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Abstract

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of 

neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants 

contribute substantially to ASD susceptibility, but to date no individual variants have been robustly 

associated with ASD. With a marked sample size increase from a unique Danish population 

resource, we report a genome-wide association meta-analysis of 18,381 ASD cases and 27,969 

controls that identifies five genome-wide significant loci. Leveraging GWAS results from three 

phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, 

and educational attainment), seven additional loci shared with other traits are identified at equally 

strict significance levels. Dissecting the polygenic architecture, we find both quantitative and 

qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological 

insights, particularly relating to neuronal function and corticogenesis and establish that GWAS 

performed at scale will be much more productive in the near term in ASD.

Editorial Summary

A genome-wide association meta-analysis of 18,381 austim spectrum disorder (ASD) cases and 

27,969 controls identifies 5 risk loci. The authors find quantitative and qualitative polygenic 

heterogeneity across ASD subtypes.

ASD is the term for a group of pervasive neurodevelopmental disorders characterized by 

impaired social and communication skills along with repetitive and restrictive behavior. The 

clinical presentation is very heterogeneous, including individuals with severe impairment 

and intellectual disability as well as individuals with above average IQ and high levels of 
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academic and occupational functioning. ASD affects 1–1.5% of individuals and is highly 

heritable, with both common and rare variants contributing to its etiology1–4. Common 

variants have been estimated to account for a major part of ASD liability2 as has been 

observed for other common neuropsychiatric disorders. By contrast, de novo mutations, 

mostly copy number variants (CNVs) and gene disrupting point mutations, have larger 

individual effects, but collectively explain < 5% of the overall liability1–3 and far less of the 

heritability. While a number of genes have been convincingly implicated via excess 

statistical aggregation of de novo mutations, the largest GWAS to date (n = 7,387 cases 

scanned) – while providing compelling evidence for the bulk contribution of common 

variants – did not conclusively identify single variants at genome-wide significance5–7. This 

underscored that common variants, as in other complex diseases such as schizophrenia, 

individually have low impact and that a substantial scale-up in sample numbers would be 

needed.

Here we report the first common risk variants robustly associated with ASD by more than 

doubling the discovery sample size compared to previous GWAS5–8. We describe strong 

genetic correlations between ASD and other complex disorders and traits, confirming shared 

etiology, and we show results indicating differences in the polygenic architecture across 

clinical sub-types of ASD. Leveraging these relationships and recently introduced 

computational techniques9, we identify additional novel ASD-associated variants that are 

shared with other phenotypes. Furthermore, by integrating with complementary data from 

Hi-C chromatin interaction analysis of fetal brains and brain transcriptome data, we explore 

the functional implications of our top-ranking GWAS results.

Results

GWAS

As part of the iPSYCH project10, we collected and genotyped a Danish nation-wide 

population-based case-cohort sample including nearly all individuals born in Denmark 

between 1981 and 2005 and diagnosed with ASD (according to ICD-10) before 2014. We 

randomly selected controls from the same birth cohorts (Supplementary Table 1). We have 

previously validated registry-based ASD diagnoses11,12 and demonstrated the accuracy of 

genotyping DNA extracted and amplified from bloodspots collected shortly after birth13,14. 

Genotypes were processed using Ricopili15, performing stringent quality control of data, 

removal of related individuals, exclusion of ancestry outliers based on principal component 

analysis, and imputation using the 1000 Genomes Project phase 3 reference panel. After this 

processing, genotypes from 13,076 cases and 22,664 controls from the iPSYCH sample 

were included in the analysis. As is now standard in human complex trait genomics, our 

primary analysis was a meta-analysis of the iPSYCH ASD results with five family-based trio 

samples of European ancestry from the Psychiatric Genomics Consortium (PGC; 5,305 

cases and 5,305 pseudo controls)16. All PGC samples had been processed using the same 

Ricopili pipeline for QC, imputation and analysis as employed here.

Supporting the consistency between the study designs, the iPSYCH population-based and 

PGC family-based analyses showed a high degree of genetic correlation with rG = 0.779 (SE 

= 0.106; P = 1.75 × 10−13), similar to the genetic correlations observed between datasets in 
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other mental disorders17. Likewise, polygenicity as assessed by polygenic risk scores (PRS) 

showed consistency across the samples supporting homogeneity of effects across samples 

and study designs (see the results below regarding PRS on a five-way split of the sample). 

The SNP heritability hG
2  was estimated to be 0.118 (SE = 0.010), for a population 

prevalence of 0.01218.

The main GWAS meta-analysis totaled 18,381 ASD cases and 27,969 controls, and applied 

an inverse variance-weighted fixed effects model. To ensure that the analysis was well-

powered and robust, we examined markers with minor allele frequency (MAF) ≥ 0.01, 

imputation INFO score ≥ 0.7, and supported by an effective sample size in > 70% of the 

total. This final meta-analysis included results for 9,112,387 autosomal markers and yielded 

93 genome-wide significant markers in three separate loci (Figure 1; Table 1a; 

Supplementary Figures 1–44). Each locus was strongly supported by both the Danish case-

control and the PGC family-based data. While modest inflation was observed (lambda = 

1.12, lambda1000 = 1.006), LD score regression analysis19 indicates this is arising from 

polygenicity (> 96%, see Methods) rather than confounding. The strongest signal among 

294,911 markers analyzed on chromosome X was P = 7.8 × 10−5.

We next obtained replication data for the top 88 loci with p-values < 1 × 10−5 in five cohorts 

of European ancestry totaling 2,119 additional cases and 142,379 controls (Supplementary 

Table 2 and 3). An overall replication of direction of effects was observed (53 of 88 (60%) 

of P < 1 × 10−5; 16 of 23 (70%) at P < 1 × 10−6; sign tests P = 0.035 and P = 0.047, 

respectively) and two additional loci achieved genome-wide significance in the combined 

analysis (Table 1a). More details on the identified loci can be found in Supplementary Table 

4 and selected candidates are described in Box1.

Correlation with other traits and multi-trait GWAS

To investigate the extent of genetic overlap between ASD and other phenotypes we 

estimated the genetic correlations with a broad set of psychiatric and other medical diseases, 

disorders, and traits available at LD Hub65 using bivariate LD score regression (Figure 2, 

Supplementary Table 5). Significant correlations were found for several traits including 

schizophrenia15 (rG = 0.211, P = 1.03 × 10−5) and measures of cognitive ability, especially 

educational attainment20 (rG = 0.199, P = 2.56 × 10−9), indicating a substantial genetic 

overlap with these phenotypes and corroborating previous reports5,66–68. In contrast to 

previous reports16, we found a strong and highly significant correlation with major 

depression21 (rG = 0.412, P = 1.40 × 10−25), and we report a prominent overlap with 

ADHD69 (rG = 0.360, P = 1.24 × 10−12). Moreover, we confirm the genetic correlation with 

social communication difficulties at age 8 in a non-ASD population sample reported 

previously based on a subset of the ASD sample70 (rG = 0.375, P = 0.0028).

In order to leverage these observations for the discovery of loci that may be shared between 

ASD and these other traits, we selected three particularly well-powered and genetically 

correlated phenotypes. These were schizophrenia (N = 79,641)15, major depression (N = 

424,015)21 and educational attainment (N = 328,917)20. We utilized the recently introduced 

MTAG method9 which, briefly, generalizes the standard inverse-variance weighted meta-
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analysis for multiple phenotypes. In this case, MTAG takes advantage of the fact that, given 

an overall genetic correlation between ASD and a second trait, the effect size estimate and 

evidence for association to ASD can be improved by appropriate use of the association 

information from the second trait. The results of these three ASD-anchored MTAG scans are 

correlated to the primary ASD scan (and to each other) but given the exploration of three 

scans, we utilized a more conservative threshold of 1.67 × 10−8 for declaring significance 

across these secondary scans giving an estimated maximum false discovery rate (maxFDR) 

of 0.021. In addition to stronger evidence for several of the ASD hits defined above, variants 

in seven additional regions achieved genome-wide significance, including three loci shared 

with educational attainment and four shared with major depression (Table 1b, Box 1, 

Supplementary Table 6, Supplementary Figures 49–55). We note that in these seven 

instances, the effect size estimate is stronger in ASD than the secondary trait, that the result 

is not characteristic of the strongest signals in these other scans (Supplementary Table 7–9) 

(and in fact 3 of these 7 were not significant in the secondary trait and constitute potentially 

novel findings). Moreover, we benchmarked against MTAG running two very large and 

heritable traits (height74, N = 252,288, and body mass index (BMI)24, N = 322,154) with no 

expected links to ASD and no significant loci were added to the list of ASD-only significant 

associations.

Gene and gene-set analysis

Next, we performed gene-based association analysis on our primary ASD meta-analysis 

using MAGMA75, testing for the joint association of all markers within a locus (across all 

protein-coding genes in the genome). This analysis identified 15 genes surpassing the 

significance threshold (Supplementary Table 10). As expected, the majority of these genes 

were located within the genome-wide significant loci identified in the GWAS, but seven 

genes are located in four additional loci including KCNN2, MMP12, NTM and a cluster of 

genes on chromosome 17 (KANSLl, WNT3, MAPT and CRHRl) (Supplementary Figures 

57–71). In particular, KCNN2 was strongly associated (P = 1.02 × 10−9), far beyond even 

single-variant statistical thresholds and is included in the descriptions in Box 1.

Enrichment analyses using gene co-expression modules from human neocortex 

transcriptomic data (M13, M16 and M17 from Parikshak et al. 201376) and loss-of-function 

intolerant genes (pLI > 0.9)77,78, which previously have shown evidence of enrichment in 

neurodevelopmental disorders69,76,79, yielded only nominal significance for the latter (P = 

0.014) and M16 (P = 0.050) (Supplementary Table 11). Genes implicated in ASD by studies 

or rare variants in Sanders et al.56 was just shy of showing nominally significant enrichment 

(P = 0.063) while enrichment in the curated gene list from the SPARK consortium80 was 

significant (P = 0.0034). Likewise, analysis of Gene Ontology sets81,82 for molecular 

function from MsigDB83 showed no significant sets after Bonferroni correction for multiple 

testing (Supplementary Table 12).

Dissection of the polygenic architecture

As ASD is a highly heterogeneous disorder, we explored how hG
2  partitioned across 

phenotypic sub-categories in the iPSYCH sample and estimated the genetic correlations 

between these groups using GCTA84. We examined cases with and without intellectual 
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disability (ID, N = 1,873) and the ICD-10 diagnostic sub-categories: childhood autism 

(F84.0, N = 3,310), atypical autism (F84.1, N = 1,607), Asperger’s syndrome (F84.5, N = 

4,622), and other/unspecified pervasive developmental disorders (PDD, F84.8–9, N = 

5,795), reducing to non-overlapping groups when doing pairwise comparisons (see 

Supplementary Table 13). While the pairwise genetic correlations were consistently high 

between all subgroups (95% CIs including 1 in all comparisons), the hG
2  of Asperger’s 

syndrome (hG
2 = 0.097, SE = 0.001 was found to be twice the hG

2  of both childhood autism 

(hG
2 = 0.049, SE = 0.009, P = 0.001) and the group of other/unspecified PDD (hG

2 = 0.045, SE 

= 0.008, P = 0.001) (Supplementary Tables 14 and 15, Supplementary Figures 82 and 83). 

Similarly, the hG
2  of ASD without ID (hG

2 = 0.086, SE = 0.005) was found to be three times 

higher than for cases with ID (hG
2 = 0.029, SE = 0.013, P = 0.015).

To further examine the apparent polygenic heterogeneity across subtypes, we investigated 

how PRS trained on different phenotypes were distributed across distinct ASD subgroups. 

We focused on phenotypes showing strong genetic correlation with ASD (e.g., educational 

attainment), but included also traits with little or no correlation to ASD (e.g., BMI) as 

negative controls. In this analysis, we regressed the normalized scores on ASD subgroups 

while including covariates for batches and principal components in a multivariate regression. 

Of the eight phenotypes we evaluated, only the cognitive phenotypes showed strong 

heterogeneity (educational attainment20 P = 1.8 × 10−8, IQ23 P = 3.7 × 10−9) 

(Supplementary Figure 84). Interestingly, all case-control groups with or without intellectual 

disability showed significantly different loading for the two cognitive phenotypes: controls 

with intellectual disability have the lowest score followed by ASD cases with intellectual 

disability, and ASD cases without intellectual disability have significantly higher scores 

again than any other group (P = 2.6 × 10−12 for educational attainment, P = 8.2 × 10−12 for 

IQ).

With respect to the diagnostic sub-categories constructed hierarchically from ASD subtypes 

(Supplementary Table 13), it was again the cognitive phenotypes that showed the strongest 

heterogeneity across the diagnostic classes (educational attainment P = 2.6 × 10−11, IQ P = 

3.4 × 10−8), while neuroticism67 (P = 0.0015), chronotype73 (P = 0.011) and subjective well-

being67 (P = 0.029) showed weaker but nominally significant degree of heterogeneity, and 

schizophrenia (SCZ), major depressive disorder (MD) and BMI24 were non-significant 

across the groups (P > 0.19) (Figure 3). This pattern weakened only slightly when excluding 

subjects with intellectual disability (Supplementary Figure 85). For neuroticism, there was a 

clear split with atypical and other/unspecified PDD cases having significantly higher PRS 

than childhood autism and Asperger’s, P = 0.00013. Considering the genetic overlap of each 

subcategory with each phenotype, the hypothesis of homogeneity across sub-phenotypes 

was strongly rejected (P = 1.6 × 10−11), thereby establishing that these sub-categories indeed 

have differences in their genetic architectures.

Focusing on educational attainment, significant enrichment of PRS was found for 

Asperger’s syndrome (P = 2.0 × 10−17) in particular, and for childhood autism (P = 1.5 × 

10−5), but not for the group of other/unspecified PDD (P = 0.36) or for atypical autism (P = 
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0.13) (Figure 3). Excluding individuals with intellectual disability only changes this 

marginally, with atypical autism becoming nominally significant (P = 0.020) 

(Supplementary Figure 85). These results show that the genetic architecture underlying 

educational attainment is indeed shared with ASD but to a variable degree across the 

disorder spectrum. We find that the observed excess in ASD subjects of alleles positively 

associated with education attainment85,86 is confined to Asperger’s and childhood autism, 

and it is not seen here in atypical autism nor in other/unspecified PDD.

Finally, we evaluated the predictive ability of ASD PRS using five different sets of target and 

training samples within the combined iPSYCH-PGC sample. The observed mean variance 

explained by PRS (Nagelkerke’s R2) was 2.45% (P = 5.58 × 10−140) with a pooled PRS-

based case-control odds ratio OR = 1.33 (CI.95% 1.30–1.36) (Supplementary Figures 89 and 

91). Dividing the target samples into PRS decile groups revealed an increase in OR with 

increasing PRS. The OR for subjects with the highest PRS increased to OR = 2.80 (CI.95% 

2.53–3.10) relative to the lowest decile (Figure 4a and Supplementary Figure 92). 

Leveraging correlated phenotypes in an attempt to improve prediction of ASD, we generated 

a multi-phenotype PRS as a weighted sum of phenotype specific PRS (see Methods). As 

expected, Nagelkerkes’s R2 increased for each PRS included attaining its maximum at the 

full model at 3.77% (P = 2.03 × 10−215) for the pooled analysis with an OR = 3.57 (CI.95% 

3.22–3.96) for the highest decile (Figure 4b and Supplementary Figure 93 and 94). These 

results demonstrate that an individual’s ASD risk depends on the level of polygenic burden 

of thousands of common variants in a dose-dependent way, which can be reinforced by 

adding SNP-weights from ASD correlated traits.

Functional annotation

In order to obtain information on possible biological underpinnings of our GWAS results we 

conducted several analyses. First, we examined how the ASD hG
2  partitioned on functional 

genomic categories as well as on cell type-specific regulatory elements using stratified LD 

score regression87. This analysis identified significant enrichment of heritability in 

conserved DNA regions and H3K4me1 histone marks88, as well as in genes expressed in 

central nervous system (CNS) cell types as a group (Supplementary Figures 95 and 96), 

which is in line with observations in schizophrenia15, major depression21, and bipolar 

disorder66. Analyzing the enhancer associated mark H3K4me1 in individual cell/tissue88, we 

found significant enrichment in brain and neuronal cell lines (Supplementary Figure 97). 

The highest enrichment was observed in the developing brain, germinal matrix, cortex-

derived neurospheres, and embryonic stem cell (ESC)-derived neurons, consistent with ASD 

as a neurodevelopmental disorder with largely prenatal origins, as supported by data from 

analysis of rare de novo variants76.

Common variation in ASD is located in regions that are highly enriched with regulatory 

elements predicted to be active in human corticogenesis (Supplementary Figures 95–97). As 

most gene regulatory events occur at a distance via chromosome looping, we leveraged Hi-C 

data from germinal zone (GZ) and post-mitotic zones cortical plate (CP) in the developing 

fetal brain to identify potential target genes for these variants89. We performed fine mapping 

of 28 loci to identify the set of credible variants containing likely causal genetic risk90 (see 
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Methods). Credible SNPs were significantly enriched with enhancer marks in the fetal brain 

(Supplementary Figure 98), again confirming the likely regulatory role of these SNPs during 

brain development.

Based on location or evidence of physical contact from Hi-C, the 380 credible SNPs (28 

loci) could be assigned to 95 genes (40 protein-coding), including 39 SNPs within promoters 

that were assigned to 9 genes, and 16 SNPs within the protein coding sequence of 8 genes 

(Supplementary Table 16, Supplementary Figure 98). Hi-C identified 86 genes, which 

interacted with credible SNPs in either the CP or GZ during brain development. Among 

these genes, 34 are interacting with credible SNPs in both CP and GZ, which represent a 

high-confidence gene list. Notable examples are illustrated in Figure 5 and highlighted in 

Box 1. By analyzing their mean expression trajectory, we observed that the identified ASD 

candidate genes (Supplementary Table 16) show highest expression during fetal 

corticogenesis, which is in line with the enrichment of heritability in the regulatory elements 

in developing brain (Figure 5e–g). Interestingly, both common and rare variation in ASD 

preferentially affects genes expressed during corticogenesis76, highlighting a potential 

spatiotemporal convergence of genetic risk on this specific developmental epoch, despite the 

disorder’s profound genetic heterogeneity.

Discussion

The high heritability of ASD has been recognized for decades and remains among the 

highest for any complex disease despite many clinical diagnostic changes over the past 30–

40 years resulting in a broader phenotype that characterizes more than 1% of the population. 

While early GWAS permitted estimates that common polygenic variation should explain a 

substantial fraction of the heritability of ASD, individually significant loci remained elusive. 

This was suspected to be due to limited sample size since studies of schizophrenia – with 

similar prevalence, heritability and reduced fitness – and major depression achieved striking 

results only when sample sizes five to ten times larger than available in ASD were 

employed. This study has finally borne out that expectation with definitively demonstrated 

significant “hits”.

Here we report the first common risk variants robustly associated with ASD by using unique 

Danish resources in conjunction with results of the earlier PGC data – more than tripling the 

previous largest discovery sample. Of these, five loci were defined in ASD alone, and seven 

additional suggested at a stricter threshold utilizing GWAS results from three correlated 

phenotypes (schizophrenia, depression and educational attainment) and a recently 

introduced analytic approach, MTAG. Both genome-wide LD score regression analysis and 

the fact that even among the loci defined in ASD alone there was additional evidence in 

these other trait scans indicate that the polygenic architecture of ASD is significantly shared 

with risk to adult psychiatric illness and higher educational attainment and intelligence. It 

should be noted that the MTAG analyses were carried out as three pairwise analyses. This 

way we avoid the complex interactions that could arise if we ran three or four correlated 

phenotypes at a time9. Indeed, what we get, despite the secondary summary statistics 

coming from large, high-powered studies, are relatively modest weights to the contributions 

from these statistics, because the genetic correlations are modest. The largest weight was 
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0.27 for schizophrenia, followed by 0.24 for major depression, and 0.11 for educational 

attainment. Moreover, the estimated worst case FDR was just 0.021 up just 0.001 from that 

of the ASD GWAS alone. Thus all loci identified by MTAG were found with an acceptable 

degree of certainty and have substantial contributions from ASD alone (Table 1a, b and 

Supplementary Table 6). Our expectation is that most or all such loci will likely be identified 

in future ASD-only GWAS as sample sizes are increased substantially – however, given how 

new these methods are, the precise phenotypic consequences of these particular variants 

awaits expansion of all these trait GWAS.

In most GWAS studies there has been little evidence of heterogeneity of association across 

phenotypic subgroups. In this study, however, we see strong heterogeneity of genetic overlap 

with other traits when our ASD samples are broken into distinct subsets. In particular, the 

excess of alleles associated with higher intelligence and educational attainment was only 

observed in the higher functioning categories (particularly Asperger’s syndrome and 

individuals without comorbid intellectual disability) – and not in the other/unspecified PDD 

and intellectual disability categories. This is reminiscent, and logically inverted, from the 

much greater role of spontaneous mutations in these latter categories, particularly in genes 

known to have an even larger impact in cohorts ascertained for intellectual disability/

developmental delay91. Interestingly, other/unspecified PDD and atypical autism also have a 

significantly higher PRS for neuroticism than childhood autism and Asperger’s. These 

different enrichment profiles observed provide evidence for a heterogeneous and 

qualitatively different genetic architecture between sub-types of ASD, which should inform 

future studies aiming at identifying etiologies and disease mechanisms in ASD.

The strong differences in estimated SNP heritability between ASD cases with and without 

intellectual disability, and highest in Asperger’s provide genetic evidence of longstanding 

observations. In particular, this aligns well with the observation that de novo variants are 

more frequently observed in ASD cases with intellectual disability compared to cases 

without comorbid intellectual disability, that IQ correlates positively with family history of 

psychiatric disorders92 and that severe intellectual disability (encompassing many 

syndromes that confer high risk to ASD) show far less heritability than is observed for mild 

intellectual disability93, intelligence in general94 and ASDs. Thus it is perhaps unsurprising 

that our data suggests that the contribution of common variants may be more prominent in 

high-functioning ASD cases such as Asperger’s syndrome.

We further explored the functional implications of these results with complementary 

functional genomics data including Hi-C analyses of fetal brains and brain transcriptome 

data. Analyses at genome-wide scale (partitioned hG
2  (Supplementary Figures 95–97) and 

brain transcriptome enrichment (Figure 5e–g)) as well as at single loci (Figure 5a–d, Box 1) 

highlighted the involvement of processes relating to brain development and neuronal 

function. Notably, a number of genes located in the identified loci have previously been 

linked to ASD risk in studies of de novo and rare variants (Box 1, Supplementary Table 4), 

including PTBP2, CADPS, and KMT2E, which were found to interact with credible SNPs in 

the Hi-C analysis (PTBP2, CADPS) or contain a loss-of-function credible SNP (KMT2E). 

Interestingly, aberrant splicing of CADPS’ sister gene CADPS2, which has almost identical 
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function, has been found in autism cases and Cadps2 knockout mice display behavioral 

anomalies with translational relevance to autism95. PTBP2 encodes a neuronal splicing 

factor and alterations in alternative splicing have been identified in brains from individuals 

diagnosed with ASD96.

In summary, we have established a first robust set of common variant associations in ASD 

and have begun laying the groundwork through which the biology of ASD and related 

phenotypes will inevitably be better articulated.

Methods

Subjects

iPSYCH sample—The iPSYCH ASD sample is a part of a population based case-cohort 

sample extracted from a baseline cohort10 consisting of all children born in Denmark 

between May 1st 1981 and December 31st 2005. Eligible were singletons born to a known 

mother and resident in Denmark on their one-year birthday. Cases were identified from the 

Danish Psychiatric Central Research Register (DPCRR)12, which includes data on all 

individuals treated in Denmark at psychiatric hospitals (from 1969 onwards) as well as at 

outpatient psychiatric clinics (from 1995 onwards). Cases were diagnosed with ASD in 2013 

or earlier by a psychiatrist according to ICD10, including diagnoses of childhood autism 

(ICD10 code F84.0), atypical autism (F84.1), Asperger’s syndrome (F84.5), other pervasive 

developmental disorders (F84.8), and pervasive developmental disorder, unspecified (F84.9). 

As controls we selected a random sample from the set of eligible children excluding those 

with an ASD diagnosis by 2013.

The samples were linked using the unique personal identification number to the Danish 

Newborn Screening Biobank (DNSB) at Statens Serum Institute (SSI), where DNA was 

extracted from Guthrie cards and whole genome amplified in triplicates as described 

previously13,97. Genotyping was performed at the Broad Institute of Harvard and MIT 

(Cambridge, MA, USA) using the PsychChip array from Illumina (CA, San Diego, USA) 

according to the instructions of the manufacturer. Genotype calling of markers with minor 

allele frequency (MAF) > 0.01 was performed by merging callsets from GenCall98 and 

Birdseed99 while less frequent variants were called with zCall100. Genotyping and data 

processing was carried out in 23 waves.

All analyses of the iPSYCH sample and joint analyses with the PGC samples were 

performed at the secured national GenomeDK high performance-computing cluster in 

Denmark.

The study was approved by the Regional Scientific Ethics Committee in Denmark and the 

Danish Data Protection Agency.

Psychiatric Genomic Consortium (PGC) samples—In brief, five cohorts provided 

genotypes to the sample (N denoting the number of trios for which genotypes were 

available): The Geschwind Autism Center of Excellence (ACE; N = 391), the Autism 

Genome Project62 (AGP; N = 2,272), the Autism Genetic Resource Exchange101,102 
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(AGRE; N = 974), the NIMH Repository, the Montreal103/Boston Collection (MONBOS; N 

= 1,396, and the Simons Simplex Collection104,105(SSC; N = 2,231). The trios were 

analyzed as cases and pseudo controls. A detailed description of the sample is available on 

the PGC web site and even more details are provided in Anney et al5. Analyses of the PGC 

genotypes were conducted on the computer cluster LISA at the Dutch HPC center 

SURFsara.

Follow-up samples—As follow-up for the loci with p-values less than 10−6 we asked for 

look up in five samples of Nordic and Eastern European origin with altogether 2,119 cases 

and 142,379 controls: BUPGEN (Norway: 164 cases and 656 controls), PAGES (Sweden: 

926 cases and 3,841 controls not part of the PGC sample above), the Finnish autism case-

control study (Finland: 159 cases and 526 controls), deCODE (Iceland 574 cases and 

136,968 controls; Eastern Europe: 296 cases and 388 controls). See Supplementary Note for 

details.

Statistical analyses

All statistical tests are two-sided unless otherwise stated. Software versions etc. can be 

found in Life Sciences Reporting Summary.

GWAS analysis—Ricopili15, the pipeline developed by the Psychiatric Genomics 

Consortium (PGC) Statistical Analysis Group was used for quality control, imputation, 

principle component analysis (PCA) and primary association analysis. For details see the 

Supplementary Note. The data were processed separately in the 23 genotyping batches in the 

case of iPSYCH and separately for each study in the PGC sample. Phasing was achieved 

using SHAPEIT106 and imputation done by IMPUTE2107,108 with haplotypes from the 1000 

Genomes Project, phase 3109 (1kGP3) as reference.

After excluding regions of high linkage disequilibrium (LD)110, the genotypes were pruned 

down to a set of roughly 30k markers. See supplementary Note for details. Using 

PLINK’s111 identity by state analysis, pairs of subjects were identified with π > 0.2 and one 

subject of each such pair was excluded at random (with a preference for keeping cases). 

PCA was carried out using smartPCA112,113. In iPSYCH, a subsample of European ancestry 

was selected as an ellipsoid in the space of PC1–3 centred and scaled using the mean and 

eight standard deviation of the subsample whose parents and grandparents were all known to 

have been born in Denmark (N = 31,500). In the PGC sample the European (CEU) subset 

was chosen using a Euclidian distance measure weighted by the variance explained by each 

of the first 3 principal components. Individuals more distant than 10 standard deviations 

from the combined CEU and Toscani in Italy (TSI) HapMap reference populations were 

excluded. We conducted a secondary PCA on the remaining 13,076 cases and 22,664 

controls to provide covariates for the association analyses. Numbers of subjects in the data 

generation flow for the iPSYCH sample are found in Supplementary Table 1.

Association analyses were done by applying PLINK 1.9 to the imputed dosage data (the sum 

of imputation probabilities P(A1A2) + 2P(A1A1)). In iPSYCH we included the first four 

principal components (PCs) as covariates as well as any PC beyond that, which were 

significantly associated with ASD in the sample, while the case-pseudo-controls from the 
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PGC trios required no PC covariates. Combined results for iPSYCH and for iPSYCH with 

the PGC was achieved by meta-analysing batch-wise and study-wise results using 

METAL114 (July 2010 version) employing an inverse variance weighted fixed effect 

model115. On chromosome X males and females were analyzed separately and then meta-

analyzed together. Subsequently we applied a quality filter allowing only markers with an 

imputation info score ≥ 0.7, MAF ≥ 0.01 and an effective sample size (see Supplementary 

Note) of at least 70% of the study maximum. The degree to which the deviation in the test 

statistics can be ascribed to cryptic relatedness and population stratification rather than to 

polygenicity was measured from the intercept in LD score regression19 (LDSC) as the ratio 

of (intercept-1) and (mean(χ2)-1).

MTAG9 was applied with standard settings. The iPSYCH-PGC meta-analysis summary 

statistics were paired up with the summary statistics for each of major depression21 

(excluding the Danish sampled but including summary statistics from 23andMe22; 111,902 

cases, 312,113 controls, and mean χ2 = 1.477), schizophrenia15 (also excluding the Danish 

samples; 34,129 cases, 45,512 controls, and mean χ2 = 1.804) and educational attainment20 

(328,917 samples and mean χ2 = 1.648). These are studies that have considerably more 

statistical power than the ASD scan, but the genetic correlations are modest in the context of 

MTAG, so the weights ascribed to the secondary phenotypes in the MTAG analyses remain 

relatively low (no higher than 0.27). The maximum FDR was estimated as recommended in 

the MTAG paper9. See Supplementary Note for details. The results were clumped and we 

highlighted loci of interest by selecting those that were significant at 5 × 10−8 in the 

iPSYCH-PGC meta-analysis or the meta-analysis with the follow-up sample or were 

significant at 1.67 × l0−8 in any of the three MTAG analyses. The composite GWAS 

consisting of the minimal p-values at each marker over these five analyses was used as a 

background when creating Manhattan plots for the different analyses showing both what is 

maximally achieved and what the individual analysis contributes to that.

Gene-based association and gene-set analyses.—MAGMA 1.0675 was applied to 

the ASD GWAS summary statistics to test for gene-based association. Using NCBI 37.3 

gene definitions and restricting the analysis to SNPs located within the transcribed region, 

mean SNP association was tested with the sum of −log(SNP p-value) as test statistic. The 

resulting gene-based p-values were further used in competitive gene-set enrichment analyses 

in MAGMA. One analysis explored the candidate sets M13, M16 and M17 from Parikshak 

et al. 201376, constrained, loss-of-function intolerant genes (pLI > 0.9)77,78 derived from 

data of the Exome Aggregation Consortium (see Supplementary Note for details), as well as 

gene sets found in studies of rare variants in autism by Sanders et al.56 and the curated gene 

list from the SPARK consortium80. Another was an agnostic analysis of the Gene Ontology 

sets81,82 for molecular function from MsigDB 6.083. We analyzed only genes outside the 

broad MHC region (hg19:chr6:25–35M) and included only gene sets with 10–1,000 genes. 

The gene set from Sanders et al. and SPARK include only one gene in MHC and was exempt 

from the MHC exclusion to be as true to the set as possible. All gene sets with significant 

enrichment were inspected to ensure that the signal was not driven by one or a few 

associated loci with multiple genes in close LD.
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SNP heritability—SNP heritability, hG
2 , was estimated using LDSC19 for the full ASD 

GWAS sample and GCTA84,116,117 for subsamples too small for LDSC. For LDSC we used 

precomputed LD scores based on the European ancestry samples of the 1000 Genomes 

Project118 restricted to HapMap3119 SNPs. The summary stats with standard LDSC filtering 

were regressed onto these scores. For liability scale estimates, we used a population 

prevalence for Denmark of 1.22%18. Lacking proper prevalence estimates for subtypes, we 

scaled the full spectrum prevalence based on the composition of the case sample.

For subsamples too small for LDSC, the GREML approach of GCTA84,116,117 was used. On 

best guess genotypes (genotype probability > 0.8, missing rate < 0.01 and MAF > 0.05) with 

INDELs removed, a genetic relatedness matrix (GRM) was fitted for the association sample 

(i.e. the subjects of European ancestry with π ≤ 0.2) providing a relatedness estimate for all 

pairwise combinations of individuals. Estimation of the phenotypic variance explained by 

the SNPs (REML) was performed including PC 1–4 as continuous covariates together with 

any other PC that was nominally significantly associated to the phenotype as well as batches 

as categorical indicator covariates. Testing equal heritability for non-overlapping groups was 

done by permutation test (with 1000 permutations) keeping the controls and randomly 

assigning the different case labels.

Following Finucane et al.87, we conducted an enrichment analysis of the heritability for 

SNPs for functional annotation and for SNPs located in cell-type-specific regulatory 

elements. Using first the same 24 overlapping functional annotations (stripped down from 

53) as in Finucane et al. we regressed the χ2 from the ASD GWAS summary statistics on to 

the cell-type specific LD scores download from the site mentioned above with baseline 

scores, regression weights and allele frequencies based on European ancestry 1000 Genome 

Project data. The enrichment of a category was defined as the proportion of SNP heritability 

in the category divided by the proportion of SNPs in that category. Still following Finucane 

et al. we did a similar analysis using 220 cell type–specific annotations divided into 10 

overlapping groups. In addition to this, we conducted an analysis based on annotation 

derived from data on H3K4Me1 imputed gapped peaks data from the Roadmap Epigenomics 

Mapping Consortium120; more specifically information excluding the broad MHC-region 

(chr6:25–35MB).

Genetic correlation—For the main ASD samples, SNP correlations, rG were estimated 

using LDSC19 and for the analysis of ASD subtypes and subgroups where the sample sizes 

were generally small, we used GCTA84. In both cases, we followed the same procedures as 

explained above. For all but a few phenotypes, LDSC estimates of correlation were achieved 

by upload to LD hub65 for comparison to all together 234 phenotypes.

Polygenic risk scores—For the polygenic risk scores (PRS) we clumped the summary 

stats applying standard Ricopili parameters (see Supplementary Note for details). To avoid 

potential strand conflicts, we excluded all ambiguous markers for summary statistics not 

generated by Ricopili using the same imputation reference. PRS were generated at the 

default p-value thresholds (5e-8, 1e-6, 1e-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1) as a 

weighted sum of the allele dosages in the ASD GWAS sample. Summing over the markers 
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abiding by the p-value threshold in the training set and weighing by the additive scale effect 

measure of the marker (log(OR) or β) as estimated in the training set. Scores were 

normalized prior to analysis.

We evaluated the predictive power using Nagelkerke’s R2 and plots of odds ratios and 

confidence intervals over score deciles. Both R2 and odds ratios were estimated in regression 

analyses including the relevant PCs and indicator variables for genotyping waves.

Lacking a large ASD sample outside of iPSYCH and PGC, we trained a set of PRS for ASD 

internally in the following way. We divided the sample in five subsamples of roughly equal 

size respecting the division into batches. We then ran five GWAS leaving out each group in 

turn from the training set and meta-analyzed these with the PGC results. This produced a set 

of PRS for each of the five subsamples trained on their complement. Prior to analyses, each 

score was normalized on the group where it was defined. We evaluated the predictive power 

in each group and on the whole sample combined.

To exploit the genetic overlap with other phenotypes to improve prediction, we created a 

series of new PRS by adding to the internally trained ASD score the PRS of other highly 

correlated phenotypes in a weighted sum. See supplementary info for details.

To analyze ASD subtypes in relation to PRS we defined a hierarchical set of phenotypes in 

the following way: First hierarchical subtypes was childhood autism, hierarchical atypical 

autism was defined as everybody with atypical autism and no childhood autism diagnosis, 

hierarchical Asperger’s as everybody with an Asperger’s diagnosis and neither childhood 

autism nor atypical autism. Finally, we lumped other pervasive developmental disorders and 

pervasive developmental disorder, unspecified into pervasive disorders developmental 

mixed, and the hierarchical version of that consists of everybody with such a diagnosis and 

none of the preceding ones (Supplementary Table 13). We examined the distribution over the 

distinct ASD subtypes of PRS for a number of phenotypes showing high rG with ASD (as 

well as a few with low rG as negative controls), by doing multivariate regression of the 

scores on the subtypes while adjusting for relevant PCs and wave indicator variables in a 

linear regression. See Supplementary Note for details.

Hi-C analysis—The Hi-C data were generated from two major cortical laminae: the 

germinal zone (GZ), containing primarily mitotically active neural progenitors, and the 

cortical and subcortical plate (CP), consisting primarily of post-mitotic neurons89. We first 

derived a set of credible SNPs (putative causal SNPs) from the identified top ranking loci in 

the ASD GWAS using CAVIAR90. The 30 loci showing the strongest association was 

intersected with the Hi-C reference data resulting in 28 loci for analysis. To test whether 

credible SNPs are enriched in active marks in the fetal brain120, we employed GREAT as 

previously described89,121. Credible SNPs were sub-grouped into those without known 

function (unannotated) and functionally annotated SNPs (SNPs in the gene promoters and 

SNPs that cause nonsynonymous variants) (Supplementary Figure 98). Then we integrated 

unannotated credible SNPs with chromatin contact profiles during fetal corticogenesis89, 

defining genes physically interacting with intergenic or intronic SNPs (Supplementary 

Figure 98).
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The spatiotemporal transcriptomic atlas of human brain was obtained from Kang et al122. 

We used transcriptomic profiles of multiple brain regions with developmental epochs that 

span prenatal (6–37 post-conception week, PCW) and postnatal (4 months-42 years) periods. 

Expression values were log-transformed and centered to the mean expression level for each 

sample using a scale(center=T, scale=F)+1 function in R. ASD candidate genes identified by 

Hi-C analyses (Supplementary Figure 98) were selected for each sample and their average 

centered expression values were calculated and plotted.

Availability of summary statistics

The summary statistics are available for download the iPSYCH and at the PGC download 

sites (see the URL section).

Availability of genotype data

For access to genotypes from the PGC samples and the iPSYCH sample, researchers should 

contact the lead PIs Mark J. Daly and Anders D. Børglum for PGC-ASD and iPSYCH-ASD 

respectively.

URLs

The GenomeDK high performance-computing cluster in Denmark, https://genome.au.dk; the 

iPSYCH project, http://ipsych.au.dk, the iPSYCH download page, http://ipsych.au.dk/

downloads/; the NIMH Repository, https://www.nimhgenetics.org/available_data/autism/; 

the PGC download site, https://www.med.unc.edu/pgc/results-and-downloads; the LISA 

cluster at SURFsara, https://userinfo.surfsara.nl/systems/lisa; plink 1.9, www.cog-

genomics.org/plink/1.9/; LDSC and associated files, https://github.com/bulik/ldsc; LD hub, 

http://ldsc.broadinstitute.org/ldhub/; GTExportal, https://gtexportal.org/home/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box1.

Selected loci and candidates (ordered by chromosome).
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Figure 1. Manhattans plots:
with the x axis showing genomic position (chromosomes 1–22) and the y axis showing 

statistical significance as −log10 (P) of z statistics. a: The main ASD scan (18,381 cases and 

27,969 controls) with the results of the combined analysis with the follow-up sample (2,119 

cases and 142,379 controls) in yellow in the foreground. Genome-wide significant clumps 

are painted green with index SNPs as diamonds. b-d: Manhattan plots for three MTAG scans 

of ASD together with, respectively, schizophrenia15 (34,129 cases and 45,512 controls), 

educational attainment20 (N = 328,917) and major depression21 (111,902 case and 312,113 

controls). See Supplementary Figures 45–48 for full size plots. In all panels the results of the 

composite of the five analyses (consisting for each marker of the minimal p-value of the 

five) is shown in grey in the background.
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Figure 2. Genetic correlation with other traits.
Significant genetic correlations between ASD (N = 46,350) and other traits after Bonferroni 

correction for testing a total of 234 traits available at LDhub with the addition of a handful 

of new phenotypes. Estimates and tests by LDSC19. The results here correspond to the 

following GWAS analyses: IQ23 (N = 78,308), educational attainment20 (N = 328,917), 

college71 (N = 111,114), self-reported tiredness72 (N = 108,976), neuroticism67 (N = 

170,911), subjective well-being67 (N = 298,420), schizophrenia15 (N = 82,315), major 

depression21 (N = 480,359), depressive symptoms67(N = 161,460), attention deficit/

hyperactivity disorder (ADHD)69 (N = 53,293), and chronotype73 (N = 128,266). See 

Supplementary Table 5 for the full output of this analysis.

* Indicates that the values are from in-house analyses of new summary statistics not yet 

included in LD Hub.
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Figure 3. Profiling PRS load across distinct ASD sub-groups for 8 different phenotypes
(schizophrenia (SCZ)15, major depression (MD)21, educational attainment (Edu)20, human 

intelligence (IQ)23, subjective well-being (SWB)67, chronotype73, neuroticism67 and body 

mass index (BMI)24. The bars show coefficients from multivariate multivariable regression 

of the 8 normalized scores on the distinct ASD sub-types of 13,076 cases and 22,664 

controls, adjusting for batches and principal compenents. The subtypes are the hierarchically 

defined subtypes for childhood autism (hCHA, N = 3,310), atypical autism (hATA, N = 

1,494), Asperger’s (hAsp, N = 4,417), and the lumped pervasive disorders developmental 

group (hPDM, N = 3,855). Please note that the orientation of the scores for subjective well-

being, chronotype and BMI have been switched to improve graphical presentation. The 

corresponding plot where subjects with intellectual disability have been excluded can be 

seen in Supplementary Figure 85, and with intellectual disability as a subtype in 

Supplementary Figure 84. Applying the same procedure to the internally trained ASD score 
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did not display systematic heterogeneity (P = 0.068) except as expected for the ID groups (P 
= 0.00027) (Supplementary Figure 88). Linear hypotheses tested using the Pillai test.

Grove et al. Page 35

Nat Genet. Author manuscript; available in PMC 2019 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Decile plots
(Odds Ratio (OR) by PRS within each decile for 13,076 cases and 22,664 controls): a. 
Decile plot with 95%-CI for the internally trained ASD score (P-value threshold is 0.1). b. 
Decile plots on a weighted sums of PRSs starting with the ASD score of panel a and 

successively adding the scores for major depression21, subjective well-being67, 

schizophrenia15, educational attainment20, and chronotype73. In all instances the P-value 

threshold for the score used is the one with the highest Nagelkerke’s R2. Supplementary 

Figures 92 and 94 show the stability across leave-one out groups that was used to create 

these combined results.
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Figure 5. Chromatin interactions identify putative target genes of ASD loci.
a-d. Chromatin interaction maps of credible SNPs to the 1 Mb flanking region, providing 

putative candidate genes that physically interact with credible SNPs. Gene Model is based 

on Gencode v19 and putative target genes are marked in red; Genomic coordinate for a 

credible SNP is labeled as GWAS; −log10(P-value), significance of the interaction between 

a SNP and each 10-kb bin, grey dotted line for FDR = 0.01 (one-sided significance test 

calculated as the probability of observing a higher contact frequency under the fitted Weibull 

distribution matched by chromosome and distance); Topologically associated domain (TAD) 

borders in cortical plate (CP) and germinal zone (GZ). e-f. Developmental expression 

trajectories of ASD candidate genes show highest expression in prenatal periods. 

Significance by t-test (N = 410 and 453 for prenatal and postnatal samples, respectively). 

Box-plots showing median, interquartile range (IQR) with whiskers adding IQR to the 1st 

and 3rd quartile (e and g). LOESS smooth curve plotted with actual data points (f) g. ASD 

candidate genes are highly expressed in the developing cortex as compared to other brain 

regions. One-way ANOVA and posthoc Tukey test, FDR-corrected. (N = 410/453, 39/36, 

33/37, 48/34, 37/36, 32/39 for prenatal/postnatal cortex, hippocampus, amygdala, striatum, 

thalamus, and cerebellum, respectively).
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