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ABSTRACT

Background: The widespread adoption of electronic health records allows us to ask evidence-based questions

about the need for and benefits of specific clinical interventions in critical-care settings across large popula-

tions.

Objective: We investigated the prediction of vasopressor administration and weaning in the intensive care unit.

Vasopressors are commonly used to control hypotension, and changes in timing and dosage can have a large

impact on patient outcomes.

Materials and Methods: We considered a cohort of 15 695 intensive care unit patients without orders for reduced

care who were alive 30 days post-discharge. A switching-state autoregressive model (SSAM) was trained to pre-

dict the multidimensional physiological time series of patients before, during, and after vasopressor administra-

tion. The latent states from the SSAM were used as predictors of vasopressor administration and weaning.

Results: The unsupervised SSAM features were able to predict patient vasopressor administration and success-

ful patient weaning. Features derived from the SSAM achieved areas under the receiver operating curve of 0.92,

0.88, and 0.71 for predicting ungapped vasopressor administration, gapped vasopressor administration, and va-

sopressor weaning, respectively. We also demonstrated many cases where our model predicted weaning well

in advance of a successful wean.

Conclusion: Models that used SSAM features increased performance on both predictive tasks. These improve-

ments may reflect an underlying, and ultimately predictive, latent state detectable from the physiological time

series.
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BACKGROUND AND SIGNIFICANCE

Decision-making in the intensive care unit (ICU) requires quick re-

sponse to rapidly changing situations as patients respond to treat-

ment and develop secondary conditions. Treatment decisions are

made based on clinicians’ understanding of patients and their own

prior experience. However, the efficacy of many interventions re-
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mains unquantified,1,2 and some interventions have even been

shown to be ineffective or harmful.3

The widespread adoption of electronic health records allows us

to ask evidence-based questions about the need for and benefits of

specific interventions in critical-care settings across large popula-

tions. Importantly, the vast amounts of data that are collected in

ICUs – vital signs, clinical notes, fluids, medications – suggest an op-

portunity for more data-driven decision-making. Whereas clinicians

may struggle to track multiple signals from multiple, rapidly evolv-

ing patients at once, algorithms excel at processing large streams of

data. Computational tools that summarize relevant parts of these

data streams could allow clinicians to focus on decision-making

rather than just keeping up with the data.

Open databases such as Multiparameter Intelligent Monitoring

in Intensive Care (MIMIC) II,4 with information on 26 870 adult

hospital admissions, provide an unprecedented opportunity for re-

searchers to build these computational tools. To date, most works

have used ICU measurements to predict the mortality of patients in

particular disease subgroups.5–8 However, such risk scores are of

limited value to clinicians, who must make decisions on how and

when to treat patients regardless of their underlying acuity.

This work takes an important step toward actionable use of ICU

data by modeling ICU interventions. We focus on vasopressors, used

to elevate mean arterial blood pressure. While vasopressors are com-

monly used in the ICU, few studies have documented improved out-

comes from their use,9 and they may even be harmful in some

populations.10 We consider 2 questions regarding vasopressor ad-

ministration. First, we ask when a patient will require a vasopressor.

Knowing who will need a vasopressor even a few hours in advance

can help clinical staff plan and execute interventions in a more effi-

cient manner. Second, we ask whether a patient currently on a vaso-

pressor is ready to be weaned from it. Anecdotally, clinicians report

being conservative about estimating when the patient is ready for

weaning and leaving patients on interventions longer than necessary

because they are attending to other patients. However, extended in-

terventions are both costly and detrimental to patient health.10

Unfortunately, making decisions from data generated in the ICU

is challenging: clinical signals are irregularly sampled and are con-

taminated by interference and human error. Strong modeling as-

sumptions are typically used to clean and impute the signals,11,12

which introduce their own bias13 and often ignore the highly depen-

dent temporal nature of the data.14–16 Dynamical system models,

which impute data by building a model of how the data evolve, pro-

vide an alternative to interpolation-based imputation techniques. In

this work, we focus on switching-state autoregressive models

(SSAMs), which have previously been used to impute signals, iden-

tify artifacts, and discover physiological states in a variety of critical

settings.17,18 SSAMs are attractive models for modeling physiologic

signals, because they express the notion that the dynamics of the

physiologic signal will change depending on some internal patient

health state; given the patient’s health state, the set of physiological

signals the next time depends only on the current signals. This as-

sumption considerably simplifies training of the model, resulting in

a more robust predictor. Interpreting SSAMs is also relatively sim-

ple, because each time a patient is assigned to exactly 1 discrete hid-

den state, rather than a more complex embedding.

Unlike prior work, we focus on actionable predictions regarding

interventions rather than mortality. We also consider a high-

dimensional space of physiological signals and make use of signal

discretization to improve performance on downstream tasks.19,20

Specifically, we

• define 3 clinically actionable prediction tasks: immediate need

for an intervention, need for an intervention in the near future,

and when a patient is ready to be weaned from an intervention;
• achieve state-of-the-art predictions for intervention-onset tasks

using only physiological signals in a large, public ICU dataset;

and
• quantify unnecessary extra intervention time.

To our knowledge, ours is the first study to use predictive models

to address this question.

MATERIALS AND METHODS

Data
The MIMIC II 2.6 database (MIMIC-III was released after this

work began and contains more data for future use) includes retro-

spective electronic medical records for 26 870 adult hospital admis-

sions recorded between 2001 and 2008.4 Creation and use of the

MIMIC database was approved by the Institutional Review Boards

of both Beth Israel Deaconess Medical Center and the Massachu-

setts Institute of Technology (IRB Protocol 2001-P- 001699/3).

Many ICU patients have a limited chance of survival, regardless of

clinical intervention. Therefore, our cohort contains only adult pa-

tients on their first ICU stay without orders for reduced care (eg,

“comfort measures only,” “do not resuscitate,” “do not intubate,”

or “CPR not indicated”). Following prior work by Hug and Szolo-

vits,23 we also excluded patients with <12 hours of data or >96

hours of data to avoid a group of fundamentally sicker patients.

These criteria allowed us to focus on situations in which clinical de-

cisions might have a positive effect, rather than penalizing a classi-

fier for situations where a patient is taken off life support. Applying

these filters resulted in an initial cohort of 15 695 patients: 4331

were administered vasopressors (positive class) and 11 364 were not

(control class). We extracted the 10 dynamic variables (vital signs

and lab results) with the fewest missing entries as well as variables

corresponding to vasopressor administration.

Predictive tasks
We considered 3 tasks: predicting imminent vasopressor need,

short-term vasopressor need, and wean readiness (see Figure 1 for

an illustration).

Task 1: Imminent vasopressor need. We defined imminent vaso-

pressor need as requiring a vasopressor within the next 2 hours. For

each patient, we made predictions every hour until the first vasopres-

sor administration or the end of stay. We only predicted first vaso-

pressor administration because patients with multiple vasopressors

are likely to be in fundamentally different physiological situations.

Task 2: Short-term vasopressor need. We defined short-term

need as the patient being stable enough not to require vasopressor

administration for the next 4 hours but requiring it in the following

2 hours. Predicting who will require vasopressors in the near future,

but not now, can help manage ICU logistics and ensure that the pa-

tient is ready for the intervention. We made hourly predictions until

the first vasopressor administration or the end of stay.

Task 3: Wean readiness. Vasopressors are administered via IV,

and patients are weaned by gradually reducing the dose. We defined

wean readiness as being able to stop administration completely

within 2 hours, and a successful wean as not requiring vasopressors

again within 4 hours.
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Preprocessing
Numeric trends are generally produced by bedside monitors once per

second, but often stored only once every 5–60 minutes. In this work we

used nurse-validated vital sign trends from the clinical information sys-

tem, which are sampled hourly. Variables were discretized using the

mean and standard deviation from the training set. As employed in other

work, we rounded the resulting z-scores to integer values in �4:419,20;

we added an extra value for missing values, so each new physiological

variable took on 10 discrete values. This discretization procedure helps

the model avoid fitting to small variations in the physiological signal and

identify global structure in the data. Vasopressor administration variables

were post-processed to recover continuous segments of administration;

complete data processing details are given in the Supplementary Materi

als, and cohort characteristics are given in Table 1.

Feature construction
For each task being evaluated at hour t of patient n, we considered 3

types of input features: raw, SSAM, and combined. The raw features

are the previous 4 hours of multidimensional z-scored physiological

data at hour t of patient n, appended with the 7 static admissions

features. We learned the SSAM features in an unsupervised fashion

using the raw features. The combined features were obtained by

concatenating the raw and SSAM feature vectors.

We now briefly describe the SSAM (see Supplementary Materials

for details). The physiological signals (raw features) xnt of a patient n

at time t is a vector in RD of D measurements, some of which may be

missing. For each patient n, we observe a sequence {xn1, xn2, xn3,. . .

xnTn} of length Tn. We train an SSAM to learn a hidden sequence of

discrete variables {y1n,y2n,y3n,. . .yTn} that determine the transition dy-

namics of the observed variables xnt. These variables ytn can be inter-

preted as the physiological state of the patient. Given the physiological

state sequence, the observations are generated by an autoregressive

model indexed by the hidden state ytn for each dimension d. Impor-

tantly, we assume that each dimension d has its own transition function

because we expect different variable types to have different dynamics.

We compare two classifiers for the autoregressive transition model

fx: random forests (RF) and Gaussian Naive Bayes (NB). The random

forests maps categorical values to the next set of categorical values di-

rectly. The Gaussian NB treats the inputs as continuous variables and

the outputs as categorical, closer to reflecting their values before the

discretization in the preprocessing. The Gaussian NB was included be-

cause while prior work has shown benefits to discretization (Joshi

et al.), others have found continuous normalization strategies most

beneficial (Che et al.). The Gaussian NB was a simple way to incorpo-

rate the ordered nature of the inputs. Our inference alternates between

updating 2 sets of latent variables: the hidden physiological state se-

quences for each patient {y1n, y2n, y3n,. . .} and the transition parame-

ters for each measurement dimension d and physiological state k.

For each task (administration and weaning), we trained the SSAM

on the patients from the positive class only. For vasopressor adminis-

tration, we used all time points up to vasopressor administration. For

weaning, we only considered data immediately after starting adminis-

tration (negative class) and immediately before weaning (positive

class). At time t we computed the probabilities of being in each SSAM

state over the last 4 hours for all patients and all times in our cohort

and used those as input features. Because there are k states every

hour, 4 hours of previous data creates 4k SSAM features.

Each feature was tested with 3 different classifiers: a linear-

kernel support vector machine (SVM), naive Bayes (NB), and L2-

regularized logistic regression (LR). Standard packages and settings

were used for the SVM, NB, and LR classifiers. All analysis was per-

formed in Python 2.7.

RESULTS

We ultimately included 19 variables from the MIMIC II database: 6

nurse-verified vital signs: heart-rate (HR), mean arterial blood pres-

sure (MeanBP), blood oxygenation level (SPO2), temperature

(TEMP), spontaneous respiration rate (RESP), and urine output

(URINE); 4 laboratory measurements: hematocrit (HCT), bicarbon-

ate (BICAR), potassium (K), and glucose (GLU); and 7 static vari-

ables: admitting age, gender, first simplified acute physiology score

(SAPS I),21 first sequential organ failure assessment (SOFA) score,22

first weight, use of pacemaker, and whether the patient was noted to

be at risk for falls (Table 1).

Predicting vasopressor administration improved by

SSAM features
Table 2 compares the performance of all feature sets on Tasks 1 and

2 (imminent and short-term administration prediction) using L2-

regularized logistic regression averaged over 5 repetitions. The LR

classifiers tended to have the best prediction performance across fea-

ture sets; the results with all classification methods can be found in

the Supplementary Materials.

Simply using the global SSAM features gives an AUC of 0.87

(60.009) for imminent need prediction and 0.83 (60.008) for

short-term need prediction. The combined features achieve the best

results, and consistently improve AUCs over using only the raw

Figure 1. A subset of physiological time series with prediction windows high-

lighted. Predicting imminent vasopressor need (Task 1) evaluates features

from window a on vasopressor need in window b. Predicting short-term va-

sopressor need (Task 2) evaluates features from window a on vasopressor

need in window c. Predicting wean readiness (Task 3) evaluates features

from window d on the successful weaning of vasopressors in window e.
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features: AUCs of 0.92 (60.002) and 0.88 (60.006) for imminent

need and short-term need prediction, respectively.

Imminent need predictions are inherently easier, as the data im-

mediately prior to onset are available. Short-term need predictions

are more challenging because they enforce a time gap between ob-

served data and onset of intervention. In general, SSAM features

learned with naı̈ve Bayes performed as well as the raw data, and the

combination of SSAM features and raw data did better than either

alone. In our classification tasks, the latent features learned with NB

gave improved performance. This result suggests that discretizatized

values may benefit from the use of an ordinal classifier, or that other

normalization strategies may be more appropriate for capturing the

variations in pre- and post-vasopressor patients.

Predicting vasopressor weaning
Following the best results from administration prediction, we

trained a classifier for Task 3 to predict successful weaning on those

patients who were alive 30 days post-discharge. The raw features

obtained an AUC of 0.67 (60.008); SSAM (NB) features were AUC

0.63 (60.021); and rawþ SSAM (NB) features were AUC 0.71

(60.005).

Quantifying unnecessary intervention time prior to a

wean
Our quantitative results above discriminate situations in which clini-

cians may have attempted to wean too early, causing the wean to be

unsuccessful. However, clinicians report that patients are often left

on interventions for much longer than necessary. We focused on the

first time that our classifier predicted a successful wean for each

patient in Task 3, and examined the difference in time between the

predicted and actual weaning times. As shown in Figure 2, a signifi-

cant number of patients were successfully weaned at the right time,

but the heavy tail depicted suggests that many patients suffered from

extended interventions.

We chose 3 patients from different points in the histogram in

Figure 2 and examined their medical notes for correspondence to

our wean probabilities.

Case 1: Figure 3 shows our probability of a successful wean for a

72-year-old man with coronary artery disease who was put on me-

chanical ventilation and vasopressors while in the ICU. The proba-

bility of a successful wean is low while the patient fails mechanical

ventilation weaning early on in his stay and immediately post-

extubation. It is explicitly noted in his record at the point of lowest

probability of wean that he is dependent on vasopressors. The pa-

tient stabilizes as the probability of wean success climbs, and the

clinical staff actually begin to wean him near the highest predicted

success in our estimates.

Table 1. Average population statistics of the cohort

Variable Type Feature Pre-Intervention V- During Intervention Vþ Controls (C)

Population distribution In-Hospital Mortality (%) 5.165 – 2.687

ICU LoS (days) 1.974 – 1.708

MICU (%) 15 – 44

SICU (%) 10 – 30

CCU (%) 13 – 16

CSRU (%) 62 – 10

Static data on admission Age 65.812 – 60.787

% Male 66 – 56

Weight 82.229 – 81.767

SOFA 7.844 – 3.251

SAPS-I 15.889 – 10.722

% Pacemaker use 63 – 58

% ROF 60 – 6

Dynamic data over hospital stay Mean BP 76.235 74.68 82.12

TEMP 97.865 98.562 98.371

HR 83.979 85.251 83.682

SPO2 97.716 97.283 97.244

FIO2 0.736 0.53 0.516

RESP 16.094 18.056 18.286

GLU 150.657 134.618 138.732

BICAR 25.09 24.023 24.866

HCT 29.031 29.903 31.457

K 4.531 4.244 4.078

Abbreviations: ICU LoS, ICU length of stay in days; MICU, medical care unit; SICU, surgical care unit; CCU, cardiac care unit; CSRU, cardiac-surgery recovery

unit. ROF, risk of falls; Mean BP, mean arterial blood pressure; BMI, body mass index; HR, heart rate; SPO2, peripheral capillary oxygen saturation; TEMP, tem-

perature; FIO2, fraction of inspired oxygen; RESP, spontaneous respiration rate; HCT, hematocrit; BICAR, bicarbonate; K, potassium; GLU, glucose. SAPS-I and

SOFA are clinical acuity scores calculated at admission.

Table 2. Performance of features in vasopressor need tasks using

logistic regression classifier

Features Used Imminent Need

Prediction (AUC)

Short-term Need

Prediction (AUC)

RAW 0.89 (61.1e-16) 0.83 (6 0.0040)

SSAM (RF) 0.81 (60.0584) 0.66 (6 0.0046)

SSAM (NB) 0.87 (60.0090) 0.83 (6 0.0076)

COMBINED:

RAWþ SSAM (RF)

0.92 (60.0008) 0.86 (6 0.0032)

COMBINED:

RAWþ SSAM (NB)

0.92 (60.0016) 0.88 (6 0.0061)
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Case 2: Figure 4 shows a similar plot for a 62-year-old male pa-

tient with a cardiac catheterization. The probability of successful

wean remains low while patient is given a course of treatment and

fluids, but he struggles with a low central venous pressure and in-

creasing hematocrit. When the nursing staff notes an increasing

need for vasopressors, the corresponding probability of a wean

dips further. During recovery, our model’s wean success matches

the nurse’s note that the patient should be weaned the following

day. In this case, the wean happened almost 10 hours after our

model predicted it could be done. However, this was likely due to

clinical staff schedules, which vary widely in the ICU. For legal and

ethical reasons, there is also a bias toward maintaining interven-

tions in ICU patients rather than withdraw too early, even if a pa-

tient seems to be stable.

Case 3: Finally, we show a 65-year-old man (Figure 5) who

underwent mitral valve replacement and coronary artery bypass

graft. The patient tolerated the procedures well and was transferred

to the cardiac surgery recovery unit for monitoring, where he main-

tained a stable condition. Based on the numeric data available, we

were unable to find any indication that the patient was weaned, and

thus we labeled this case an unsuccessful wean. However, the clini-

cal notes indicate that the patient was successfully weaned from se-

dation on the same day of his operation. In this case, we correctly

predicted that the patient could be successfully weaned (or could be

weaned early without any label) prior to his actual weaning, despite

an incorrectly labeled example.

Clinical relevance of discovered states
The previous sections show that our SSAM features improved our abil-

ity to predict vasopressor administration and weaning. We theorize

that this quantitative evidence is due to physiological models that are

capturing physiological characteristics relevant to interventions and in-

tervention outcomes but not captured by raw physiological variables.

To investigate this hypothesis, we investigated whether the odds ra-

tios associated with the latent variables were on par with those given to

the raw features. In each of the tasks, latent state features were some of

the most heavily weighted for logistic regression (see Supplementary

Figure 2. Histogram of excess time for which patients could have been suc-

cessfully weaned according to the classifier.

Figure 3. Probabilities of successful weaning and state over time for patient

10 387.

Figure 4. Probabilities of successful weaning and state over time for patient

11 315.
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Materials). To identify which states were associated with high and low

probabilities in weaning prediction, we counted the frequency with

which any particular model was associated with correctly predicting

successful or unsuccessful weans. Specifically, we looked at which

SSAM states generated the highest 1% of successful wean probabilities

in cases that were successful weans, and which states generated the

lowest 1% of probabilities in unsuccessful cases.

As shown in Figure 6, we see an increase in SSAM states 5 and 6

in those patients who had a high probability of a successful wean.

On the other hand, data with a low probability of successful wean-

ing in those patients who were not successful came more often from

SSAM states 1 and 3.

We then investigated the physiological variables that corre-

sponded to these states by examining the transition probabilities

for observed values in SSAM states 3 and 5 (recall that the state

of the SSAM governs the dynamics of the observed physiological

variables). There are several interesting differences in these proba-

bilities. In SSAM state 5, transition probabilities for blood hemato-

crit values tended to stabilize from large abnormal values toward

normalcy more often (8% vs 5%). This could be indicative of pa-

tients who were healthy enough to remove fluid resuscitation, so

their hematocrit responded with decreased blood viscosity. In

SSAM state 3, we observed that respiration rate tended to stabilize

from low values toward normalcy more often (13% vs 11%). This

could indicate that state 3 represents patients who eventually re-

quire some form of mechanical ventilation, which can cause more

unsuccessful weaning patterns.

DISCUSSION

Much literature in clinical prediction has focused on using large

numbers of manually defined aggregate features as inputs to a classi-

fier that will predict the risk of clinically significant events.19,23,24

Switching dynamical systems models have been used to impute sig-

nals, identify artifacts, and discover physiological states in a variety

of critical settings.8,17,18 Most of these works have focused on devel-

oping models for densely sampled, often one-dimensional data. Our

work is distinct in that we consider higher-dimensional data and use

discretization and binning to find relevant signals over longer time

scales. Other work has applied unsupervised methods to discretized

time series to discover anomalies and patient similarities, but with-

out a latent variable representation.25,26 Time series symbolization

creates many opportunities to analyze physiological data with the

rich literature of techniques developed for discrete sequences27; our

data-processing approach also makes it natural for us to consider

rich, nonlinear transition models, such as random forests, rather

than the linear dynamical systems approach of the work above.

The most recent prior work on vasopressor prediction used a

subset of the MIMIC II patients receiving fluid resuscitation (2944

adult ICU patients), and attempted to predict subsequent vasopres-

sor administration within 2 hours using a general model and 2

disease-based models.28 The general patient model achieved an AUC

of 0.79 6 0.02, and the disease models had AUCs of 0.82 6 0.02 for

pneumonia and 0.83 6 0.03 for pancreatitis. Our model used a

similar short-term prediction approach in the general ICU popula-

tion and achieved an AUC of 0.88 (60.0061). To our knowledge,

we have the highest reported results for predicting vasopressor ad-

ministration. These results suggest that the latent states discovered

by the SSAM is an effective summary statistic for making predictions

about future intervention needs; an increased AUC of 0.05 could af-

fect the treatment of thousands of patients annually in large ICUs.

Predicting weaning success is harder than predicting intervention

onset. There is fundamental uncertainty about the right time to

wean a patient, and the decision may depend on staffing consider-

ations, clinical judgment, or lack of familial support for intervention

removal. In addition, unlike onset, time of weaning is often indi-

cated only in the patient note and not in any structured data source.

The most relevant predictive work on vasopressor weaning specifi-

cally was done using clinically guided feature engineering over slid-

ing windows of data.23 In particular, they selected 32 variables from

a manually defined set over 438 clinically guided features. They then

Figure 5. Probabilities of successful weaning and state over time for patient

3194.

Figure 6. Histograms of the states across patients at time points of high (left)

and low (right) probabilities of successful weans.
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classified patient segments that preceded successful vasopressor

weaning by 1–12 hours (AUC¼0.81) and segments by 6–12 hours

(AUC¼0.76). This was improved by looking only at those patients

who survived their hospital admission to AUCs of 0.82 and of

0.825, respectively. While our AUCs are lower (0.716 0.005), our ap-

proach did not use the large set of hand-engineered features; seeing

whether our unsupervised physiological features improve prediction

accuracy when combined with these engineered features will be an

interesting future direction.

Limitations
Our study has several limitations. The greatest is that our data are

retrospective, which prevents us from evaluating causality and an-

swering counterfactual questions such as how a patient might have

fared if weaned earlier. While we have some evidence for unneces-

sary intervention time in our cohort, such a claim must be evaluated

in a prospective study. Validating our findings in other ICU

databases will help to address the robustness of our methods for dif-

ferent clinical cohorts. Our study also does not consider the dose or

duration of vasopressor administration, and our models control for

demographics and health state in relatively simple ways (eg, by in-

cluding SAPS I and SOFA score features). Finally, many of our vari-

ables, such as time on vasopressor, were constructed based on both

the recorded events in ICU data and input from domain experts on

how to process the data correctly. This process could create misla-

beled data (eg, an incorrect wean), which would change our results.

Future work
Our predictions of when patients are ready to wean are among several

actionable predictions in the area of vasopressor administration.

Another important step would be to consider the drug and dosage

used for the vasopressor. A multicenter randomized trial comparing

the use of dopamine or norepinephrine as first-line vasopressor ther-

apy in 1679 patients with shock found that patients treated with do-

pamine had significantly more arrhythmic events.29 We could also

improve the prediction quality of our model with additional features,

such as those used to predict sepsis (sepsis is often preceded by epi-

sodes of hypotension, so an early predictor of sepsis could also encom-

pass many of the states that might require vasopressor use).30 Another

interesting direction for future work would be to test whether these

features assist in stratifying risk for a variety of interventions and in-

termediate outcomes, such as mechanical ventilation31,32 and sepsis,30

which, to date, have relied on hand-engineered features.

SSAMs have demonstrated value in detecting physiological states

that influence the evolution of clinical measurements along time,

and our overall methodology could be used to answer many other

clinical questions. In the specific context of vasopressor weaning

readiness, the ability to display the probability of a patient’s possible

need for an intervention, and the potential for weaning success, are

important pieces of information that enable clinicians to view pre-

dictions across entire ICU populations, updated on an hourly basis.

This information could be further operationalized to create a clinical

environment where potential therapies can be evaluated based on

their prior performance in diverse populations and settings.

CONCLUSION

We obtained AUCs of 0.92, 0.88, and 0.71 for predicting ungapped

vasopressor administration, gapped vasopressor administration, and

vasopressor weaning, respectively. Our results for vasopressor use

are, to our knowledge, the best achieved, and better results on vaso-

pressor weaning were obtained with feature engineering on a smaller

dataset. An important property of our approach is that our SSAM

was trained in a completely unsupervised manner, specifically without

knowing what the downstream prediction task was to be, and without

hand-specification of important features. Our goal in training the

SSAM was to model the evolution of symbolized physiological time

series, capturing global trends in the dynamics of the measurements

that could be interpreted as physiological states. The features derived

from our SSAM resulted in improved performance regarding whether

a patient would receive a vasopressor (0.79 AUC vs our 0.88 AUC for

gapped prediction); we also discovered several features associated

with successful weaning from vasopressors, and, to our knowledge,

made the first attempt to quantify anecdotal claims about unnecessary

intervention time. In summary, our work takes an important step

away from hand-engineered, task-specific features and toward fea-

tures that capture key information about patient health.
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