
Computational Neuroscience: Mathematical and Statistical 
Perspectives

Robert E. Kass1, Shun-ichi Amari2, Kensuke Arai3, Emery N. Brown4,5, Casey O. Diekman6, 
Markus Diesmann7,8, Brent Doiron9, Uri T. Eden3, Adrienne L. Fairhall10, Grant M. 
Fiddyment3, Tomoki Fukai2, Sonja Grün7,8, Matthew T. Harrison11, Moritz Helias7,8, Hiroyuki 
Nakahara2, Jun-nosuke Teramae12, Peter J. Thomas13, Mark Reimers14, Jordan Rodu1, 
Horacio G. Rotstein6, Eric Shea-Brown10, Hideaki Shimazaki15,16, Shigeru Shinomoto16, 
Byron M. Yu1, and Mark A. Kramer3

1Carnegie Mellon University, Pittsburgh, PA, USA, 15213; email: kass@stat.cmu.edu

2RIKEN Brain Science Institute, Wako, Saitama Prefecture, Japan, 351-0198

3Boston University, Boston, MA, USA, 02215

4Massachusetts Institute of Technology, Cambridge, MA, USA, 02139

5Harvard Medical School, Boston, MA, USA, 02115

6New Jersey Institute of Technology, Newark, NJ, USA, 07102

7Jülich Research Centre, Jülich, Germany, 52428

8RWTH Aachen University, Aachen, Germany, 52062

9University of Pittsburgh, Pittsburgh, PA, USA, 15260

10University of Washington, Seattle, WA, USA, 98105

11Brown University, Providence, RI, USA, 02912

12Osaka University, Suita, Osaka Prefecture, Japan, 565-0871

13Case Western Reserve University, Cleveland, OH, USA, 44106

14Michigan State University, East Lansing, MI, USA, 48824

15Honda Research Institute Japan, Wako, Saitama Prefecture, Japan, 351-0188

16Kyoto University, Kyoto, Kyoto Prefecture, Japan, 606-8502

Abstract

Mathematical and statistical models have played important roles in neuroscience, especially by 

describing the electrical activity of neurons recorded individually, or collectively across large 

networks. As the field moves forward rapidly, new challenges are emerging. For maximal 
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effectiveness, those working to advance computational neuroscience will need to appreciate and 

exploit the complementary strengths of mechanistic theory and the statistical paradigm.
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1. Introduction

Brain science seeks to understand the myriad functions of the brain in terms of principles 

that lead from molecular interactions to behavior. Although the complexity of the brain is 

daunting and the field seems brazenly ambitious, painstaking experimental efforts have 

made impressive progress. While investigations, being dependent on methods of 

measurement, have frequently been driven by clever use of the newest technologies, many 

diverse phenomena have been rendered comprehensible through interpretive analysis, which 

has often leaned heavily on mathematical and statistical ideas. These ideas are varied, but a 

central framing of the problem has been to “elucidate the representation and transmission of 

information in the nervous system” (Perkel and Bullock 1968). In addition, new and 

improved measurement and storage devices have enabled increasingly detailed recordings, 

as well as methods of perturbing neural circuits, with many scientists feeling at once excited 

and overwhelmed by opportunities of learning from the ever-larger and more complex data 

sets they are collecting. Thus, computational neuroscience has come to encompass not only 

a program of modeling neural activity and brain function at all levels of detail and 

abstraction, from sub-cellular biophysics to human behavior, but also advanced methods for 

analysis of neural data.

In this article we focus on a fundamental component of computational neuroscience, the 

modeling of neural activity recorded in the form of action potentials (APs), known as spikes, 

and sequences of them known as spike trains (see Figure 1). In a living organism, each 

neuron is connected to many others through synapses, with the totality forming a large 

network. We discuss both mechanistic models formulated with differential equations and 

statistical models for data analysis, which use probability to describe variation. Mechanistic 

and statistical approaches are complementary, but their starting points are different, and their 

models have tended to incorporate different details. Mechanistic models aim to explain the 

dynamic evolution of neural activity based on hypotheses about the properties governing the 

dynamics. Statistical models aim to assess major drivers of neural activity by taking account 

of indeterminate sources of variability labeled as noise. These approaches have evolved 

separately, but are now being drawn together. For example, neurons can be either excitatory, 

causing depolarizing responses at downstream (post-synaptic) neurons (i.e., responses that 

push the voltage toward the firing threshold, as illustrated in Figure 1), or inhibitory, causing 

hyperpolarizing post-synaptic responses (that push the voltage away from threshold). This 

detail has been crucial for mechanistic models but, until relatively recently, has been largely 

ignored in statistical models. On the other hand, during experiments, neural activity changes 

while an animal reacts to a stimulus or produces a behavior. This kind of non-stationarity has 

been seen as a fundamental challenge in the statistical work we review here, while 
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mechanistic approaches have tended to emphasize emergent behavior of the system. In 

current research, as the two perspectives are being combined increasingly often, the 

distinction has become blurred. Our purpose in this review is to provide a succinct summary 

of key ideas in both approaches, together with pointers to the literature, while emphasizing 

their scientific interactions. We introduce the subject with some historical background, and 

in subsequent sections describe mechanistic and statistical models of the activity of 

individual neurons and networks of neurons. We also highlight several domains where the 

two approaches have had fruitful interaction.

1.1. The brain-as-computer metaphor

The modern notion of computation may be traced to a series of investigations in 

mathematical logic in the 1930s, including the Turing machine (Turing 1937). Although we 

now understand logic as a mathematical subject existing separately from human cognitive 

processes, it was natural to conceptualize the rational aspects of thought in terms of logic (as 

in Boole’s 1854 Investigation of the Laws of Thought (Boole 1854, p. 1) which “aimed to 

investigate those operations of the mind by which reasoning is performed”), and this led to 

the 1943 proposal by Craik that the nervous system could be viewed “as a calculating 

machine capable of modeling or paralleling external events” (Craik 1943, p. 120) while Mc-

Culloch and Pitts provided what they called “A logical calculus of the ideas immanent in 

nervous activity” (McCulloch and Pitts 1943). In fact, while it was an outgrowth of 

preliminary investigations by a number of early theorists (Piccinini 2004), the McCulloch 

and Pitts paper stands as a historical landmark for the origins of artificial intelligence, along 

with the notion that mind can be explained by neural activity through a formalism that aims 

to define the brain as a computational device; see Figure 2. In the same year another 

noteworthy essay, by Norbert Wiener and colleagues, argued that in studying any behavior 

its purpose must be considered, and this requires recognition of the role of error correction 

in the form of feedback (Rosenblueth et al. 1943). Soon after, Wiener consolidated these 

ideas in the term cybernetics (Wiener 1948). Also, in 1948 Claude Shannon published his 

hugely influential work on information theory which, beyond its technical contributions, 

solidified information (the reduction of uncertainty) as an abstract quantification of the 

content being transmitted across communication channels, including those in brains and 

computers (Shannon and Weaver 1949).

The first computer program that could do something previously considered exclusively the 

product of human minds was the Logic Theorist of Newell and Simon (Newell and Simon 

1956), which succeeded in proving 38 of the 52 theorems concerning the logical foundations 

of arithmetic in Chapter 2 of Principia Mathematica (Whitehead and Russell 1912). The 

program was written in a list-processing language they created (a precursor to LISP), and 

provided a hierarchical symbol manipulation framework together with various heuristics, 

which were formulated by analogy with human problem-solving (Gugerty 2006). It was also 

based on serial processing, as envisioned by Turing and others.

A different kind of computational architecture, developed by Rosenblatt (Rosenblatt 1958), 

combined the McCulloch-Pitts conception with a learning rule based on ideas articulated by 

Hebb in 1949 (Hebb 1949), now known as Hebbian learning. Hebb’s rule was, “When an 
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axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in 

firing it, some growth process or metabolic change takes place in one or both cells such that 

A’s efficiency, as one of the cells firing B, is increased” (Hebb 1949), that is, the strengths of 

the synapses connecting the two neurons increase, which is sometimes stated colloquially as, 

“Neurons that fire together, wire together.” Rosenblatt called his primitive neurons 

perceptrons, and he created a rudimentary classifier, aimed at imitating biological decision 

making, from a network of perceptrons, see Figure 2. This was the first artificial neural 

network that could carry out a non-trivial task.

As the foregoing historical outline indicates, the brain-as-computer metaphor was solidly in 

place by the end of the 1950s. It rested on a variety of technical specifications of the notions 

that (1) logical thinking is a form of information processing, (2) information processing is 

the purpose of computer programs, while, (3) information processing may be implemented 

by neural systems (explicitly in the case of McCulloch-Pitts model and its descendents, but 

implicitly otherwise). A crucial recapitulation of the information-processing framework, 

given later by David Marr (Marr 1982), distinguished three levels of analysis: computation 
(“What is the goal of the computation, why is it appropriate, and what is the logic of the 

strategy by which it can be carried out?”), algorithm (“What is the representation for the 

input and output, and what is the algorithm for the transformation?”), and implementation 
(“How can the representation and algorithm be realized physically?”). This remains a very 

useful way to categorize descriptions of brain computation.

1.2. Neurons as electrical circuits

A rather different line of mathematical work, more closely related to neurobiology, had to do 

with the electrical properties of neurons. So-called “animal electricity” had been observed 

by Galvani in 1791 (Galvani and Aldini 1792). The idea that the nervous system was made 

up of individual neurons was put forth by Cajal in 1886, the synaptic basis of 

communication across neurons was established by Sherrington in 1897 (Sherrington 1897), 

and the notion that neurons were electrically excitable in a manner similar to a circuit 

involving capacitors and resistors in parallel was proposed by Hermann in 1905 (Piccolino 

1998). In 1907, Lapique gave an explicit solution to the resulting differential equation, in 

which the key constants could be determined from data, and he compared what is now 

known as the leaky integrate-and-fire model (LIF) with his own experimental results (Abbott 

1999; Brunel and Van Rossum 2007; Lapique 1907). This model, and variants of it, remain 

in use today (Gerstner et al. 2014), and we return to it in Section 2 (see Figure 3). Then, a 

series of investigations by Adrian and colleagues established the “all or nothing” nature of 

the AP, so that increasing a stimulus intensity does not change the voltage profile of an AP 

but, instead, increases the neural firing rate (Adrian and Zotterman 1926). The conception 

that stimulus or behavior is related to firing rate has become ubiquitous in neurophysiology. 

It is often called rate coding, in contrast to temporal coding, which involves the information 

carried in the precise timing of spikes (Abeles 1982; Shadlen and Movshon 1999; Singer 

1999).

Following these fundamental descriptions, remaining puzzles about the details of action 

potential generation led to investigations by several neurophysiologists and, ultimately, to 
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one of the great scientific triumphs, the Hodgkin-Huxley model. Published in 1952 

(Hodgkin and Huxley 1952), the model consisted of a differential equation for the neural 

membrane potential (in the squid giant axon) together with three subsidiary differential 

equations for the dynamic properties of the sodium and potassium ion channels. See Figure 

4. This work produced accurate predictions of the time courses of membrane conductances; 

the form of the action potential; the change in action potential form with varying 

concentrations of sodium; the number of sodium ions involved in inward flux across the 

membrane; the speed of action potential propagation; and the voltage curves for sodium and 

potassium ions (Hille 2001; Hodgkin and Huxley 1952). Thus, by the time the brain-as-

computer metaphor had been established, the power of biophysical modeling had also been 

demonstrated. Over the past 60 years, the Hodgkin-Huxley equations have been refined, but 

the model’s fundamental formulation has endured, and serves as the basis for many present-

day models of single neuron activity; see Section 2.2.

1.3. Receptive fields and tuning curves

In early recordings from the optic nerve of the Limulus (horseshoe crab), Hartline found that 

shining a light on the eye could drive individual neurons to fire, and that a neuron’s firing 

rate increased with the intensity of the light (Hartline and Graham 1932). He called the 

location of the light that drove the neuron to fire the neuron’s receptive field. In primary 

visual cortex (known as area V1), the first part of cortex to get input from the retina, Hubel 

and Wiesel showed that bars of light moving across a particular part of the visual field, again 

labeled the receptive field, could drive a particular neuron to fire and, furthermore, that the 

orientation of the bar of light was important: many neurons were driven to fire most rapidly 

when the bar of light moved in one direction, and fired much more slowly when the 

orientation was rotated 90 degrees away (Hubel and Wiesel 1959). When firing rate is 

considered as a function of orientation, this function has come to be known as a tuning curve 
(Dayan and Abbott 2001). More recently, the terms “receptive field” and “tuning curve” 

have been generalized to refer to non-spatial features that drive neurons to fire. The notion of 

tuning curves, which could involve many dimensions of tuning simultaneously, widely 

applied in computational neuroscience.

1.4. Networks

Neuron-like artificial neural networks, advancing beyond perceptron networks, were 

developed during the 1960s and 1970s, especially in work on associative memory (Amari 

1977b), where a memory is stored as a pattern of activity that can be recreated by a stimulus 

when it provides even a partial match to the pattern. To describe a given activation pattern, 

Hopfield applied statistical physics tools to introduce an energy function and showed that a 

simple update rule would decrease the energy so that the network would settle to a pattern-

matching “attractor” state (Hopfield 1982). Hopfield’s network model is an example of what 

statisticians call a two-way interaction model for N binary variables, where the energy 

function becomes the negative log-likelihood function. Hinton and Sejnowski provided a 

stochastic mechanism for optimization and the interpretation that a posterior distribution was 

being maximized, calling their method a Boltzmann machine because the probabilities they 

used were those of the Boltzmann distribution in statistical mechanics (Hinton and 

Sejnowski 1983). Geman and Geman then provided a rigorous analysis together with their 
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reformulation in terms of the Gibbs sampler (Geman and Geman 1984). Additional tools 

from statistical mechanics were used to calculate memory capacity and other properties of 

memory retrieval (Amit et al. 1987), which created further interest in these models among 

physicists.

Artificial neural networks gained traction as models of human cognition through a series of 

developments in the 1980s (Medler 1998), producing the paradigm of parallel distributed 
processing (PDP). PDP models are multi-layered networks of nodes resembling those of 

their perceptron precursor, but they are interactive, or recurrent, in the sense that they are not 

necessarily feed-forward: connections between nodes can go in both directions, and they 

may have structured inhibition and excitation (Rumelhart et al. 1986). In addition, training 

(i.e., estimating parameters by minimizing an optimization criterion such as the sum of 

squared errors across many training examples) is done by a form of gradient descent known 

as back propagation (because iterations involve steps backward from output errors toward 

input weights). While the nodes within these networks do not correspond to individual 

neurons, features of the networks, including back propagation, are usually considered to be 

biologically plausible. For example, synaptic connections between biological neurons are 

plastic, and change their strength following rules consistent with theoretical models (e.g., 

Hebb’s rule). Furthermore, PDP models can reproduce many behavioral phenomena, 

famously including generation of past tense for English verbs and making childlike errors 

before settling on correct forms (McClelland and Rumelhart 1981). Currently, there is 

increased interest in neural network models through deep learning, which we will discuss 

briefly, below.

Analysis of the overall structure of network connectivity, exemplified in research on social 

networks (see Fienberg (2012) for historical overview), has received much attention 

following the 1998 observation that several very different kinds of networks, including the 

neural connectivity in the worm C. elegans, exhibit “small world” properties of short average 

path length between nodes, together with substantial clustering of nodes, and that these 

properties may be described by a relatively simple stochastic model (Watts and Strogatz 

1998). This style of network description has since been applied in many contexts involving 

brain measurement, mainly using structural and functional magnetic resonance imaging 

(MRI) (Bassett and Bullmore 2016; Bullmore and Sporns 2009), though cautions have been 

issued regarding the difficulty of interpreting results physiologically (Papo et al. 2016).

1.5. Statistical models

Stochastic considerations have been part of neuroscience since the first descriptions of 

neural activity, outlined briefly above, due to the statistical mechanics underlying the flow of 

ions across channels and synapses (Colquhoun and Sakmann 1998; Destexhe et al. 1994). 

Spontaneous fluctuations in a neuron’s membrane potential are believed to arise from the 

random opening and closing of ion channels, and this spontaneous variability has been 

analyzed using a variety of statistical methods (Sigworth 1980). Such analysis provides 

information about the numbers and properties of the ion channel populations responsible for 

excitability. Probability has also been used extensively in psychological theories of human 

behavior for more than 100 years, e.g., Stigler (1986, Ch. 7). Especially popular theories 
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used to account for behavior include Bayesian inference and reinforcement learning, which 

we will touch on below. A more recent interest is to determine signatures of statistical 

algorithms in neural function. For example, drifting diffusion to a threshold, which is used 

with LIF models (Tuckwell 1988), has also been used to describe models of decision making 

based on neural recordings (Gold and Shadlen 2007). However, these are all examples of 

ways that statistical models have been used to describe neural activity, which is very 

different from the role of statistics in data analysis. Before previewing our treatment of data 

analytic methods, we describe the types of data that are relevant to this article.

1.6. Recording modalities

Efforts to understand the nervous system must consider both anatomy (its constituents and 

their connectivity) and function (neural activity and its relationship to the apparent goals of 

an organism). Anatomy does not determine function, but does strongly constrain it. 

Anatomical methods range from a variety of microscopic methods to static, whole-brain 

MRI (Fischl et al. 2002). Functional investigations range across spatial and temporal scales, 

beginning with recordings from ion channels, to action potentials, to local field potentials 

(LFPs) due to the activity of many thousands of neural synapses. Functional measurements 

outside the brain (still reflecting electrical activity within it), come from 

electroencephalography (EEG) (Nunez and Srinivasan 2006) and magnetoencephalography 

(MEG) (Hämäläinen et al. 1993), as well as indirect methods that measure a physiological or 

metabolic parameter closely associated with neural activity, including positron emission 

tomography (PET) (Bailey et al. 2005), functional MRI (fMRI) (Lazar 2008), and near-

infrared resonance spectroscopy (NIRS) (Villringer et al. 1993). These functional methods 

have timescales spanning milliseconds to minutes, and spatial scales ranging from a few 

cubic millimeters to many cubic centimeters.

While interesting mathematical and statistical problems arise in nearly every kind of 

neuroscience data, we focus here on neural spiking activity. Spike trains are sometimes 

recorded from individual neurons in tissue that has been extracted from an animal and 

maintained over hours in a functioning condition (in vitro). In this setting, the voltage drop 

across the membrane is nearly deterministic; then, when the neuron is driven with the same 

current input on each of many repeated trials, the timing of spikes is often replicated 

precisely across the trials (Mainen and Sejnowski 1995), as seen in portions of the spike 

trains in Figure 5. Recordings from brains of living animals (in vivo) show substantial 

irregularity in spike timing, as in Figure 1. These recordings often come from electrodes that 

have been inserted into brain tissue near, but not on or in, the neuron generating a resulting 

spike train; that is, they are extracellular recordings. The data could come from one up to 

dozens, hundreds, or even thousands of electrodes. Because the voltage on each electrode is 

due to activity of many nearby neurons, with each neuron contributing its own voltage 

signature repeatedly, there is an interesting statistical clustering problem known as spike 
sorting (Carlson et al. 2014; Rey et al. 2015), but we will ignore that here. Another 

important source of activity, recorded from many individual neurons simultaneously, is 

calcium imaging, in which light is emitted by fluorescent indicators in response to the flow 

of calcium ions into neurons when they fire (Grienberger and Konnerth 2012). Calcium 

dynamics, and the nature of the indicator, limit temporal resolution to between tens and 
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several hundred milliseconds. Signals can be collected using one-photon microscopy even 

from deep in the brain of a behaving animal; two-photon microscopy provides significantly 

higher spatial resolution but at the cost of limiting recordings to the brain surface. Due to the 

temporal smoothing, extraction of spiking data from calcium imaging poses its own set of 

statistical challenges (Pnevmatikakis et al. 2016).

Neural firing rates vary widely, depending on recording site and physiological 

circumstances, from quiescent (essentially 0 spikes per second) to as many as 200 spikes per 

second. The output of spike sorting is a sequence of spike times, typically at time resolution 

of 1 millisecond (the approximate width of an AP). While many analyses are based on spike 
counts across relatively long time intervals (numbers of spikes that occur in time bins of tens 

or hundreds of milliseconds), some are based on the more complete precise timing 

information provided by the spike trains.

In some special cases, mainly in networks recorded in vitro, neurons are densely sampled 

and it is possible to study the way activity of one neuron directly influences the activity of 

other neurons (Pillow et al. 2008). However, in most experimental settings to date, a very 

small proportion of the neurons in the circuit are sampled.

1.7. Data analysis

In experiments involving behaving animals, each experimental condition is typically 

repeated across many trials. On any two trials, there will be at least slight differences in 

behavior, neural activity throughout the brain, and contributions from molecular noise, all of 

which results in considerable variability of spike timing. Thus, a spike train may be regarded 

as a point process, i.e., a stochastic sequence of event times, with the events being spikes. 

We discuss point process modeling below, but note here that the data are typically recorded 

as sparse binary time series in 1 millisecond time bins (1 if spike, 0 if no spike). When spike 

counts within broader time bins are considered, they may be assumed to form continuous-

valued time series, and this is the framework for some of the methods referenced below. It is 

also possible to apply time series methods directly to the binary data, or smoothed versions 

of them, but see the caution in Kass et al. (2014, Section 19.3.7). A common aim is to relate 

an observed pattern of activity to features of the experimental stimulus or behavior. 

However, in some settings predictive approaches are used, often under the rubric of 

decoding, in the sense that neural activity is “decoded” to predict the stimulus or behavior. In 

this case, tools associated with the field of statistical machine learning may be especially 

useful (Ventura and Todorova 2015). We omit many interesting questions that arise in the 

course of analyzing biological neural networks, such as the distribution of the post-synaptic 

potentials that represent synaptic weights (Buzsáki and Mizuseki 2014; Teramae et al. 

2012).

Data analysis is performed by scientists with diverse backgrounds. Statistical approaches use 

frameworks built on probabilistic descriptions of variability, both for inductive reasoning and 

for analysis of procedures. The resulting foundation for data analysis has been called the 
statistical paradigm (Kass et al. 2014, Section 1.2).
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1.8. Components of the nervous system

When we speak of neurons, or brains, we are indulging in sweeping generalities: properties 

may depend not only on what is happening to the organism during a study, but also on the 

component of the nervous system studied, and the type of animal being used. Popular 

organisms in neuroscience include worms, mollusks, insects, fish, birds, rodents, non-human 

primates, and, of course, humans. The nervous system of vertebrates comprises the brain, the 

spinal cord, and the peripheral system. The brain itself includes both the cerebral cortex and 

sub-cortical areas. Textbooks of neuroscience use varying organizational rubrics, but major 

topics include the molecular physiology of neurons, sensory systems, the motor system, and 

systems that support higher-order functions associated with complex and flexible behavior 

(Kandel et al. 2013; Swanson 2012). Attempts at understanding computational properties of 

the nervous system have often focused on sensory systems: they are more easily accessed 

experimentally, controlled inputs to them can be based on naturally occurring inputs, and 

their response properties are comparatively simple. In addition, much attention has been 

given to the cerebral cortex, which is involved in higher-order functioning.

2. Single Neurons

Mathematical models typically aim to describe the way a given phenomenon arises from 

some architectural constraints. Statistical models typically are used to describe what a 

particular data set can say concerning the phenomenon, including the strength of evidence. 

We very briefly outline these approaches in the case of single neurons, and then review 

attempts to bring them together.

2.1. LIF models and their extensions

Originally proposed more than a century ago, the LIF model (Figure 3) continues to serve an 

important role in neuroscience research (Abbott 1999). Although LIF neurons are 

deterministic, they often mimic the variation in spike trains of real neurons recorded in vitro, 

such as those in Figure 5. In the left panel of that figure, the same fluctuating current is 

applied repeatedly as input to the neuron, and this creates many instances of spike times that 

are highly precise in the sense of being replicated across trials; some other spike times are 

less precise. Precise spike times occur when a large slope in the input current leads to wide 

recruitment of ion channels (Mainen and Sejnowski 1995). Temporal locking of spikes to 

high frequency inputs also can be seen in LIF models (Goedeke and Diesmann 2008). Many 

extensions of the original leaky integrate-and-fire model have been developed to capture 

other features of observed neuronal activity (Gerstner et al. 2014), including more realistic 

spike initiation through inclusion of a quadratic term, and incorporation of a second 

dynamical variable to simulate adaptation and to capture more diverse patterns of neuronal 

spiking and bursting. Even though these models ignore the biophysics of action potential 

generation (which involve the conductances generated by ion channels, as in the Hodgkin-

Huxley model), they are able to capture the nonlinearities present in several biophysical 

neuronal models (Rotstein 2015). The impact of stochastic effects due to the large number of 

synaptic inputs delivered to an LIF neuron has also been extensively studied using diffusion 

processes (Lansky and Ditlevsen 2008).
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2.2. Biophysical models

There are many extensions of the Hodgkin and Huxley framework outlined in Figure 4. 

These include models that capture additional biological features, such as additional ionic 

currents (Somjen 2004), and aspects of the neuron’s extracellular environment (Wei et al. 

2014), both of which introduce new fast and slow timescales to the dynamics. Contributions 

due to the extensive dendrites (which receive inputs to the neuron) have been simulated in 

detailed biophysical models (Rall 1962). While increased biological realism necessitates 

additional mathematical complexity, especially when large populations of neurons are 

considered, the Hodgkin-Huxley model and its extensions remain fundamental to 

computational neuroscience research (Markram et al. 2015; Traub et al. 2005).

Simplified mathematical models of single neuron activity have facilitated a dynamical 

understanding of neural behavior. The Fitzhugh-Nagumo model is a purely 

phenomenological model, based on geometric and dynamic principles, and not directly on 

the neuron’s biophysics (Fitzhugh 1960; Nagumo et al. 1962). Because of its low 

dimensionality, it is amenable to phase-plane analysis using dynamical systems tools (e.g., 

examining the null-clines, equilibria and trajectories).

An alternative approach is to simplify the equations of a detailed neuronal model in ways 

that retain a biophysical interpretation (Ermentrout and Terman 2010). For example, by 

making a steady-state approximation for the fast ionic sodium current activation in the 

Hodgkin-Huxley model (m in Figure 4), and recasting two of the gating variables (n and h), 

it is possible to simplify the original Hodgkin-Huxley model to a two-dimensional model, 

which can be investigated more easily in the phase plane (Gerstner et al. 2014). The 

development of simplified models is closely interwoven with bifurcation theory and the 

theory of normal forms within dynamical systems (Izhikevich 2007). One well-studied 

reduction of the Hodgkin-Huxley equations to a 2-dimensional conductance-based model 

was developed by John Rinzel (Rinzel 1985). In this case, the geometries of the 

phenomenological Fitzhugh-Nagumo model and the simplified Rinzel model are 

qualitatively similar. Yet another approach to dimensionality reduction consists of neglecting 

the spiking currents (fast sodium and delayed-rectifying potassium) and considering only the 

currents that are active in the sub-threshold regime (Rotstein et al. 2006). This cannot be 

done in the original Hodgkin-Huxley model, because the only ionic currents are those that 

lead to spikes, but it is useful in models that include additional ionic currents in the sub-

threshold regime.

2.3. Point process regression models of single neuron activity

Mathematically, the simplest model for an irregular spike train is a homogeneous Poisson 

process, for which the probability of spiking within a time interval (t, t + Δt], for small Δt, 
may be written

P( spike in (t, t + Δt]) ≈ λΔt,

where λ represents the firing rate of the neuron and where disjoint intervals have 

independent spiking. This model, however, is often inadequate for many reasons. For one 
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thing, neurons have noticeable refractory periods following a spike, during which the 

probability of spiking goes to zero (the absolute refractory period) and then gradually 

increases, often over tens of milliseconds (the relative refractory period). In this sense 

neurons exhibit memory effects, often called spike history effects. To capture those, and 

many other physiological effects, more general point processes must be used. We outline the 

key ideas underlying point process modeling of spike trains.

As we indicated in Section 1.2, a fundamental result in neurophysiology is that neurons 

respond to a stimulus or contribute to an action by increasing their firing rates. The 

measured firing rate of a neuron within a time interval would be the number of spikes in the 

interval divided by the length of the interval (usually in units of seconds, so that the ratio is 

in spikes per second, abbreviated as Hz, for Hertz). The point process framework centers on 

the theoretical instantaneous firing rate, which takes the expected value of this ratio and 

passes to the limit as the length of the time interval goes to zero, giving an intensity function 

for the process. To accurately model a neuron’s spiking behavior, however, the intensity 

function typically must itself evolve over time depending on changing inputs and 

experimental conditions, the recent past spiking behavior of the neuron, the behavior of 

other neurons, the behavior of local field potentials, etc. It is therefore called a conditional 
intensity function and may be written in the form

λ(t | xt) = lim
Δt 0

E N(t, t + Δt] | Xt = xt
Δt

where N(t,t+Δt] is the number of spikes in the interval (t,t + Δt] and where the vector Xt 

includes both the past spiking history Ht prior to time t and also any other quantities that 

affect the neuron’s current spiking behavior. In some special cases, the conditional intensity 

will be deterministic, but in general, because Xt is random, the conditional intensity is also 

random. If Xt includes unobserved random variables, the process is often called doubly 
stochastic. When the conditional intensity depends on the history Ht, the process is often 

called self-exciting (though the effects may produce an inhibition of firing rate rather than an 

excitation). The vector Xt may be high-dimensional. A mathematically tractable special 

case, where contributions to the intensity due to previous spikes enter additively in terms of 

a fixed kernel function, is the Hawkes process.

As a matter of interpretation, in sufficiently small time intervals the spike count is either zero 

or one, so we may replace the expectation with the probability of spiking and get

P(spike in (t, t + Δt] | Xt = xt) ≈ λ(t | xt)Δt .

A statistical model for a spike train involves two things: (1) a simple, universal formula for 

the probability density of the spike train in terms of the conditional intensity function (which 

we omit here) and (2) a specification of the way the conditional intensity function depends 

on variables xt. An analogous statement is also true for multiple spike trains, possibly 

involving multiple neurons. Thus, when the data are resolved down to individual spikes, 

statistical analysis is primarily concerned with modeling the conditional intensity function in 
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a form that can be implemented efficiently and that fits the data adequately well. That is, 

writing

λ(t | xt) = f xt , (1)

the challenge is to identify within the variable xt all relevant effects, or features, in the 

terminology of machine learning, and then to find a suitable form for the function f, keeping 

in mind that, in practice, the dimension of xt may range from 1 to many millions. This 

identification of the components of xt that modulate the neuron’s firing rate is a key step in 

interpreting the function of a neural system. Details may be found in Kass et al. (2014, 

Chapter 19), but see Amarasingham et al. (2015) for an important caution about the 

interpretation of neural firing rate through its representation as a point process intensity 

function.

A statistically tractable non-Poisson form involves log-additive models, the simplest case 

being

logλ(t | xt) = logλ(t |Ht) = logg0(t) + logg1 t − s*(t) (2)

where s*(t) is the time of the immediately preceding spike, and g0 and g1 are functions that 

may be written in terms of some basis (Kass and Ventura 2001). To include contributions 

from spikes that are earlier than the immediately preceding one, the term log g1(t − s*(t)) is 

replaced by a sum of terms of the form log g1j(t − sj(t)), where sj(t) is the j-th spike back in 

time preceding t, and a common simplification is to assume the functions g1j are all equal to 

a single function g1 (Pillow et al. 2008). The resulting probability density function for the set 

of spike times (which defines the likelihood function) is very similar to that of a Poisson 

generalized linear model (GLM) and, in fact, GLM software may be used to fit many point 

process models (Kass et al. 2014, Chapter 19). The use of the word “linear” may be 

misleading here because highly nonlinear functions may be involved, e.g., in Equation (2), 

g0 and g1 are typically nonlinear. An alternative is to call these point process regression 
models. Nonetheless, the model in (2) is often said to specify a GLM neuron, as are other 

point process regression models.

2.4. Point process regression and leaky integrate-and-fire models

Assuming excitatory and inhibitory Poisson process inputs to an LIF neuron, the distribution 

of waiting times for a threshold crossing, which corresponds to the inter-spike interval (ISI), 

is found to be inverse Gaussian (Tuckwell 1988) and this distribution often provides a good 

fit to experimental data when neurons are in steady state, as when they are isolated in vitro 

and spontaneous activity is examined (Gerstein and Mandelbrot 1964). The inverse Gaussian 

distribution, within a biologically-reasonable range of coefficient of variations, turns out to 

be qualitatively very similar to ISI distributions generated by processes given by Equation 

(2). Furthermore, spike trains generated from LIF models can be fitted well by these GLM-

type models (Kass et al. 2014, Section 19.3.4 and references therein).
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An additional connection between LIF and GLM neurons comes from considering the 

response of neurons to injected currents, as illustrated in Figure 5. In this context, the first 

term in Equation (2) may be rewritten as a convolution with the current I(t) at time t, so that 

(2) becomes

logλ(t | xt) = logλ(t |Ht, It) = ∫
0

∞
g0(s)I(t − s)ds + logg1 t − s*(t) . (3)

Figure 5 shows the estimate of g0 that results from fitting this model to data illustrated in 

that figure. Here, the function g0 is often called a stimulus filter. On the other hand, 

following Gerstner et al. (2014, Chapter 6), we may write a generalized version of LIF in 

integral form,

V(t) = V rest + ∫
0

∞
g0(s)I(t − s)ds + logg1 t − s*(t) (4)

which those authors call a Spike Response Model (SRM). By equating the log conditional 

intensity to voltage in (4),

logλ(t |Ht, It) = V(t) − Vrest

we thereby get a modified LIF neuron that is also a GLM neuron (Paninski et al. 2009). 

Thus, both theory and empirical study indicate that GLM and LIF neurons are very similar, 

and both describe a variety of neural spiking patterns (Weber and Pillow 2016).

It is interesting that these empirically-oriented SRMs, and variants that included an adaptive 

threshold (Kobayashi et al. 2009), performed better than much more complicated 

biophysical models in a series of international competitions for reproducing and predicting 

recorded spike times of biological neurons under varying circumstances (Gerstner and Naud 

2009).

2.5. Multidimensional models

The one-dimensional LIF dynamic model in Figure 3b is inadequate when interactions of 

sub-threshold ion channel dynamics cause a neuron’s behavior to be more complicated than 

integration of inputs. Neurons can even behave as differentiators and respond only to 

fluctuations in input. Furthermore, as noted in Sections 1.3 and 2.3, features that drive neural 

firing can be multidimensional. Multivariate dynamical systems are able to describe the 

ways that interacting, multivariate effects can bring the system to its firing threshold, as in 

the Hodgkin-Huxley model (Hong et al. 2007). A number of model variants that aim to 

account for such multidimensional effects have been compared in predicting experimental 

data from sensory areas (Aljadeff et al. 2016).
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2.6. Statistical challenges in biophysical modeling

Conductance-based biophysical models pose problems of model identifiability and 

parameter estimation. The original Hodgkin-Huxley equations (Hodgkin and Huxley 1952) 

contain on the order of two dozen numerical parameters describing the membrane 

capacitance, maximal conductances for the sodium and potassium ions, kinetics of ion 

channel activation and inactivation, and the ionic equilibrium potentials (at which the flow 

of ions due to imbalances of concentration across the cell membrane offsets that due to 

imbalances of electrical charge). Hodgkin and Huxley arrived at estimates of these 

parameters through a combination of extensive experimentation, biophysical reasoning, and 

regression techniques. Others have investigated the experimental information necessary to 

identify the model (Walch and Eisenberg 2016). In early work, statistical analysis of 

nonstationary ensemble fluctuations was used to estimate the conductances of individual ion 

channels (Sigworth 1977). Following the introduction of single-channel recording 

techniques (Sakmann and Neher 1984), which typically report a binary projection of a 

multistate underlying Markovian ion channel process, many researchers expanded the theory 

of aggregated Markov processes to handle inference problems related to identifying the 

structure of the underlying Markov process and estimating transition rate parameters (Qin et 

al. 1997).

More recently, parameter estimation challenges in biophysical models have been tackled 

using a variety of techniques under the rubric of “data assimilation,” where data results are 

combined with models algorithmically. Data assimilation methods illustrate the interplay of 

mathematical and statistical approaches in neuroscience. For example, in Meng et al. (2014), 

the authors describe a state space modeling framework and a sequential Monte Carlo 

(particle filter) algorithm to estimate the parameters of a membrane current in the Hodgkin-

Huxley model neuron. They applied this framework to spiking data recorded from rat layer 

V cortical neurons, and correctly identified the dynamics of a slow membrane current. 

Variations on this theme include the use of synchronization manifolds for parameter 

estimation in experimental neural systems driven by dynamically rich inputs (Meliza et al. 

2014), combined statistical and geometric methods (Tien and Guckenheimer 2008), and 

other state space models (Vavoulis et al. 2012).

3. Networks

3.1. Mechanistic approaches for modeling small networks

While biological neural networks typically involve anywhere from dozens to many millions 

of neurons, studies of small neural networks involving handfuls of cells have led to 

remarkably rich insights. We describe three such cases here, and the types of mechanistic 

models that drive them.

First, neural networks can produce rhythmic patterns of activity. Such rhythms, or 

oscillations, play clear roles in central pattern generators (CPGs) in which cell groups 

produce coordinated firing for, e.g., locomotion or breathing (Grillner and Jessell 2009; 

Marder and Bucher 2001). Small network models have been remarkably successful in 

describing how such rhythms occur. For example, models involving pairs of cells have 
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revealed how delays in connections among inhibitory cells, or reciprocal interactions 

between excitatory and inhibitory neurons, can lead to rhythms in the gamma range (30–80 

Hz) associated with some aspects of cognitive processing. A general theory, beginning with 

two-cell models of this type, describes how synaptic and intrinsic cellular dynamics interact 

to determine when the underlying synchrony will and will not occur (Kopell and Ermentrout 

2002). Larger models involving three or more interacting cell types describe the origin of 

more complex rhythms, such as the triphasic rhythm in the stomatogastric ganglion (for 

digestion in certain invertebrates). This system in particular has revealed a rich interplay 

between the intrinsic dynamics in multiple cells and the synapses that connect them (Marder 

and Bucher 2001). There turn out to be many highly distinct parameter combinations, lying 

in subsets of parameter space, that all produce the key target rhythm, but do so in very 

different ways (Prinz et al. 2004). Understanding the origin of this flexibility, and how 

biological systems take advantage of it to produce robust function, is a topic of ongoing 

work.

The underlying mechanistic models for rhythmic phenomena are of Hodgkin-Huxley type, 

involving sodium and potassium channels (Figure 4). For some phenomena, including 

respiratory and stomatogastric rhythms, additional ion channels that drive bursting in single 

cells play a key role. Dynamical systems tools for assessing the stability of periodic orbits 

may then be used to determine what patterns of rhythmic activity will be stably produced by 

a given network. Specifically, coupled systems of biophysical differential equations can 

often be reduced to interacting circular variables representing the phase of each neuron 

(Ermentrout and Terman 2010). Such phase models yield to very elegant stability analyses 

that can often predict the dynamics of the original biophysical equations.

A second example concerns the origin of collective activity in irregularly spiking neural 

circuits. To understand the development of correlated spiking in such systems, stochastic 

differential equation models, or models driven by point process inputs, are typically used. 

This yields Fokker-Planck or population density equations (Tranchina 2010; Tuck-well 

1988) and these can be iterated across multiple layers or neural populations (Doiron et al. 

2006; Tranchina 2010). In many cases, such models can be approximated using linear 

response approaches, yielding analytical solutions and considerable mechanistic insight (De 

La Rocha et al. 2007; Ostojic and Brunel 2011a). A prominent example comes from the 

mechanisms of correlated firing in feedforward networks (De La Rocha et al. 2007; Shadlen 

and Newsome 1998). Here, stochastically firing cells send diverging inputs to multiple 

neurons downstream. The downstream neurons thereby share some of their input 

fluctuations, and this, in turn, creates correlated activity that can have rich implications for 

information transmission (De La Rocha et al. 2007; Doiron et al. 2016; Zylberberg et al. 

2016).

A third case of highly influential small circuit modeling concerns neurons in the early visual 

cortex (early in the sense of being only a few synapses from the retina), which are 

responsive to visual stimuli (moving bars of light) with specific orientations that fall within 

their receptive field (see Section 1.3). Neurons having neighboring regions within their 

receptive field in which a stimulus excites or inhibits activity were called simple cells, and 

those without this kind of sub-division were complex cells. Hubel and Wiesel famously 
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showed how simple circuit models can account for both the simple and complex cell 

responses (Hubel and Wiesel 1959). Later work described this through one or several 

iterated algebraic equations that map input firing rates xi into outputs y = f(∑iwixi), where w 
= (w1, …, wN) is a synaptic weight vector.

3.2. Statistical methods for small networks

Point process models for small networks begin with conditional intensity specifications 

similar to that in Equation (2), and include coupling terms (Kass et al. 2014, Section 19.3.4, 

and references therein). They have been applied to CPGs described above, in Section 3.1, to 

reconstruct known circuitry from spiking data (Gerhard et al. 2013). In addition, many of the 

methods we discuss below, in Section 3.4 on large networks, have also been used with small 

networks.

3.3. Mechanistic models of large networks across scales and levels of complexity

There is a tremendous variety of mechanistic models of large neural networks. We here 

describe these in rough order of their complexity and scale.

3.3.1. Binary and firing rate models.—At the simplest level, binary models abstract 

the activity of each neuron as either active (taking the value 1) or silent (0) in a given time 

step. As mentioned in the Introduction, despite their simplicity, these models capture 

fundamental properties of network activity (Renart et al. 2010; van Vreeswijk and 

Sompolinsky 1996) and explain network functions such as associative memory. The 

proportion of active neurons at a given time is governed by effective rate equations 

(Ginzburg and Sompolinsky 1994; Wilson and Cowan 1972). Such firing rate models feature 

a continuous range of activity states, and often take the form of nonlinear ordinary or 

stochastic differential equations. Like binary models, these also implement associative 

memory (Hopfield 1984), but are widely used to describe broader dynamical phenomena in 

networks, including predictions of oscillations in excitatory-inhibitory networks (Wilson and 

Cowan 1972), transitions from fixed point to oscillatory to chaotic dynamics in randomly 

connected neural networks (Bos et al. 2016), amplified selectivity to stimuli, and the 

formation of line attractors (a set of stable solutions on a line in state space) that gradually 

store and accumulate input signals (Cain and Shea-Brown 2012).

Firing rate models have been a cornerstone of theoretical neuroscience. Their second order 

statistics can analytically be matched to more realistic spiking and binary models (Grytskyy 

et al. 2013; Ostojic and Brunel 2011a). We next describe how trial-varying dynamical 

fluctuations can emerge in networks of spiking neuron models.

3.3.2. Stochastic spiking activity in networks.—A beautiful body of work 

summarizes the network state in a population-density approach that describes the evolution 

of the probability density of states rather than individual neurons (Amit and Brunel 1997). 

The theory is able to capture refractoriness (Meyer and van Vreeswijk 2002) and adaptation 

(Deger et al. 2014). Furthermore, although it loses the identity of individual neurons, it can 

faithfully capture collective activity states, such as oscillations (Brunel 2000). Small 

synaptic amplitudes and weak correlations further reduce the time-evolution to a Fokker-
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Planck equation (Brunel 2000; Ostojic et al. 2009). Network states beyond such diffusion 

approximations include neuronal avalanches, the collective and nearly synchronous firing of 

a large fraction of cells, often following power-law distributions (Beggs and Plenz 2003). 

While early work focused on the firing rates of populations, later work clarified how more 

subtle patterns of correlated spiking develop. In particular, linear fluctuations about a 

stationary state determine population-averaged measures of correlations (Helias et al. 2013; 

Ostojic et al. 2009; Tetzlaff et al. 2012; Trousdale et al. 2012).

At an even larger scale, a continuum of coupled population equations at each point in space 

lead to neuronal field equations (Bressloff 2012). They predict stable “bumps” of activity, as 

well as traveling waves and spirals (Amari 1977a; Roxin et al. 2006). Intriguingly, when 

applied as a model of visual cortex and rearranged to reflect spatial layout of the retina, 

patterns induced in these continuum equations can resemble visual hallucinations (Bressloff 

et al. 2001).

Analysis has provided insight into the ways that spiking networks can produce irregular 

spike times like those found in cortical recordings from behaving animals (Shadlen and 

Newsome 1998), as in Figure 5. Suppose we have a network of NE excitatory and NI 

inhibitory LIF neurons with connections occurring at random according to independent 

binary (Bernoulli) random variables, i.e., a connection exists when the binary random 

variable takes the value 1 and does not exist when it is 0. We denote the binary connectivity 

random variables by κi j
αβ, where α and β take the values E or I, with κi j

αβ = 1 when the output 

of neuron j in population β injects current into neuron i in population α. We let Jαβ be the 

coupling strength (representing synaptic current) from a neuron in population β to a neuron 

in population α. Thus, the contribution to the current input of a neuron in population α 
generated at time t by a spike from neuron in population β at time s will be Jαβκi j

αβδ(t − s), 

where δ(t − s) is the Dirac delta function. The behavior of the network can be analyzed by 

letting NE → ∞ and NI → ∞. Based on reasonable simplifying assumptions, the mean Mα 

and variance Vα of the total current for population α have been derived (Amit and Brunel 

1997; Van Vreeswijk and Sompolinsky 1998), and these determine the regularity or 

irregularity in spiking activity.

We step through three possibilities, under three different conditions on the network, using a 

modification of the LIF equation found in Figure 3. The set of equations, for all the neurons 

in the network, includes terms defined by network connectivity and also terms defined by 

external input fluctuations. Because the connectivity matrix may contain cycles (there may 

be a path from any neuron back to itself), network connectivity is called recurrent. Let us 

take the membrane potential of neuron i from population α to be

ταdV i
α

dt = − V i
α + μ0

α + τασ0
αξi

α(t)
 external inputs 

+ ταJαE ∑
j = 1

NE

κi j
αEδ t − t jk

E

 recurrent excitation 

− ταJαI ∑
j = 1

NI

κi j
αIδ t − t jk

I

 recurrent inhibition 

(5)
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where tik
α  is the kth spike time from neuron i of population α, τα is the membrane dynamics 

time constant, and the external inputs include both a constant μ0 and a fluctuating source 

σ0ξ(t) where ξ(t) is white noise (independent across neurons). This set of equations is 

supplemented with the spike reset rule that when V i
α(t) = VT the voltage resets to VR < VT.

The firing rate of the average neuron in population α is λα = ∑ j ∑k δ t − t jk
α /Nα. For the 

network to remain stable, we take these firing rates to be bounded, i.e., λα 𝒪(1). Similarly, to 

assure that the current input to each neuron remains bounded, some assumption must be 

made about the way coupling strengths Jαβ scale as the number of inputs K increases. Let us 

take the scaling to be Jαβ = jαβ/Kγ, with jαβ 𝒪(1), as K → ∞, where γ is a scaling 

exponent. We describe the resulting spiking behavior under scaling conditions γ =1 and γ = 

1/2.

If we set γ = 1 then we have J ~ 1/K, so that JK = j 𝒪(1). In this case we get Mα 𝒪(1) and 

Vα = σ0
α 2 + 𝒪(1/ K). If we further set σ0

α = 0, so that all fluctuations must be internal, then 

Vα vanishes for large K. In such networks, after an initial transient, the neurons synchronize, 

and each fires with perfect rhythmicity (left part of panel A in Figure 6). This is very 

different than the irregularity seen in cortical recordings (Figure 3). Therefore, some 

modification must be made.

The first route to appropriate spike train irregularity keeps γ = 1 while setting σ0
α 2 𝒪(1) so 

that Vα no longer vanishes in the large K limit. Simulations of this network (Figure 6A, 

middle) maintain realistic rates (Figure 6B, red curve), but also show realistic irregularity 

(Faisal et al. 2008), as quantified in Figure 6C by the coefficient of variation (CV) of the 

inter-spike intervals. Treating irregular spiking activity as the consequence of stochastic 

inputs has a long history (Tuckwell 1988).

The second route does not rely on external input stochasticity, but instead increases the 

synaptic connection strengths by setting γ = 1/2. As a consequence we get Vα 𝒪(1) even if 

σ0
α = 0 so that variability is internally generated through recurrent interactions (Monteforte 

and Wolf 2012; Van Vreeswijk and Sompolinsky 1998), but to get Mα 𝒪(1), an additional 

condition is needed. If the recurrent connectivity is dominated by inhibition, so that the 

network recurrence results in negative current, the activity dynamically settles into a state in 

which

Mα = K μα + jαEταλE − jαIταλI

𝒪(1/ K):  balance condition 

𝒪(1), (6)

where μ0
α has been replaced by the constant μα using μ0

α = Kμα so that the mean external 

input is of order 𝒪( K). The scaling γ = 1/2 now makes the total excitatory and the total 

inhibitory synaptic inputs individually large, i.e., 𝒪( K), so that the Vα is also large. 
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However, given the balance condition in (6), excitation and inhibition mutually cancel and 

Vα remains moderate. Simulations of the network with γ = 1/2 and σ0
α = 0 shows an 

asynchronous network dynamic (Figure 6A, right). Further, the firing rates stabilize at low 

mean levels (Figure 6B, blue curve), while the inter-spike interval CV is large (Figure 6C, 

blue curve).

These two mechanistic routes to high levels of neural variability differ strikingly in the 

degree of heterogeneity of the spiking statistics. For the weak coupling with γ = 1 the 

resulting distribution of firing rates and inter-spike interval CVs are narrow (Figure 6B, C, 

red curves). At strong coupling with γ = 1/2, however, the spread of firing rates is large: 

over half of the neurons fire at rates below 1 Hz (Figure 6B, blue curve), in line with 

observed cortical activity (Roxin et al. 2011). The approximate dynamic balance between 

excitatory and inhibitory synaptic currents has been confirmed experimentally (Okun and 

Lampl 2008) and is usually called balanced excitation and inhibition.

3.3.3. Asynchronous dynamics in recurrent networks.—The analysis above 

focused only on Mα and Vα, ignoring any correlated activity between the currents neurons 

in the network. The original justification for such asynchronous dynamics in Van Vreeswijk 

and Sompolinsky (1998) and Amit and Brunel (1997) relied on a sparse wiring assumption, 

i.e, K/Nα → 0 as Nα → ∞ for α ∈ (E, I). However, more recently it has been shown that 

the balanced mechanism required to keep firing rates moderate also ensures that network 

correlations vanish. Balance arises from the dominance of negative feedback which 

suppresses fluctuations in the population-averaged activity and hence causes small pairwise 

correlations (Tetzlaff et al. 2012). As a consequence, fluctuations of excitatory and 

inhibitory synaptic currents are tightly locked so that Equation (6) is satisfied. The excitatory 

and inhibitory cancellation mechanism therefore extends to pairs of cells and operates even 

in networks with dense wiring, i.e., K /Nα 𝒪(1) (Hertz 2010; Renart et al. 2010), so that input 

correlations are much weaker than expected by the number of shared inputs (Shadlen and 

Newsome 1998; Shea-Brown et al. 2008). This suppression and cancellation of correlations 

holds in the same way for intrinsically-generated fluctuations that often even dominate the 

correlation structure (Helias et al. 2014). Recent work has shown that the asynchronous state 

is more robustly realized in nonrandom networks than normally distributed random networks 

(Litwin-Kumar and Doiron 2012; Teramae et al. 2012).

There is a large literature on how network connectivity, at the level of mechanistic models, 

leads to different covariance structures in network activity (Ginzburg and Sompolinsky 

1994). Highly local connectivity features scale up to determine global levels of covariance 

(Doiron et al. 2016; Helias et al. 2013; Trousdale et al. 2012). Moreover, features of that 

connectivity that point specifically to low-dimensional structures of neural covariability can 

be isolated (Doiron et al. 2016). An outstanding problem is to create model networks that 

mimic the low-dimensional covariance structure reported in experiments (see Section 3.4.1).

3.4. Statistical methods for large networks

New recording technologies should make it possible to track the flow of information across 

very large networks of neurons, but the details of how to do so have not yet been established. 
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One tractable component of the problem (Cohen and Kohn 2011) involves co-variation in 

spiking activity among many neurons (typically dozens to hundreds), which leads naturally 

to dimensionality reduction and to graphical representations (where neurons are nodes, and 

some definition of correlated activity determines edges). However, two fundamental 

complications affect most experiments. First, co-variation can occur at multiple timescales. 

A simplification is to consider either spike counts in coarse time bins (20 milliseconds or 

longer) or spike times with precision in the range of 1–5 milliseconds. We will discuss 

methods based on spike counts and precise spike timing separately, in the next two 

subsections. Second, experiments almost always involve some stimuli or behaviors that 

create evolving conditions within the network. Thus, methods that assume stationarity must 

be used with care, and analyses that allow for dynamic evolution will likely be useful. 

Fortunately, many experiments are conducted using multiple exposures to the same stimuli 

or behavioral cues, which creates a series of putatively independent replications (trials). 

While the responses across trials are variable, sometimes in systematic ways, the setting of 

multiple trials often makes tractable the analysis of non-stationary processes.

After reviewing techniques for analyzing co-variation of spike counts and precisely-timed 

spiking we will also briefly mention three general approaches to understanding network 

behavior: reinforcement learning, Bayesian inference, and deep learning. Reinforcement 

learning and Bayesian inference use a decision-theoretic foundation to define optimal 

actions of the neural system in achieving its goals, which is appealing insofar as evolution 

may drive organism design toward optimality.

3.4.1. Correlation and dimensionality reduction in spike counts.—
Dimensionality reduction methods have been fruitfully applied to study decision-making, 

learning, motor control, olfaction, working memory, visual attention, audition, rule learning, 

speech, and other phenomena (Cunningham and Yu 2014). Dimensionality reduction 

methods that have been used to study neural population activity include principal component 

analysis, factor analysis, latent dynamical systems, and non-linear methods such as Isomap 

and locally-linear embedding. Such methods can provide two types of insights. First, the 

time course of the neural response can vary substantially from one experimental trial to the 

next, even though the presented stimulus, or the behavior, is identical on each trial. In such 

settings, it is of interest to examine population activity on individual trials (Churchland et al. 

2007). Dimensionality reduction provides a way to summarize the population activity time 

course on individual experimental trials by leveraging the statistical power across neurons 

(Yu et al. 2009). One can then study how the latent variables extracted by dimensionality 

reduction change across time or across experimental conditions. Second, the multivariate 

statistical structure in the population activity identified by dimensionality reduction may be 

indicative of the neural mechanisms underlying various brain functions. For example, one 

study suggested that a subject can imagine moving their arms, while not actually moving 

them, when neural activity related to motor preparation lies in a space orthogonal to that 

related to motor execution (Kaufman et al. 2014). Furthermore, the multivariate structure of 

population activity can help explain why some tasks are easier to learn than others (Sadtler 

et al. 2014) and how subjects respond differently to the same stimulus in different contexts 

(Mante et al. 2013).
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3.4.2. Correlated spiking activity at precise time scales.—In principle, very large 

quantities of information could be conveyed through the precise timing of spikes across 

groups of neurons. The idea that the nervous system might be able to recognize such patterns 

of precise timing is therefore an intriguing possibility (Abeles 1982; Geman 2006; Singer 

and Gray 1995). However, it is very difficult to obtain strong experimental evidence in favor 

of a widespread computational role for precise timing (e.g., an accuracy within 1–5 

milliseconds), beyond the influence of the high arrival rate of synaptic impulses when 

multiple input neurons fire nearly synchronously. Part of the issue is experimental, because 

precise timing may play an important role only in specialized circumstances, but part is 

statistical: under plausible point process models, patterns such as nearly synchronous firing 

will occur by chance, and it may be challenging to define a null model that captures the null 

concept without producing false positives. For example, when the firing rates of two neurons 

increase, the number of nearly synchronous spikes will increase even when the spike trains 

are otherwise independent; thus, a null model with constant firing rates could produce false 

positives for the null hypothesis of independence. This makes the detection of behaviorally-

relevant spike patterns a subtle statistical problem (Grün 2009; Harrison et al. 2013).

A strong indication that precise timing of spikes may be relevant to behavior came from an 

experiment involving hand movement, during which pairs of neurons in motor cortex fired 

synchronously (within 5 milliseconds of each other) more often than predicted by an 

independent Poisson process model and, furthermore, these events, called Unitary Events, 

clustered around times that were important to task performance (Riehle et al. 1997). While 

this illustrated the potential role of precisely timed spikes, it also raised the issue of whether 

other plausible point process null models might lead to different results. Much work has 

been done to refine this methodology (Albert et al. 2016; Gmn 2009; Torre et al. 2016). 

Related approaches replace the null assumption of independence with some order of 

correlation, using marked Poisson processes (Staude et al. 2010).

There is a growing literature on dependent point processes. Some models do not include a 

specific mechanism for generating precise spike timing, but can still be used as null models 

for hypothesis tests of precise spike timing. On a coarse time scale, point process regression 

models as in Equation (1) can incorporate effects of one neuron’s spiking behavior on 

another (Pillow et al. 2008; Truccolo 2010). On a fine time scale, one may instead consider 

multivariate binary processes (multiple sequences of 0s and 1s where 1s represent spikes). In 

the stationary case, a standard statistical tool for analyzing binary data involves loglinear 

models (Agresti 1996), where the log of the joint probability of any particular pattern is 

represented as a sum of terms that involve successively higher-order interactions, i.e., terms 

that determine the probability of spiking within a given time bin for individual neurons, pairs 

of neurons, triples, etc. Two-way interaction models, also called maximum entropy models, 

which exclude higher than pairwise interactions, have been used in several studies and in 

some cases higher-order interactions have been examined (Ohiorhenuan et al. 2010; Santos 

et al. 2010; Shimazaki et al. 2015), sometimes using information geometry (Nakahara et al. 

2006), though large amounts of data may be required to find small but plausibly interesting 

effects (Kelly and Kass 2012). Extensions to non-stationary processes have also been 

developed (Shimazaki et al. 2012; Zhou et al. 2015). Dichotomized Gaussian models, which 
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instead produce binary outputs from threshold crossings of a latent multivariate Gaussian 

random variable, have also been used (Amari et al. 2003; Shimazaki et al. 2015), as have 

Hawkes processes (Jovanovic et al. 2015). A variety of correlation structures may be 

accommodated by analyzing cumulants (Staude et al. 2010).

To test hypotheses about precise timing, several authors have suggested procedures akin to 

permutation tests or nonparametric bootstrap. The idea is to generate re-sampled data, also 

called pseudo-data or surrogate data, that preserves as many of the features of the original 

data as possible, but that lacks the feature of interest, such as precise spike timing. A simple 

case, called dithering or jittering, modifies the precise time of each spike by some random 

amount within a small interval, thereby preserving all coarse temporal structure and 

removing all fine temporal structure. Many variations on this theme have been explored 

(Grün 2009; Harrison et al. 2013; Platkiewicz et al. 2017), and connections have been made 

with the well-established statistical notion of conditional inference (Harrison et al. 2015).

3.4.3. Reinforcement learning.—Reinforcement learning (RL) grew from attempts to 

describe mathematically the way organisms learn in order to achieve repeatedly-presented 

goals. The motivating idea was spelled out in 1911 by Thorndike (Thorndike 1911, p. 244): 

when a behavioral response in some situation leads to reward (or discomfort) it becomes 

associated with that reward (or discomfort), so that the behavior becomes a learned response 

to the situation. While there were important precursors (Bush and Mosteller 1955; Rescorla 

and Wagner 1972), the basic theory reached maturity with the 1998 publication of the book 

by Sutton and Barto (Sutton and Barto 1998). Within neuroscience, a key discovery involved 

the behavior of dopamine neurons in certain tasks: they initially fire in response to a reward 

but, after learning, fire in response to a stimulus that predicts reward; this was consistent 

with predictions of RL (Schultz et al. 1997). (Dopamine is a neuromodulator, meaning a 

substance that, when emitted from the synapses of neurons, modulates the synaptic effects of 

other neurons; a dopamine neuron is a neuron that emits dopamine; dopamine is known to 

play an essential role in goal-directed behavior.)

In brief, the mathematical framework is that of a Markov decision process, which is an 

action-dependent Markov chain (i.e., a stochastic process on a set of states where the 

probability of transitioning from one state to the next is action-dependent) together with 

rewards that depend on both state transition and action. When an agent (an abstract entity 

representing an organism, or some component of its nervous system) reaches stationarity 

after learning, the current value Vt of an action may be represented in terms of its future-

discounted expected reward:

Vt = E Rt + γRt + 1 + γ2Rt + 2 + γ3Rt + 3 + ⋯

= E Rt + γVt + 1
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where Rt is the reward at time t. Thus, to drive the agent toward this stationarity condition, 

the current estimate of value V t should be updated in such a way as to decrease the estimated 

magnitude of E(Rt + γVt+1) − Vt, which is known as the reward prediction error (RPE),

δt = E Rt + γVt + 1 − Vt = rt + γVt + 1 − Vt

This is also called the temporal difference learning error. RL algorithms accomplish learning 

by sequentially reducing the magnitude of the RPE. The essential interpretation of Schultz et 

al. (1997), which remains widely influential, was that dopamine neurons signal RPE.

The RL-based description of the activity of dopamine neurons has been considered one of 

the great success stories in computational neuroscience, operating at the levels of 

computation and algorithm in Marr’s framework (see Section 1.1). A wide range of further 

studies have elaborated the basic framework and taken on topics such as the behavior of 

other neuromodulators; neuroeconomics; the distinction between model-based learning, 

where transition probabilities are learned explicitly, and model-free learning; social behavior 

and decision-making; and the role of time and internal models in learning (Dayan and 

Nakahara 2017; Schultz 2015).

3.4.4. Bayesian inference.—Although statistical methods based on Bayes’ Theorem 

now play a major role in statistics, they were, until relatively recently, controversial 

(McGrayne 2011). In neuroscience, Bayes’ Theorem has been used in many theoretical 

constructions in part because the brain must combine prior knowledge with current data 

somehow, and also because evolution may have led to neural network behavior that is, like 

Bayesian inference (under well specified conditions), optimal, or nearly so. Bayesian 

inference has played a prominent role in theories of human problem-solving (Anderson 

2009), visual perception (Geisler 2011), sensory and motor integration (Körding 2007; 

Wolpert et al. 2011), and general cortical processing (Griffiths et al. 2012).

3.4.5. Deep learning.—Deep learning (LeCun et al. 2015) is an outgrowth of PDP 

modeling (see Section 1.4). Two major architectures came out of the 1980’s and 1990’s, 

convolutional neural networks (CNNs) and long short term memory (LSTM). LSTM 

(Hochreiter and Schmidhuber 1997) enables neural networks to take as input sequential data 

of arbitrary length and learn long-term dependencies by incorporating a memory module 

where information can be added or forgotten according to functions of the current input and 

state of the system. CNNs, which achieve state of the art results in many image classification 

tasks, take inspiration from the visual system by incorporating receptive fields and enforcing 

shift-invariance (physiological visual object recognition being invariant to shifts in location). 

In deep learning architectures, receptive fields (LeCun et al. 2015) identify a very specific 

input pattern, or stimulus, in a small spatial region, using convolution to combine inputs. 

Receptive fields induce sparsity and lead to significant computational savings, which 

prompted early success with CNNs (LeCun 1989). Shift invariance is achieved through a 

spatial smoothing operator known as pooling (a weighted average, or often the maximum 

value, over a local neighborhood of nodes). Because it introduces redundancies, pooling is 

often combined with downsampling. Many layers, each using convolution and pooling, are 
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stacked to create a deep network, in rough analogy to multiple anatomical layers in the 

visual system of primates. Although artificial neural networks had largely fallen out of 

widespread use by the end of the 1990s, faster computers combined with availability of very 

large repositories of training data, and the innovation of greedy layer-wise training (Bengio 

et al. 2007) brought large gains in performance and renewed attention, especially when 

ALEXNET (Krizhevsky et al. 2012) was applied to the ImageNet database (Deng et al. 

2009). Rapid innovation has enabled the application of deep learning to a wide variety of 

problems of increasing size and complexity.

The success of deep learning in reaching near human-level performance on certain highly 

constrained prediction and classification tasks, particularly in the area of computer vision, 

has inspired interest in exploring the connections between deep neural networks and the 

brain. Studies have shown similarities between the internal representations of convolutional 

neural networks and representations in the primate visual system (Kriegeskorte 2015; 

Yamins and DiCarlo 2016). Furthermore, the biological phenomenon of hippocampal replay 

during memory consolidation prompted innovation in artificial intelligence, in part through 

the incorporation of reinforcement learning (see Section 3.4.3) into deep learning 

architectures (Mnih et al. 2015). On the other hand, some studies have shown cases in which 

biological vision and deep networks diverge in performance (Nguyen et al. 2015; Ullman et 

al. 2016). Even though they are not biologically realistic, deep learning architectures may 

suggest new scientific hypotheses (Pelillo et al. 2015).

3.5. Connecting mathematical and statistical approaches in large networks

3.5.1. Bridging from dynamical to statistical models of neural spiking.—In 

Section 2.4 we made an explicit connection between an integrated form of LIF models and 

GLMs. An alternative is to derive from a mechanistic model, first, an instantaneous intensity 

by determining mean activity and, second, the variation around the mean. In binary models, 

the first step leads to a Gaussian integral (Van Vreeswijk and Sompolinsky 1998) and the 

second to its derivative (Helias et al. 2014; Renart et al. 2010). For spiking models, these 

steps are conceptually identical, but mathematically more involved. The firing rate follows 

from the mean first passage time for the membrane voltage to exceed the threshold (Amit 

and Brunel 1997; Tuckwell 1988). Computing deviations of responses from the mean 

requires either perturbation theory applied to the Fokker-Planck equation (Richardson 2008) 

or separation of timescales for slow currents (Moreno-Bote and Parga 2010). These 

approaches may be united in an elegant framework to produce an equivalent GLM model 

(Ostojic and Brunel 2011b). Approximating the fluctuations in spiking and binary networks 

up to linear order, correlations are equivalent to those of linear stochastic differential 

equations driven by Gaussian noise (Grytskyy et al. 2013). Extensions treat the mechanistic 

origins of stimulus adaptation in statistical models of neural responses (Famulare and 

Fairhall 2010).

3.5.2. Multivariate relationships via latent variable models.—An important 

question is whether mechanistic models can reproduce features of recorded neural activity 

that go beyond population means and variances. This is especially challenging when, as is 

usually the case, recorded neurons represent only a very small sample from a vast network. 
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Simple summary statistics, such as the variability of the activity of individual neurons or the 

correlation between pairs of neurons, can be a helpful first step (Litwin-Kumar and Doiron 

2012). A natural next step is to examine summaries based on dimensionality reduction, as in 

Section 3.4.1, where the same multivariate statistical methods are applied to both the activity 

produced by the model and to the data. For example, spontaneous activity recorded in the 

primary visual cortex has been found to be more like activity produced by a spiking network 

model having clustered connections than that produced by a network with uniform random 

connectivity (Williamson et al. 2016).

Mechanistic models can also help in characterizing the statistical tools used to study neural 

population activity by providing ground truth with which to judge performance of statistical 

methods (Williamson et al. 2016). This includes determination of the amount of data needed 

in order to identify particular effects. From results outlined in Section 2.4, when LIF models 

are used these ground truth data sets should be very similar to others generated using GLM 

neurons (Zaytsev et al. 2015), and it is a topic for future research to take advantage of this 

relationship.

4. Outlook

In addition to providing readers with an entry into the mathematical and statistical literature 

in computational neuroscience, we have also tried to highlight places where the two 

approaches go hand in hand, especially in Sections Section 2.4, Section 2.5, Section 2.6, and 

3.5. Another concrete example of this interplay comes from anesthesia, where highly 

structured oscillations, readily visible in the EEG, change in a systematic way, depending on 

the dose of a given anesthetic and the molecular targets and neural circuits where the 

anesthetic acts (Brown et al. 2011). One of the most widely used anesthetics, propofol, acts 

at multiple sites in the brain to enhance the activity of inhibitory neurons resulting initially 

in beta oscillations (13 – 25 Hz) followed within seconds by slow-delta oscillations (0.1 – 4 

Hz), and then a combination of slow-delta oscillations with alpha oscillations (8 – 12 Hz) 

when the patient is unconscious. Multitaper spectral time series analysis showed that the 

alpha oscillations are highly coherent across the front of the scalp, and this was explained by 

a circuit model using Hodgkin-Huxley neurons (Ching et al. 2010; Cimenser et al. 2011). 

Because all anesthetics create similar oscillations, the combination of careful statistical 

analysis and mechanistic modeling may be used to investigate the way other anesthetics 

create altered brain states.

As this example illustrates, computational neuroscience, like experimental neuroscience, 

aims to improve knowledge about the functioning of the nervous system. On the one hand, 

the statistical approach helps by introducing methods to summarize nervous system data. On 

the other hand, mathematical theory helps by introducing frameworks for describing nervous 

system behavior. Because both sides of computational neuroscience aim to build 

understanding from data, they complement each other: mechanistic models refine scientific 

questions, and can thereby guide development of statistical methods; statistical methods can 

find important features of data, and can suggest directions for modeling efforts. As the field 

tackles additional complexity in modeling and data analysis, it will become increasingly 
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important for researchers in computational neuroscience to be cognizant of the essential 

ideas, tools, and approaches of both domains.
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Glossary

Rate coding:
stimulus or behavior changes firing rate

Temporal coding:
stimulus or behavior changes precise timing of spikes

Tuning curve:
the trial-averaged firing considered as a function of one or more variables

Absolute refractory period:
after a neuron fires the sodium channels are unable to open for approximately 1 millisecond

Relative refractory period:
after the hard refractory period a neuron’s probability of firing gradually increases from zero
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Figure 1. 
Action potential and spike trains. The left panel shows the voltage drop recorded across a 

neuron’s cell membrane. The voltage fluctuates stochastically, but tends to drift upward, and 

when it rises to a threshold level (dashed line) the neuron fires an action potential, after 

which it returns to a resting state; the neuron then responds to inputs that will again make its 

voltage drift upward toward the threshold. This is often modeled as drifting Brownian 

motion that results from excitatory and inhibitory Poisson process inputs (Tuckwell 1988; 

Gerstein and Mandelbrot 1964). The right panel shows spike trains recorded from 4 neurons 

repeatedly across 3 experimental replications, known as trials. The spike times are irregular 

within trials, and there is substantial variation across trials, and across neurons.
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Figure 2. 
In the left diagram, McCulloch-Pitts neurons x1 and x2 each send binary activity to neuron y 
using the rule y = 1 if x1 + x2 > 1 and y = 0 otherwise; this corresponds to the logical AND 

operator; other logical operators NOT, OR, NOR may be similarly implemented by 

thresholding. In the right diagram, the general form of output is based on thresholding linear 

combinations, i.e., y =1 when ∑wixi >c and y = 0 otherwise. The values wi are called 

synaptic weights. However, because networks of perceptrons (and their more modern 

artificial neural network descendents) are far simpler than networks in the brain, each 

artificial neuron corresponds conceptually not to an individual neuron in the brain but, 

instead, to large collections of neurons in the brain.
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Figure 3. 
(a) The LIF model is motivated by an equivalent circuit. The capacitor represents the cell 

membrane through which ions cannot pass. The resistor represents channels in the 

membrane (through which ions can pass) and the battery a difference in ion concentration 

across the membrane. (b) The equivalent circuit motivates the differential equation that 

describes voltage dynamics (gray box). When the voltage reaches a threshold value 

(Vthreshold), it is reset to a smaller value (Vreset). In this model, the occurrence of a reset 

indicates an action potential; the rapid voltage dynamics of action potentials are not included 

in the model. (c) An example trace of the LIF model voltage (blue). When the input current 

(I) is large enough, the voltage increases until reaching the voltage threshold (red horizontal 

line), at which time the voltage is set to the reset voltage (green horizontal line). The times 

of reset are labeled as “AP”, denoting action potential. In the absence of an applied current 

(I = 0) the voltage approaches a stable equilibrium value (Vrest).
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Figure 4. 
The Hodgkin-Huxley model provides a mathematical description of a neuron’s voltage 

dynamics in terms of changes in sodium (Na+) and potassium (K+) ion concentrations. The 

cartoon in (a) illustrates a cell body with membrane channels through which (Na+) and (K+) 

may pass. The model consists of four coupled nonlinear differential equations (b) that 

describe the voltage dynamics (V), which vary according to an input current (I), a potassium 

current, a sodium current, and a leak current. The conductances of the potassium (n) and 

sodium currents (m, h) vary in time, which controls the flow of sodium and potassium ions 

through the neural membrane. Each channel’s dynamics depends on (c) a steady state 

function and a time constant. The steady state functions range from 0 to 1, where 0 indicates 

that the channel is closed (so that ions cannot pass), and 1 indicates that the channel is open 

(ions can pass). One might visualize these channels as gates that swing open and closed, 

allowing ions to pass or impeding their flow; these gates are indicated in green and red in the 

cartoon (a). The steady state functions depend on the voltage; the vertical dashed line 

indicates the typical resting voltage value of a neuron. The time constants are less than 10 

ms, and smallest for one component of the sodium channel (the sodium activation gate m). 

(d) During an action potential, the voltage undergoes a rapid depolarization (V increases) 

and then less rapid hyperpolarization (V decreases), supported by the opening and closing of 

the membrane channels.
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Figure 5. 
Left panel displays the current (“Stim,” for stimulus, at the top of the panel) injected into a 

mitral cell from the olfactory system of a mouse, together with the neural spiking response 

(MC) across many trials (each row displays the spike train for a particular trial). The 

response is highly regular across trials, but at some points in time it is somewhat variable. 

The right panel displays a stimulus filter fitted to the complete set of data using model (3), 

where the stimulus filter, i.e., the function g0(s), represents the contribution to the firing rate 

due to the current I(t − s) at s milliseconds prior to time t. Figure modified from (Wang et al. 

2015)
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Figure 6. 
Panel A displays plots of spike trains from 1000 excitatory neurons in a network having 

1000 excitatory and 1000 inhibitory LIF neurons with connections determined from 

independent Bernoulli random variables having success probability of 0.2; on average K = 

200 inputs per neuron with no synaptic dynamics. Each neuron receives a static depolarizing 

input; in absence of coupling each neuron fires repetitively. Left: Spike trains under weak 

coupling, current J ∝ K−1. Middle: Spike trains under weak couplng, with additional 

uncorrelated noise applied to each cell. Right: Spike trains under strong coupling, J ∝ K
− 1

2 . 

Panel B shows the distribution of firing rates across cells, and panel C the distribution of 

interspike interval (ISI) coefficient of variation across cells.
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