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Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hun-

dreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has

been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and antici-

pated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a

phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advan-

tages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods

in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific

characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs

and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-

associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in find-

ing both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we

demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype.

With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the preven-

tion, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

Keywords: GWAS, tissue-specific gene networks, Markov random field

Introduction

The identification of causative genetic variation is the primary step

towards the understanding of molecular mechanisms of human inher-

ited diseases (Altshuler et al., 2008). Towards this goal, genome-wide

association studies (GWAS) have detected thousands of genomic loci

that are associated with various complex phenotypes over the past

decade, collected in such repository as the GWAS Catalog (Welter

et al., 2014). With the rapid development of the high-throughput

sequencing technology, it is expected that the number of associated

loci will continuously grow as a result of increased sample size, diver-

sity of studied phenotypes, and improved methodology for associ-

ation discovery (Visscher et al., 2012, 2017). It is no doubt that such

fruitful resources could provide unprecedented opportunities for dis-

secting the genetics of complex diseases, thereby boosting the pre-

vention, diagnosis, and treatment of human diseases and eventually

enabling precision medicine (Ashley, 2016). However, at the current

stage, both geneticists and bioinformaticians have been suffering

from the interpretation of GWAS data, leading to an intense debate

about challenges hindering the understanding of the genetic mechan-

isms underlying complex diseases from these data.
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The first challenge is referred to as the missing heritability

problem, describing the phenomenon that only limited proportion

of the heritability can be explained by those identified significant

loci (Manolio et al., 2009). A possible reason for this problem is

that many associated loci remain undetected due to the limited

sample size and statistical power, and hence the proportion of

heritability explained will increase significantly when all markers

are considered simultaneously (Yang et al., 2010). The second

challenge is that the majority of detected markers locate in non-

coding regions, complicating functional interpretation and mech-

anism understanding as current knowledge on noncoding regions

are still very limited (Kellis et al., 2014). The third one is the

prevalent existence of correlations between markers, also called

linkage disequilibrium (LD), making the precise identification of

causal markers challenging (Visscher et al., 2012).

These challenges have been motivating the development of

novel approaches to improve the statistical discovery power and

infer underlying biological mechanisms by leveraging various func-

tional genomic and epigenomic data, resulting in a series of meth-

ods that can be referred to as integrative GWAS analysis (Cantor

et al., 2010). Briefly, these methods can be broadly classified into

two groups: (i) single nucleotide polymorphism (SNP)-level model-

ing (Chung et al., 2014; Pickrell, 2014; Li and Kellis, 2016) based

on the assumption that SNPs associated with a phenotype tend to

be enriched in functionally annotated regions (Maurano et al.,

2012) and (ii) gene-level modeling (Pers et al., 2015; Liu et al.,

2016) based on the hypothesis that genes associated with a

phenotype tend to be enriched in pre-defined gene sets or gene

networks (Jiang, 2015; Tas03an et al., 2015). Recently, gene-level

modeling has attracted much attention due to its advantages over

SNP-level modeling, include easier interpretations, less multiple

testing burdens, and robustness across studies (Mooney et al.,

2014). However, existing gene-level modeling approaches exploit

only none tissue-specific gene sets or networks, and recent evi-

dence suggests tissue-specific gene networks provide more spe-

cific information about functions of genes (Greene et al., 2015;

Marbach et al., 2016), motivating the development of methods for

integrating GWAS data with tissue-specific gene networks.

Tissue-specific gene networks, such as co-expression (Pierson

et al., 2015), co-functionality (Greene et al., 2015), and regula-

tory networks (Marbach et al., 2016), have attracted much

attention recently. These data provide functional relationships

between genes in a tissue-specific manner and show potentials

for gene-level integrative GWAS analysis. For example, tissue-

or context-specific co-expression networks were shown to be

useful for identifying candidate genes of complex diseases

(Dobrin et al., 2009; Calabrese et al., 2017) and cancers (He

et al., 2012; Zhang et al., 2015). Tissue-specific functional net-

works were shown to boost power for GWAS gene prioritization

(Greene et al., 2015). Tissue-specific regulatory networks were

observed to be useful for illustrating phenotype-relevant tissues

(Marbach et al., 2016), in which gene regulatory networks of

phenotype-relevant tissues were found to be enriched for con-

nections between phenotype-associated genes. Although tissue-

specific gene regulatory networks were shown to be useful for

revealing phenotype-relevant tissues, their potential for improving

gene prioritization remained unexplored (Marbach et al., 2016).

Similarly, tissue-specific functional networks were shown to be

useful for gene prioritization, but the relevant tissue must be

picked by hand (Greene et al., 2015). Intrinsically, gene priori-

tization and tissue identification are closely related since better

gene prioritization would boost tissue identification and vice ver-

sa, but thus far these two problems are considered separately in

existing methods.

To overcome this limitation, in this paper, we proposed a

Bayesian approach named SIGNET for integrating multiple

tissue-specific gene networks and GWAS summary data to sim-

ultaneously infer phenotype-associated genes and relevant tis-

sues. Specifically, we adopted a Markov random field (MRF)

model to incorporate multiple tissue-specific gene networks into

integrative GWAS analysis. MRF has been successfully applied

to a variety of genomics studies, including gene expression ana-

lysis (Lin et al., 2015, 2016), regulatory genomics (Wei and Pan,

2012), and GWAS (Chen et al., 2011). To the best of our knowl-

edge, our method is the first one that utilizes MRF for modeling

multiple tissue-specific gene networks in integrative GWAS ana-

lysis. By connecting MRF prior of tissue-specific gene networks

with GWAS summary data, we created an integrated probabilis-

tic model and utilized Bayesian inference for model estimation.

We demonstrated the power of our method through extensive

simulation studies regarding both gene prioritization and tissue

identification. We then applied our method to 14 real GWAS

data of various phenotypes, leading to the discovery of biologic-

ally relevant tissues and functional clusters for these pheno-

types. Using known association relationships between diseases

and genes, we found that our method improved gene prioritiza-

tion for several complex diseases. Combining the evidence from

both simulation studies and real data analysis, we demon-

strated that our method would be a valuable tool for post-

GWAS analysis. The source code for SIGNET is available at

https://github.com/wmmthu/SIGNET.

Results

Schematic diagram of SIGNET

As shown in Figure 1, our method, named SIGNET, takes

GWAS summary statistics (i.e. P-values of SNPs) of a particular

phenotype and multiple tissue-specific gene networks as input,

and produces associated genes and relevant tissues for the

phenotype as outputs. To achieve this goal, SIGNET first aggre-

gates P-values of SNPs to obtain P-values of genes, with LD

structures along the human genome taken into consideration.

The LD structures can be estimated based on a public repository

of SNPs such as the 1000 Genomes Project (1000 Genomes

Project Consortium, 2012) or an in-house data set with matched

population. Then, with the use of a MRF, SIGNET models associ-

ation status of genes with the phenotype of interest from their

P-values, with the incorporation of tissue-specific gene net-

works for modeling the dependency between the association

status of genes. Also, SIGNET uses a spike-and-slab prior to

model the distributions of effect sizes of different networks and
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adopts a Gibbs sampling strategy to infer posterior distributions

of gene association status and the inclusion of each gene net-

work, represented as a collection of simulated samples. Finally,

SIGNET performs statistical inference for both association status

of genes and relevance of gene networks based on these simu-

lated samples, thereby providing a means of gene prioritization

and tissue identification. A detailed description of SIGNET is pro-

vided in Materials and methods.

SIGNET is effective in simulation studies

To obtain an intuitive understanding of the parameters involved

in SIGNET, we first estimated the parameters α0; α1, and γ in our

model using real GWAS data of 14 complex phenotypes (Table 1).

As shown in Table 2, these parameters showed consistency

between different phenotypes. Specifically, parameter α0 controls

the shape of the distribution of P-values for genes that are not

phenotype-associated. In the ideal case, such gene-level P-values

should obey a uniform distribution in the range [0, 1], correspond-

ing to α0 ¼ 1. However, due to the existence of the inflation phe-

nomenon, this parameter typically takes a smaller value. In our

case, the estimated values of α0 were in the range [0.566, 1.246]

for different phenotypes, and its mean was 0.816. Parameter α1
controls the shape of the distribution of P-values for phenotype-

associated genes. Intuitively, phenotype-associated genes should

have smaller P-values than those without associations, and thus

α1 should be smaller than α0. In our case, the estimated values of

α1 were in the range [0.027, 0.353] for different phenotypes,

which was consistent with the above analysis. Parameter γ con-

trols the probability that a gene is associated with a phenotype

without considering the contribution of gene networks. Intuitively,

the number of associated genes is typically small, and hence

γ should take negative values. Furthermore, a small γ means that

the probability of association is small, and hence the expected

number of associated genes is also small. On the contrary, a large

γ means that the probability of association is large, thereby yield-

ing a large expected number of associated genes. In our case, the

estimated values of γ were in the range [−5.298, −1.279] for dif-
ferent phenotypes, reflecting the diverse numbers of associated

genes for different phenotypes, and the estimated values of γ

were correlated with the number of phenotype-associated SNPs

(Supplementary Figure S1).

With these understandings, we fixed a set of typical values

for these parameters, say, α0 ¼ 0:8; α1 ¼ 0:2, and γ ¼ − 2, and

we conducted the following simulation studies to validate our

model. Specifically, we randomly selected n tissues from the 32

high-level tissues (Table 3) as phenotype-relevant tissues, and

we assigned an equal value of effect size (β) to the correspond-

ing networks. For the rest tissues, we assigned zero effect sizes.

With these parameters, we randomly generated the association

status of genes with the phenotype, repeatedly updated the

association status using the MRF prior described by the equa-

tion (4) for 20 times, and simulated P-values of genes by the

conditional distributions specified by the equation (1) (see

Materials and methods for details). We then fed the resulting

P-values and all the 32 tissue-specific networks into SIGNET to

see whether the designated associated genes and relevant tis-

sues could be recovered.

We measured the ability to recover associated genes using a

criterion called area under the curve (AUC). Specifically, using

the simulated association status as the gold standard, we cal-

culated at a threshold of the local false discovery rate (FDR)

(see Materials and methods for details) the sensitivity as the

Figure 1 Schematic diagram of SIGNET. Our method takes GWAS summary data and multiple tissue-specific gene networks as input. In the

first phase, SNP-level P-values are aggregated into gene-level P-values. In the second phase, a MRF is applied to integrate gene-level

P-values and tissue-specific gene networks. In the third phase, an inference procedure gives results for both gene prioritization and tissue

identification.
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proportion of associated genes whose local FDR below the thresh-

old and the specificity as the proportion of non-associated genes

whose local FDR above the threshold. Varying the threshold, we

were able to draw a receiver operating characteristic (ROC) curve

and calculated the AUC to obtain the AUC value. As mentioned

before, there does not exists a method that takes multiple

tissue-specific gene networks and GWAS data as inputs thus far,

and hence we calculated the AUC using the simulated P-values

of genes directly and used this method (P-value for short) as the

baseline for comparison. We further repeated the simulation

experiment 100 times to eliminate random effects. As shown in

Figure 2A, which corresponded to the situation that only one net-

work was designated as relevant (n ¼ 1), the performance of our

method was almost the same as that of the P-value approach

when the relevant network had no effect (β ¼ 0). However, when

the relevant network had nonzero effect sizes (β ¼ 1; 2), our

method achieved obvious higher performance than the P-value

approach. Furthermore, the performance of our method tended to

increase when the effect size of the relevant network increased.

We further simulated the situation that multiple networks were

included as relevant (n ¼ 2; 3), and we observed the similar pat-

terns, as shown in Figure 2B and C.

We further investigated the power of our method for identifying

phenotype-relevant tissues. To achieve this objective, we intro-

duced a criterion called posterior inclusion probability (PIP, see

Materials and methods for details) to measure the likelihood of

each tissue being relevant to the phenotype. We plotted distribu-

tions of PIPs for designated relevant tissues in the above simula-

tion experiments vs. non-relevant ones in Figure 2D. PIPs for

relevant tissues were significantly higher than non-relevant ones,

revealing the ability of our method to identify relevant tissues

automatically. We further used the simulated relevance status of

tissues as the gold standard, calculated sensitivity and specificity

at different PIP cut-off values, and plotted the ROC curve in

Figure 2E. The curve climbed towards the top-left corner of the

plot rapidly (AUC: 0.923), suggesting that relevant tissues could

be identified at relatively high accuracy. In addition, we conducted

simulation studies for different values of α1; γ, which exhibited the

similar patterns and supported the same conclusion as here (see

Supplementary material).

SIGNET reveals tissue specificity of 14 complex traits

To validate the ability of SIGNET to infer relevant tissues for com-

plex traits, we applied our method to 14 complex traits (Table 1)

and 32 tissue-specific gene regulatory networks (Table 3) for

integrative analysis. Note that these complex traits were ana-

lyzed separately. We first explored the relationships between

these gene regulatory networks by performing hierarchical

Table 1 The 14 GWAS datasets.

Phenotype #Individuals #Cases #Controls #SNP #Association Data source / website

Multiple sclerosis 27148 9772 17376 465434 187 https://www.wtccc.org.uk/ccc2/projects/ccc2_ms.html

Ulcerative colitis 26405 6687 19718 1428749 436 http://www.ibdgenetics.org/projects.html

Crohn’s disease 21389 6333 15056 953241 399 http://www.ibdgenetics.org/projects.html

Rheumatoid arthritis 25708 5539 20169 2556272 309 http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/

Type 1 diabetes 16559 7514 9045 841622 97 http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000180.

v2.p2

LDL cholesterol 95454 2692414 269 http://www.sph.umich.edu/csg/abecasis/public/lipids2010/

Total cholesterol 100184 2692414 254 http://www.sph.umich.edu/csg/abecasis/public/lipids2010/

Type 2 diabetes 149821 34840 114981 2473441 406 http://diagram-consortium.org/index.html

Insulin secretion 5318 2425234 NA http://www.magicinvestigators.org/downloads/

Fasting insulin 108557 2461106 58 http://www.magicinvestigators.org/downloads/

Schizophrenia 11244 5001 6243 9871789 908 http://www.med.unc.edu/pgc/downloads

Height 133653 2834208 823 http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_

data_files

Body mass index 123865 2471517 845 http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_

data_files

Osteoporosis 31800 2478339 32 http://www.gefos.org/?q=content/data-release-2012

The first column shows the names of complex traits and the following three columns record the numbers of individuals, cases, and controls in each study. Note that the

numbers of cases and controls are only available for complex diseases and not available for complex traits such as height and body mass index. The last three columns

represent the number of SNPs genotyped, the number of associations reported in the GWAS Catalog, and corresponding website for downloading data, respectively. NA

denotes no available data.

Table 2 Estimated values of the model parameters for the 14

complex traits.

Phenotype α0 α1 γ

Multiple sclerosis 0.939 (0.012) 0.254 (0.017) −2.699 (0.140)

Ulcerative colitis 0.566 (0.005) 0.092 (0.006) −3.455 (0.101)

Crohn’s disease 0.642 (0.006) 0.077 (0.005) −3.394 (0.093)

Rheumatoid arthritis 0.874 (0.008) 0.044 (0.012) −5.298 (0.287)

Type 1 diabetes 0.853 (0.007) 0.066 (0.007) −4.709 (0.143)

LDL cholesterol 0.767 (0.006) 0.027 (0.002) −3.745 (0.065)

Total cholesterol 0.730 (0.007) 0.033 (0.002) −3.530 (0.069)

Type 2 diabetes 0.723 (0.009) 0.123 (0.011) −3.427 (0.159)

Insulin secretion 0.962 (0.009) 0.216 (0.077) −5.127 (0.823)

Fasting insulin 0.781 (0.012) 0.229 (0.021) −2.910 (0.237)

Schizophrenia 0.699 (0.014) 0.351 (0.026) −1.925 (0.285)

Height 0.948 (0.019) 0.157 (0.005) −1.279 (0.058)

Body mass index 1.246 (0.042) 0.353 (0.020) −1.433 (0.167)

Osteoporosis 1.026 (0.014) 0.219 (0.014) −2.776 (0.127)

The first column represents phenotype name. The following three columns record

parameter estimates of α0; α1; γ for each phenotype, and each entry represents as

mean (standard deviation).
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clustering. Specifically, for each pair of networks (i.e. a and b),

we defined the distance between them as

dða; bÞ ¼ 1−
wa

Twb

wa
Twa +wb

Twb −wa
Twb

;

where wa and wb were the vectorized adjacency matrices of net-

work a and network b. Then, hierarchical clustering was per-

formed using the defined distances between each pair of

networks, as shown in Figure 3. The gene regulatory networks

from similar tissues tended to cluster together. For example, the

six tissues from immune system, including lymphocytes of b lin-

eage, lymphoma, lymphocytes, myeloid leukocytes, immune

organs, and myeloid leukemia, formed one cluster. Similarly, tis-

sues from nervous system constituted another cluster, and

these networks could be grouped into five clusters, including

nervous system, mesenchyme, immune system, epithelium, and

organs. Next, given the resulting matrix of PIPs regarding the 32

tissue-specific gene regulatory networks and the 14 traits, we

conducted a hierarchical cluster analysis on these traits and pre-

sented the result in Figure 4, from which we observed several

distinct groups of these complex traits.

For example, cluster 1 was composed of five traits, including

insulin secretion, body mass index, type 2 diabetes, fasting

insulin, and schizophrenia. From the literature, we found that

dysfunction of insulin secretion was relevant to type 2 diabetes

(Weyer et al., 1999), levels of fasting insulin was associated

with diabetes (Johnson et al., 2009), and the body mass index

was also related to type 2 diabetes (Tobias et al., 2014).

Besides, the association between the body mass index and

schizophrenia was reported in a large-scale study (Zammit

et al., 2007). As another example, cluster 2 consisted of LDL

cholesterol and total cholesterol, and both of the two traits

showed obvious relevance to liver and kidney. It is well known

that liver is the primary organ responsible for synthesizing cho-

lesterol. Thus it is reasonable to find the association between

the two traits and liver. Also, the association between LDL cho-

lesterol and the chronic kidney disease was reported recently

(Baigent et al., 2011). As a third example, two traits, height and

osteoporosis, were involved in cluster 3. Osteoporosis was

believed to be one of the primary reasons for reducing body

peak height throughout life (Soranzo et al., 2009), implying the

association between osteoporosis and height. In addition, three

diseases, type 1 diabetes, rheumatoid arthritis, and multiple

sclerosis, were involved in cluster 4. The three diseases were all

immune-related, and all of them showed obvious relevance to lym-

phocytes. From the literature (Sharif et al., 2001; Firestein, 2003;

Sospedra and Martin, 2005), we found the evidence supporting

Table 3 Details about the 32 tissue-specific gene regulatory networks.

Tissue #Node #Edge Average node degree Average edge weight

Neurons fetal brain 15104 2335943 308 0.016

Nervous system adult hindbrain 16005 2606819 324 0.016

Adult forebrain 16072 2662324 330 0.015

Mesenchymal mixed 14169 1475195 208 0.014

Sarcoma 15442 2280408 294 0.014

Endothelial cells 14240 1653967 232 0.014

Mesenchymal stem smooth muscle cells 15160 2207237 290 0.015

Connective tissue muscle cells 15411 2373548 307 0.014

Connective tissue integumental cells 15525 2580570 331 0.015

lymphocytes 14089 2308803 327 0.013

Myeloid leukocytes 15726 2833574 359 0.018

Lymphocytes of b lineage 14215 1987936 279 0.012

lymphoma 14168 1925674 271 0.014

Immune organs 15899 2362978 296 0.013

Myeloid leukemia 14969 2238116 298 0.014

endo-epithelial cells 15012 1851434 246 0.014

adenocarcinoma 14373 1542530 214 0.014

Male reproductive organs 16494 2228707 269 0.016

Liver & kidney 16233 2302262 283 0.014

Gastrointestinal system 15881 2059687 259 0.017

Heart 15672 2252046 286 0.015

Mouth throat skeletal muscle tissue 16128 2419401 299 0.016

Lung 15575 1958316 251 0.014

Glands internal genitalia 16250 2502791 307 0.015

Pineal gland eye 15735 1779199 226 0.016

Neuron-associated cells cancer 16219 2654287 326 0.018

Astrocytes pigment cells 15355 2147224 279 0.014

Neuroectodermal tumors sarcoma 15779 2563859 323 0.017

Epithelial cells 15286 2237476 292 0.014

Extraembryonic membrane 15407 2061130 267 0.014

Epithelial cells of kidney & uterus 15279 2109521 275 0.015

Lung epithelium & lung cancer 15268 2274600 297 0.014

The first column denotes the names of tissues, and the following four columns record the number of nodes, the number of edges, average node degrees, and average

edge weights, respectively.
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associations between lymphocytes, especially T lymphocytes, and

the three diseases. Finally, cluster 5 was composed of two dis-

eases, ulcerative colitis and Crohn’s disease. It is well known that

the two diseases are two primary types of inflammatory bowel dis-

ease (IBD), a group of diseases involving the colon and small

intestine. Tissues showing obvious relevance with the two dis-

eases include mouth throat skeletal muscle tissue, myeloid leuko-

cytes, nervous system adult hindbrain, and gastrointestinal

system. The association between gastrointestinal system and IBD

is evident since both the colon and small intestine are essential

components of the gastrointestinal system. It was reported that

the level of inflammatory cytokines released by myeloid leuko-

cytes was elevated in IBD patients, and therapeutic depletion of

myeloid leukocytes was considered as a non-drug treatment for

IBD (Saniabadi et al., 2014). Although the association between

IBD and nervous system is still not clear, some neurological symp-

toms, such as intracerebral focal white-matter lesions revealed by

MRI studies, are among the important extra-intestinal manifesta-

tions in IBD patients (Ott and Schölmerich, 2013). Additionally, we

tried to perform network edge filtering with different thresholds

before phenotype cluster analysis (Supplementary Figures S6−S9)
and found that the original networks without filtering produced

the most reasonable results as described above. These results

collectively demonstrated SIGNET as a useful tool for uncovering

phenotype-relevant tissues and revealing relationships between

different phenotypes.

SIGNET improves gene prioritization performance for six

complex diseases

Among the 14 complex traits, we identified six complex dis-

eases, i.e. rheumatoid arthritis, Crohn’s disease, schizophrenia,

osteoporosis, multiple sclerosis, and ulcerative colitis, which had

at least 10 annotated disease genes in the DisGeNET database

(Piñero et al., 2017). In version 4.0 (released in April, 2016), this

database contained 429036 disease–gene associations between

17381 genes and >15000 diseases or phenotypes based on the

integration of multiple data sources, including OMIM (Hamosh

et al., 2005), ClinVar (Landrum et al., 2016), and many others

(Rath et al., 2012; Welter et al., 2014). Furthermore, each dis-

ease–gene association was assigned a confidence score, which

was calculated based on the recurrence of the association across

the data sources and their reliabilities, and a larger confidence

score indicated a higher probability of the association being real.

Since the DisGeNET database did not use any regulatory net-

works that were used in SIGNET, the disease–gene associations

Figure 2 Performance of SIGNET on the simulation study. AUCs of SIGNET and P-value for gene prioritization against the effective sizes of

relevant tissues, when the numbers of relevant tissues are 1 (A), 2 (B), and 3 (C), respectively. (D) Distributions of PIPs of both irrelevant tis-

sues and relevant tissues. (E) The ROC curve for discriminating relevant tissues from irrelevant ones.
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in this database could unbiasedly measure the performance of

our method in uncovering disease genes.

For each disease, we varied the threshold for the association

confidence score from 0.0 to 0.4 with step size of 0.1, because

the numbers of genes with confidence score exceeding than 0.5

were too small (i.e. only one for three diseases and zero for the

other diseases). At each threshold of the association confidence

score, we labeled genes with confidence scores greater than the

threshold as positives and treated the rest genes of whole gen-

ome as negatives. Using the labeled genes as the gold stand-

ard, we varied the threshold of gene-level local FDRs given by

SIGNET, drew the ROC curve, and calculated the corresponding

AUC, which measured the performance of a method in uncover-

ing disease genes.

We compared the performance of SIGNET with three baseline

approaches: (i) gene-level P-values without consideration of any

network information (P-value for short), (ii) SIGNET with a single

non-tissue-specific regulatory network (Gerstein et al., 2012)

(SIGNET (single) for short), and (iii) NetWAS (Greene et al.,

2015). As shown in Figure 5, it was not surprising to see that the

performance of all the three methods increased with the increase

of the threshold for the association confidence score, because

the quality of disease–gene associations tended to be higher at

a larger value of the threshold. Furthermore, it was interesting to

see that SIGNET showed obviously better or comparable discrim-

inative power than both P-value and SIGNET (single), indicating

the effectiveness of our method in uncovering disease genes. As

an example, for osteoporosis, SIGNET achieved an AUC of ∼0.85
at the threshold of 0.4, while P-value, SIGNET (single), and

NetWAS only produced 0.60, 0.62, and 0.55, respectively. Also,

we found that the performance of SIGNET (single) was close to

that of P-value, implying that the single non-tissue-specific net-

work contained limited information regarding the relationships

between transcription factors and disease genes. We drew the

similar conclusion that SIGNET performed the best from the per-

formance comparison between these methods in terms of the

number of phenotype-associated genes ranked in top k (ranging

from 100 to 1000) positions (Supplementary Tables S1−S6).
Additionally, we tried to perform network edge filtering with dif-

ferent thresholds before running SIGNET (Supplementary

Figure S10) and found that the original networks without filtering

leaded to the best performance.

Besides, we tested the hypothesis that disease-associated

genes tended to be functionally related, which was previously

explored for interpreting GWAS (Pers et al., 2015). We used the

protein–protein interaction (PPI) network as a surrogate for

Figure 3 Hierarchical clustering of the 32 tissue-specific gene regulatory networks. Hierarchical clustering reveals five clusters, including

nervous system, mesenchyme, immune system, epithelium, and organs. Networks from the same cluster are denoted by the same color.
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measuring functional relatedness between genes because PPI

proved to be effective for predicting protein function (Sharan

et al., 2007). Specifically, we defined the density of PPI edges

among a set of N genes as E
NðN− 1Þ=2, where E is the number of

observed PPI edges among these genes. We used the PPI net-

work of human from the STRING database version 10.5

(Szklarczyk et al., 2017) for subsequent analysis. For each of

the six diseases examined above, we calculated the density of

PPI edges among top genes ranked by P-value, SIGNET (single),

and SIGNET, respectively. As shown in Figure 6, the density of

PPI edges decreased as we included more genes, which demon-

strated that significant genes or top ranked genes tended to

connect with each other more densely in the PPI network.

Especially, with the same number of top ranked genes, SIGNET

leaded to higher density of PPI edges than the other two meth-

ods for all diseases except schizophrenia. Therefore, genes

prioritized by SIGNET were more likely to be functionally related.

We provided the full prioritized gene lists for all of the 14 com-

plex traits in Supplementary Table S1.

These results demonstrated that the incorporation of tissue-

specific gene regulatory networks could improve gene prioritiza-

tion for various complex diseases and the tissue-specific gene

regulatory networks were more informative than single gene

regulatory network that did not consider tissue-specific

information. Therefore, we conjecture that SIGNET, which incor-

porates tissue-specific gene networks into the analysis of GWAS

data, is more powerful than methods without considering

tissue-specific relationships between genes in uncovering dis-

ease genes and could be a valuable tool for post-GWAS

analysis.

Application of SIGNET to Schizophrenia

SCZ is a psychiatric disease, characterized by abnormal social

behavior and cognitive dysfunction (Ripke et al., 2013). SCZ

affects ∼1.1% of the population over the age of 18 and is very

costly for medical treatment (Saha et al., 2007). A genome-wide

association study regarding 9871789 SNPs was previously per-

formed on a cohort consisting of 5001 cases and 6243 controls

(Ripke et al., 2013), discovering 13 novel risk loci for SCZ. When

applying SIGNET to the summary data of this study and the 32

tissue-specific gene regulatory networks, we estimated that

α0 ¼ 0:699 ± 0:014 (Table 2), which indicated the existence of

inflation in the summary statistics and was consistent with the QQ

plot of P-values (Supplementary Figure S4). Among the 32 high-

level tissues, two brain-related ones, neurons fetal brain (PIP:

0.548) and adult forebrain (PIP: 0.531), were assigned the highest

PIPs, indicating the importance of brain functions for SCZ. At the

global FDR cut-off value 0.05, our method detected 25 significant

Figure 4 Cluster analysis of the 14 complex traits by their PIPs across the 32 tissues. Each column denotes a tissue, and each row repre-

sents the vector of PIPs across the 32 tissues for a complex trait. The from-white-to-red color represents the value of PIP from low to high.

Hierarchical clustering is performed by the vector of PIPs across the 32 tissues, resulting in five clusters.
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genes, while P-values derived from GWAS data only identified 22

genes, reflecting that SIGNET might be more powerful in finding

genes associated with this disease. Within these top ranked

genes, it is interesting to see that CACNB2, a gene ranked 107th

by P-value and 21st by SIGNET, was recently reported to be asso-

ciated with SCZ (Juraeva et al., 2014), suggesting the ability of our

method in identifying novel disease-associated genes.

Previously, we showed the effectiveness of SIGNET in uncover-

ing disease genes for six diseases with SCZ included based on

the DisGeNET database. Here, we validated the performance of

SIGNET in prioritizing SCZ-associated genes based on the SZDB

database (Wu et al., 2017), a specialized database for SCZ by

integrating such data sources as association studies, linkage

analysis, copy number analysis, and convergent functional gen-

omics to provide comprehensive biological knowledge about

genetics underlying SCZ. Briefly, SZDB contains 2706 candidate

genes for SCZ and assigns a polyevidence score (ranges from 1

to 4) to each gene based on the occurrence of evidence from the

multiple data sources used. Genes with polyevidence scores ≥ 2

were considered as potentially associated with the phenotype.

Taking intersection between the SZDB database and the GWAS

data, we retrieved 242 genes with a polyevidence score of 2, 21

genes with a polyevidence score of 3, and one gene with a polye-

vidence score of 4. We then compared the performance of

P-value, SIGNET (single) and SIGNET by using the 264 genes with

polyevidence score ≥ 2 and the 22 genes with polyevidence

score ≥ 3 as ground truth, respectively. As shown in Figure 7A

and B, SIGNET achieved higher AUC than the other two methods,

again supporting the effectiveness of SIGNET in the identification

of disease genes.

We further conducted functional analysis by identifying gene

ontology (GO) terms enriched among top ranked genes. To achieve

this goal, we identified 101 genes whose global FDRs given by

SIGNET were smaller than or equal to 0.2, and we detected 52 GO

terms that were significantly enriched (P-value < 0.01) among

these genes by the ConsensusPathDB (Kamburov et al., 2011).

Meanwhile, we ranked genes by P-values derived from the GWAS

data in non-decreasing order, identified 101 top ranked genes, and

detected 30 GO terms enriched among these genes. We then com-

pared statistical significance (P-values) of GO terms that were iden-

tified by the two methods and presented the result in Figure 7C.

SIGNET improved significance of several GO terms, including brain

Figure 5 SIGNET improved gene prioritization for six complex diseases. For each one of the six complex diseases, including rheumatoid arth-

ritis, Crohn’s disease, schizophrenia, osteoporosis, multiple sclerosis, and ulcerative colitis, we extracted corresponding disease genes with

evidence scores from the DisGeNET database. The AUCs of SIGNET, SIGNET (single), and P-value are computed under different thresholds

for the evidence score. In each subplot, the x-axis denotes the threshold of the evidence score and the y-axis indicates AUC.
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development, forebrain development, central nervous system devel-

opment, hippocampus development, midbrain development, and

many others. Interestingly, these terms were apparently related to

the functions of the brain. Based on the observation that SIGNET

helped to identify SCZ-associated genes, it was natural to think

that the functions implicated by these GO terms raised by SIGNET

may also be associated with SCZ. For example, the association

between brain development and SCZ had been discovered for sev-

eral decades (Weinberger, 1987), and structural abnormalities in

the brain had been observed in SCZ (Pantelis et al., 2005). As

another example, a significant decrease of hippocampal volume

was observed in SCZ (Heckers and Konradi, 2002), suggesting the

association between hippocampus development and SCZ. On the

contrary, SIGNET reduced the significance of several GO terms,

such as RNA binding, DNA methylation, intracellular organelle part

and may others, and these GO terms had less functional implica-

tions associated with SCZ than those GO terms enhanced by

SIGNET.

In summary, these results collectively demonstrated the

effectiveness of SIGNET in discovering SCZ-relevant tissues, pri-

oritizing SCZ-associated genes, and uncovering SCZ-associated

GO terms, thereby validating the usefulness of our method in

the study of neurological disorders.

Application of SIGNET to ulcerative colitis

Ulcerative colitis (UC) is a type of IBD, characterized by

inflammation and ulcers of several components of the intestine

system such as the colon and rectum, and the prevalence of

this disease is 7.6–246.0 cases per 100000 per year (Danese

and Fiocchi, 2011). An existing genome-wide association study

(Anderson et al., 2011) was performed on a cohort consisting of

6687 cases and 19718 controls, and 1428749 SNPs were

selected as tested markers, identifying 29 additional risk loci for

UC. When applying SIGNET to the summary data of this study

and the 32 tissue-specific gene regulatory networks, we esti-

mated that α0 ¼ 0:566 ± 0:005 (Table 2), which indicated the

existence of inflation in the summary statistics and was consist-

ent with the QQ plot of P-values (Supplementary Figure S4).

Among the 32 high-level tissues, three were assigned PIPs

above 0.2, including nervous system adult hindbrain (PIP: 1),

myeloid leukocytes (PIP: 1), and gastrointestinal system (PIP:

0.795). As explained before, the association between the

Figure 6 SIGNET improves PPI density among top ranked genes. For each one of the six complex diseases, including rheumatoid arthritis,

Crohn’s disease, schizophrenia, osteoporosis, multiple sclerosis, and ulcerative colitis, we calculated the density of PPI edges for top ranked

N genes (from 100 to 2000, step size 100). In each subplot, x-axis and y-axis denote the number of top ranked genes and the density of PPI

edges, respectively. Note that the results for P-value and SIGNET (single) are similar for some diseases and corresponding lines are also

similar, especially in osteoporosis.
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nervous system and UC may be attributed to the observation

that UC is frequently accompanied by disorders of the nervous

system (Scheid and Teich, 2007). The myeloid leukocyte is one

critical component of the immune system, and its involvement

in UC has been reported (Saniabadi et al., 2014). The associ-

ation between gastrointestinal system and UC is reasonable

since UC is a disease with disruption in the gastrointestinal sys-

tem (Danese and Fiocchi, 2011). With global FDR less than 0.05,

our method detected 166 significant genes, compared with 160

significant genes by P-values only. Interestingly, the gene ETS2

was ranked 1249th by P-value and 194th by SIGNET, and it had

been reported that genes with ETS2 binding sites were upregu-

lated in UC patients (van der Pouw Kraan et al., 2009), implying

the potential association between this gene and UC.

Previously, we showed the effectiveness of SIGNET in unco-

vering disease genes for six diseases with UC included based on

the DisGeNET database. Here, we validated the performance of

SIGNET in prioritizing UC-associated genes based on the latest

UC GWAS data (Liu et al., 2015; de Lange et al., 2017), contain-

ing 63 novel candidate genes for IBD and 13 novel candidate

genes for UC. Using the two set of genes as ground truth, we

drew the ROC curves of SIGNET, SIGNET (single), and P-value in

Figure 8A and B, from which we observed that SIGNET achieved

better discriminative performance than the other two methods

on these novel genes. For example, using the 13 novel UC-

associated candidate genes as ground truth, SIGNET achieved

AUC 0.916 compared with 0.847 of P-value and 0.841 of SIGNET

(single), as shown in Figure 8B.

We then used the ConsensusPathDB (Kamburov et al., 2011)

to conduct functional analysis by finding significant enriched GO

terms among the top ranked genes given by P-value and

SIGNET, respectively. At the threshold value of 0.05 (global

FDR), our method discovered 166 significant genes, and 198 GO

terms were enriched (P-value < 0.01) among these genes.

Extracting the same number of genes from the rank list pro-

duced by P-values derived from the GWAS data, we detected

194 enriched GO terms. We then compared statistical signifi-

cance (P-values) of GO terms that were identified by the two

methods and presented the result in Figure 8C. SIGNET

improved significance of several GO terms, including immune

response, regulation of immune system process, cytokine-

mediated signaling pathways, regulation of interleukin-12

Figure 7 SIGNET improves gene prioritization and functional analysis for schizophrenia. Using prioritized genes for schizophrenia from the SZDB

database as ground truth, we drew the ROC curves of SIGNET (red), SIGNET (single) (green), NetWAS (purple), and P-value (blue) for gene priori-

tization with the threshold of polyevidence score equal to 2 (A) and 3 (B). (C) Using the top 101 genes (global FDR ≤ 0.2) ranked by P-value (or

GWAS only) and SIGNET, we conducted GO enrichment analysis and compared the significance of each GO term given by the two methods. Each

point represents a GO term, and x-axis and y-axis denote the − log10ðP-valueÞ obtained by GWAS only and SIGNET, respectively.
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production, and many others. Interestingly, these GO terms indi-

cated apparent associations with the immune system. For

example, the crucial role of cytokines in the pathogenesis of UC

and IBD has been recognized (Neurath, 2014). As another

example, interleukin-12 was observed to be upregulated in IBD

(Nielsen et al., 2003), suggesting the association between

interleukin-12 and IBD. On the contrary, SIGNET reduced the sig-

nificance of several GO terms, such as cell migration, localiza-

tion of cell, and regulation of locomotion, and these GO terms

had less functional implications associated with UC than those

enhanced by SIGNET.

In summary, these results collectively demonstrated the

effectiveness of SIGNET in discovering UC-relevant tissues, pri-

oritizing UC-associated genes, and uncovering UC-associated

GO terms, thereby promoting the usefulness of our method in

the study of immune diseases.

Discussion

In this paper, we proposed a MRF model called SIGNET to

integrate GWAS summary data with multiple tissue-specific

gene regulatory networks for the simultaneous inference of

phenotype-associated genes and relevant tissues. Through com-

prehensive simulation studies, we showed the validity of this

method in the incorporation of tissue-specific information into

traditional association studies. From real data analysis, we

demonstrated that main advantages of our method include (i)

effective adjustment of gene-level P-values derived from a

GWAS data for a particular phenotype, which leaded to high-

quality candidate genes that were potentially associated with

the phenotype and (ii) quantitative measure of the strength of

association between a tissue and a phenotype via a statistic

called the posterior inclusion probability, which enabled the

identification of relevant tissues for the phenotype. With these

hall marks, our method provided a means of utilizing the large

volume of available functional genomic data to interpret the

vast volume of existing and anticipated genetic data, thereby

boosting the power of discovering the underlying mechanism

behind human inherited diseases.

Certainly, our method can further be extended from the fol-

lowing aspects. First, besides transcription factors, there are still

quite a few regulatory elements involved in gene regulation.

How to incorporate such elements as non-coding RNAs (Zhang

Figure 8 SIGNET improves gene prioritization and functional analysis for ulcerative colitis. Using annotated genes from latest genetic stud-

ies for IBD (A) and UC (B), we drew the ROC curves of SIGNET (red), SIGNET (single) (green), NetWAS (purple), and P-value (blue) for gene

prioritization. (C) Using the top 166 genes (global FDR ≤ 0.05) ranked by P-value (or GWAS only) and SIGNET, we conducted GO enrichment

analysis and compared the significance of each GO term given by the two methods. Each point represents a GO term, and x-axis and y-axis

denote the �log10ðP-valueÞ obtained by GWAS only and SIGNET, respectively.
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et al., 2014) and enhancers (Spitz and Furlong, 2012) into a

tissue-specific regulatory network is an immediate extension of

our current model. Second, different types of genomic and epi-

genomic data may provide complementary information in

describing functional relationships between regulatory elements

and genes. Of particular interest is the abundant epigenomic

data regarding chromatin accessibility collected in the ENCODE

project, with examples including ChIP-seq, DNase-seq, ATAC-

seq, and many others. How to utilize such fruitful lines of evi-

dence to construct more reliable tissue-specific networks is

another important research topic worth noting. A recent work

(Duren et al., 2017) used paired DNase-seq and RNA-seq data

to construct tissue-specific gene networks for mouse, and

adapting its method to build tissue-specific gene networks for

human would be interesting and promising. Third, due to the

existence of pleiotropy (Visscher and Yang, 2016), a phenom-

enon that different phenotypes may share the same underlying

causalities, simultaneously modeling of multiple genetically

related diseases may further enhance the power of our method.

Finally, current GWAS analysis focus on genomic variants, and

how to incorporate protein variants (Su et al., 2014) would be

interesting.

Materials and methods

Data sources

We collected summary statistics (SNP P-values) of 14 GWAS

datasets, including multiple sclerosis (International Multiple

Sclerosis Genetics Consortium, and Wellcome Trust Case Control

Consortium 2, 2011), ulcerative colitis (Anderson et al., 2011),

Crohn’s disease (Franke et al., 2010), rheumatoid arthritis (Stahl

et al., 2010), type 1 diabetes (Barrett et al., 2009), LDL choles-

terol (Teslovich et al., 2010), total cholesterol (Teslovich et al.,

2010), type 2 diabetes (Morris et al., 2012), insulin secretion

(Prokopenko et al., 2014), fasting insulin (Scott et al., 2012),

schizophrenia (Ripke et al., 2013), height (Allen et al., 2010),

BMI (Speliotes et al., 2010), and osteoporosis (Estrada et al.,

2012). The details of these GWAS data, including cohort size, the

numbers of cases and controls, the number of genotyped SNPs,

and corresponding websites, are provided in Table 1. To elimin-

ate bias in our model, we removed genes falling into human

leukocyte antigen (HLA) region because of the complex LD struc-

ture and clustered association signal in this region.

We collected 32 tissue-specific gene regulatory networks

(Marbach et al., 2016), which were derived from the FANTOM5

project data (Andersson et al., 2014). Briefly, Marbach et al.

(2016) first mapped peaks identified from Cap Analysis of Gene

Expression (CAGE) experiments to promoters and enhancers, and

identified their activities across 808 samples, which covered 432

primary cells, 135 tissues, and 241 cell lines. Then, they linked

transcription factors (TFs) to promoters and enhancers based on

the occurrence of corresponding motifs and evolutionary conser-

vation. Next, they linked promoters to isoforms of genes based

on the distance between promoters and transcription start sites

(TSSs) of the isoforms. Finally, they connected enhancers to iso-

forms of target genes based on genomic distance and activity

level. They constructed the corresponding regulatory circuit for

each sample by using the four types of entities (TF, enhancer,

promoter, and gene isoform) as nodes and the derived weighted

links between these entities as edges, leading to 808 regulatory

circuits. They obtained 394 cell type- and tissue-specific regulatory

circuits by merging regulatory circuits of closely related samples.

From each tissue-specific regulatory circuit, they defined a TF-gene

network by merging edges of TF-promoter and promoter-isoform.

These 394 TF-gene networks were further clustered into 32 clus-

ters by hierarchical clustering on pairwise similarities of them,

and the similarity between two networks was computed by an

extension of the Jaccard index (Marbach et al., 2016). They defined

a high-level tissue for each cluster and derived a high-level regula-

tory network by taking the union of the individual TF-gene net-

works belonging to the cluster and keeping the maximum edge

weights. As shown in the literature (Marbach et al., 2016), the 32

tissue-specific regulatory networks showed stronger enriched sig-

nals for GWAS genes compared to individual networks. Thus we

selected these 32 tissue-specific regulatory networks for subse-

quent analysis. Due to pervasive LD structure, association status

of two genes to a phenotype may also be highly correlated if they

locate physically near to each other. We therefore also removed

edges between genes nearby (i.e. located within 1 Mb to each

other). Summary statistics of the final networks are shown in

Table 3. The histograms of edge weights across these gene net-

works were shown in Supplementary Figure S5, from which we

observed that the majority of edge weights located within the

interval [10−4, 10−1], and the shapes of corresponding distribu-

tions were similar across different tissues.

Calculation of gene-level P-values

We aggregate SNP-level P-values into gene-level P-values

using the method PASCAL (Lamparter et al., 2016). In detail, we

first extend the annotated region of a gene by 50 kb upstream

and downstream and assign an SNP to the gene if the SNP

located within the extended region. SNPs outside the surrounding

50 kb regions of a gene are ignored. Then, given a total of S

SNPs assigned to the gene, with their P-values obtained from a

GWAS data set denoted as p1; ::;pS, we calculate a test statistic

T ¼PS
i¼1 z

2
i ∼

PS
i¼1 λiχ

2
1 , where zi is the inverse normal trans-

formation of pi (i.e. zi ¼ Φ−1ðpiÞ with Φ being the cumulative dis-

tribution of the standard normal distribution), λi is the ith

eigenvalue of the pairwise correlation matrix of the S SNPs, derived

from such public data sources as the 1000 Genomes Project (1000

Genomes Project Consortium, 2012), and χ21 is the Chi-squared dis-

tribution with one degree of freedom. The corresponding P-value

for the gene can then be calculated accordingly. Note that popula-

tion structure or other factors that may lead to spurious associa-

tions should be adjusted for SNP-level P-values with such methods

as linear mixed model (Zhou and Stephens, 2012) or principal com-

ponent analysis (Patterson et al., 2006) before using our method.

MRF for network integration

For a total of K tissue-specific gene regulatory networks, each

having N genes, we represent the kth (k ¼ 1; ::; K) gene
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regulatory network by a weighted matrix WðkÞ ¼ ðwðkÞ
ij ÞN×N with

w
ðkÞ
ij being the edge weight between gene i and gene j in the kth

network, and we use a tensor W∈RK×N×N to denote the collec-

tion of all the weight matrices. Here, we ignore the directionality

of the input gene networks, if existed, and use the weighted

matrix WðkÞ to represent an undirected gene network. Note that

our method is also applicable to a single gene network, in which

case K ¼ 1. These tissue-specific gene regulatory networks

share the same set of genes and differ with regard to the con-

nectivity patterns between genes. For gene i, we introduce a

hidden indicator variable zi to indicate the association status of

the gene with the phenotype of interest, where zi ¼ 1 denotes

the existence of the association and zi ¼ 0 otherwise. Following

the literature (Chung et al., 2014; Li and Kellis, 2016), we spe-

cify that the gene-level P-value pi follows a mixture of beta dis-

tribution given the hidden indicator variable zi, say,

pijzi ∼ ziBetaðα1; 1Þ+ ð1− ziÞBetaðα0; 1Þ (1)

where α0 accounts for the inflation of the P-values from the null

distribution, which has been commonly observed in real data.

Let z ¼ ðziÞN×1 collects all hidden indicator variables and

p ¼ ðpiÞN×1 denotes all gene-level P-values. We assume that the

association status of the N genes is not independent, i.e. con-

nected genes tend to have similar association status in the net-

works of phenotype-relevant tissues. In order to capture such

dependence structure, we introduce a MRF prior for the joint

distribution of all hidden indicator variables as

pðzjΦ;WÞ ¼ 1

TðΦÞ exp γ
XN
i¼1

zi +
XK
k¼1

βk
X

1≤ i≠j≤N

w
ðkÞ
ij Iðzi ¼ zjÞ

( )

(2)

where Φ ¼ fγ; β ¼ ðβ1; ::; βKÞg collects all parameters in the

MRF, TðΦÞ denotes the partition function, and Ið ⋅ Þ the indicator

function that equals to one when the inside condition is satis-

fied. Due to the intractability of the partition function TðΦÞ, we
approximate the joint distribution of z using the pseudo-

likelihood approach (Besag, 1986), as

LðzjΦ;WÞ ¼ ∏
N

i¼1

pðzijz−i;Φ;WÞ (3)

where z−i denotes the association status of all genes except for

gene i, and the conditional probability of zi given parameters

and z−i can be derived as

pðzi ¼ 1jz−i;Φ;WÞ ¼ σðγ + xi
TβÞ (4)

where σðxÞ ¼ 1=ð1+ expð− xÞÞ be the sigmoid function,

xi ¼ ðxi1; ::; xiKÞ with xik ¼
P

j≠iw
ðkÞ
ij ð2zj − 1Þ denoting the neigh-

boring statistics for gene i in the kth network.

For Bayesian inference, we specify a gamma distribution

Gamma(1,1) as the conjugate prior for α0 and α1, a normal dis-

tribution N(0,10) as the prior for γ, and a spike-and-slab prior

(George and McCulloch, 1993) for βk; k ¼ 1; ::; K, where both

spike and slab parts are normal distributions with different var-

iances. For the kth tissue-specific network, we assign a binary

hidden variable Ik to denote its relevance to the phenotype,

where Ik ¼ 1 represents the kth tissue is relevant to the pheno-

type and Ik ¼ 0 otherwise. The conditional distribution of βk
given Ik according to the spike-and-slab prior is specified as

βkjIk ∼ IkNð0; τ2Þ+ ð1− IkÞNð0; τ2=gÞ
τ2∼ InvGammað1; 1Þ
Ik ∼ BernoulliðπÞ

(5)

where π is a fixed hyper-parameter (set 1=K as default), control-

ling the proportion of relevant tissues with nonzero βk, g

another fixed hyper-parameter (set 100 as default), and

InvGamma denotes the inverse gamma distribution. Let the bin-

ary vector I ¼ ðIkÞK×1 collect all hidden indicator variables for tis-

sue relevance.

Parameter estimation via Bayesian inference

We derive a Gibbs sampling algorithm for Bayesian infer-

ence of both model parameters and hidden variables. With

the likelihood and the prior specified, we derive the joint

posterior distribution of model parameters and hidden vari-

ables as

pðz; α0; α1; γ; β; I; τ2jp;WÞ∝
pðα0Þpðα1ÞpðγÞpðτ2ÞpðIÞpðβjI; τ2Þpðpjz; α0; α1Þpðzjγ; β;WÞ (6)

The parameters α0 and α1 are updated as

α0ðt+1Þj ⋅
� �

∼ Gamma
XN
i¼1

IðziðtÞ ¼ 0Þ+ 1; −
X

i:zi ðtÞ¼0

log pi + 1

0
@

1
A

α1ðt+1Þj ⋅
� �

∼ Gamma
XN
i¼1

IðziðtÞ ¼ 1Þ+ 1; −
X

i:zi ðtÞ¼1

log pi + 1

0
@

1
A
(7)

where j ⋅ means conditioning on the anything else, and t

indexes the number of iterations. The parameter τ2 is updated

as

ðτðt+1ÞÞ2j ⋅
� �

∼ InvGamma
K

2
+ 1;

1

2

XN
i¼1

g1−Ik
ðtÞ ðβðtÞi Þ2 + 1

 !
(8)

For γ; β, we utilized the data augmentation trick proposed in

the Bayesian logistic model (Polson et al., 2013) and augmented

a Polya-Gamma variable ωi for each gene. The Gibbs updates of

γ; β and ωi are
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ωi
ðt+1Þj ⋅� �

∼ PGð1; γðtÞ + ðxiðtÞÞTβðtÞÞ
γðt+1Þ; βðt+1Þj ⋅
� �

∼ NðVðXðtÞÞTκðtÞ;VÞ (9)

where PG stands for the Polya-Gamma distribution. The posterior

covariance matrix is V ¼ ðXðtÞÞTΩðt+1ÞXðtÞ+ðBðtÞÞ−1
� �−1

, and XðtÞ is
the neighboring statistics matrix with the ith row being ð1; ðxiðtÞÞTÞ.
Note that x

ðtÞ
i changes during iteration and is computed by

x
ðtÞ
ik ¼Pj≠iw

ðkÞ
ij ð2zjðtÞ − 1Þ. The other matrices are denoted as

Ωðt+1Þ ¼ Diagðω1
ðt+1Þ; ::;ωn

ðt+1ÞÞ, κðtÞ ¼ ðz1ðtÞ − 1=2; ::; zn
ðtÞ − 1=2Þ

and BðtÞ ¼ Diagð10; ðτðt+1ÞÞ2gI1ðtÞ−1; ::; ðτðt+1ÞÞ2gIK ðtÞ−1Þ. For I, each Ik
is updated as

Ik
ðt+1Þj ⋅� �

∼ Bernoulli
ϕk

1+ϕk

0
@

1
A

ϕk ¼
π

ð1− πÞ ffiffiffi
g

p exp
ðg− 1Þðβðt+1Þk Þ2

2ðτðt+1ÞÞ2

0
@

1
A

(10)

Lastly, each zi is updated sequentially according to its condi-

tional distribution specified as

zi
ðt+1Þj ⋅� �

∼ BernoulliðσðξiÞÞ

ξi ¼ γðt+1Þ + ðxðtÞi ÞTβ+ log
αðt+1Þ1

αðt+1Þ0

0
B@

1
CA+ ðαðt+1Þ1 − αðt+1Þ0 Þlog pi

(11)

Before Gibbs sampling, we adopt a simple model for para-

meters initialization, as described in Supplementary material.

Statistical inference of phenotype-associated genes and

relevant tissues

We have two inference questions of interest: (i) the associ-

ation status of each gene with the phenotype of interest and (ii)

the relevance of each tissue to the phenotype under investiga-

tion. To achieve these goals, we simulate the MCMC steps T

times (20000 as the default). The first half is abandoned as the

burn-in period, which is observed to be enough for convergence

empirically, and the second half is used to make inference.

For the first question, we test for each gene against the null

hypothesis that the gene is not associated with the phenotype of

interest. To achieve this, we follow the literature (Newton et al.,

2001; Lin et al., 2015) to calculate the posterior probability-

based definition of local FDR based on the posterior probability

of each gene, as q
ðgÞ
i ¼ pðzi ¼ 0j ⋅ Þ ¼ 2

T

PT
t¼T=2 IðzðtÞi ¼ 0Þ. To

control the global FDR, we firstly sort local FDRs of genes in non-

decreasing order, with the k� th smallest one denoted as q
ðgÞ
ðkÞ .

Then, given a global FDR threshold α (e.g. 0.05), we identify

M ¼ max m :
1

m

Xm
k¼1

q
ðgÞ
ðkÞ ≤ α

( )
(12)

and reject all null hypothesis corresponding to q
ðgÞ
ðkÞ ; k ¼ 1; ::;M.

The inference procedure for relevant tissues can be done in a

similar way. To visualize the relevant tissues, we also define the

posterior inclusion probability (PIP) for kth tissue as

PIPk ¼ pðIi ¼ 1j ⋅ Þ ¼ 2
T

PT
t¼T=2 IðIðtÞi ¼ 1Þ. Note that the inference

procedures for associated genes and relevant tissues are done

separately.

Computational complexity and model implementation

Computations involved in our method include parameter estima-

tion and statistical inference, and the majority of time is consumed

by the Bayesian inference part. The computational complexity for

updating each parameter is Oð1Þ, and we have K + 4 parameters

(i.e. α0; α1; γ; τ2; β1; ::; βK) leading to the complexity of OðKÞ for

each iteration. Besides, in each iteration, we have to pay the

complexity OðKÞ and OðKN2Þ for updating the hidden variables I

and z. Therefore, the overall complexity of our model is OðTKN2Þ,
where T is the number of iterations for MCMC sampling. We used

R to implement our model and resorted to Rcpp (Eddelbuettel

et al., 2011) for fast sampling of the hidden variables z.

Empirically, the whole process could be finished within several

hours for whole-genome analysis with a main stream laptop.

Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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