a reported inhibitor of CBP [54]. This suggests that
FMNT may inhibit CREB-mediated gene transcription
by binding to CBP. Studies have demonstrated that
CREB-dependent transcription is essential for both
long-lasting forms of synaptic plasticity and long-term
memory [55-57]. CREB activation can also directly con-
trol neuronal excitability [58]. However, we are unable to
guarantee that FMNT does not have an interaction with
other non-explored binding sites of these two proteins
(NMDAR and CBP). The development of methods and
programs, such as BINDSURF [59], METADOCK [60],
LeadFinder [61, 62], BLIND DOCKING SERVER, Auto-
dock Vina [63], and FlexScreen [64, 65], allows for more
comprehensive and accurate docking analyses. In future
research, we will use full blind docking methods to ex-
plore the real binding mode and possibility. Meanwhile,
owing to multi-target effects of traditional Chinese medi-
cine, other drug targets of FMNT cannot be ruled out.

Knowing that inflammation plays a key role in the de-
velopment of anxiety [66], the anti-inflammatory effects
of FMNT were also explored by monitoring the expres-
sions of (i) NF-«B, the first responder to inflammation,
(i) microglia, dynamic immune cells of the brain that
elicit an immune response during brain damage, and (iii)
astrocytes, neural cells that produce pro-inflammatory
cytokines and enhance neuronal damage [38]. In the
present study, it was found that CFA injection markedly
increased NF-kB p65 levels and activated microglia in
the BLA. These effects were inhibited upon FMNT
treatment. The expression of GFAP did not change
after CFA injection and/or FMNT treatment, indicat-
ing that the astrocytes were not involved in the
modulation of anxiety, and that the anxiolytic effects
of FMNT may be related to the inhibition of micro-
glia activation by NF-kB p65 signaling pathway. Inter-
estingly, FMNT did not affect pain-like behavior
although it had an anti-inflammatory effect in the
BLA. This suggests that the anti-inflammatory effect
of FMNT is strong enough for emotional regulation,
but not for pain modulation.

CFA-injected mice exhibited obvious pain- and
anxiety-like behavior. However, this anxiety model is dif-
ferent from stress-induced, drug-induced, or social anx-
iety. Therefore, although we were able to prove that
FMNT has the potential to diminish pain-induced anxiety,
its effect on the other models still needs to be assessed.
CFA-generated inflammatory pain may stimulate the acti-
vation of many brain regions, such as the BLA, ACC,
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hippocampus, and nucleus accumbens [67-70]. So the ef-
fects of FMNT on other brain regions may also contribute
to its anxiolytic effect. Furthermore, we cannot exclude
other mechanisms and signaling pathways that may also
be involved in the anxiolytic effect of FMNT.

In summary, the data collected in this work provide
strong evidence for the anxiolytic effect of FMNT in
mice suffering from chronic inflammatory pain. The fun-
damental mechanisms of this effect rely on the inhib-
ition of hyperexcitability and inflammation in the BLA.

Additional file

Additional file 1: Figure S1. Anxiolytic effect of FMNT was dose-
dependent in mice injected with CFA. Figure S2. Different dosages of
FMNT had no analgesic effects in mice injected with CFA. (PDF 243 kb)
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