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ABSTRACT
Candidatus (Ca.) Neoehrlichia mikurensis is the cause of neoehrlichiosis, an emerging tick-borne infectious disease
characterized by fever and vascular events. The bacterium belongs to the Anaplasmataceae, a family of obligate
intracellular pathogens, but has not previously been cultivated, and it is uncertain which cell types it infects. The goals
of this study were to cultivate Ca. N. mikurensis in cell lines and to identify possible target cells for human infection.
Blood components derived from infected patients were inoculated into cell lines of both tick and human origin.
Bacterial growth in the cell cultures was monitored by real-time PCR and imaging flow cytometry. Ca. N. mikurensis
was successfully propagated from the blood of immunocompromised neoehrlichiosis patients in two Ixodes spp. tick
cell lines following incubation periods of 7–20 weeks. Human primary endothelial cells derived from skin
microvasculature as well as pulmonary artery were also susceptible to infection with tick cell-derived bacteria. Finally,
Ca. N. mikurensis was visualized within circulating endothelial cells of two neoehrlichiosis patients. To conclude, we
report the first successful isolation and propagation of Ca. N. mikurensis from clinical isolates and identify human
vascular endothelial cells as a target of infection.
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Introduction

Candidatus (Ca.) Neoehrlichia mikurensis earned its
name in 2004, when it was discovered in ticks and
wild rodents collected and investigated on the Japanese
island of Mikura between 1998 and 2003 [1]. This tick-
borne agent had actually been described previously
under other names including Ehrlichia “Schotti-var-
iant,” Ehrlichia-like agent and Ehrlichia walkerii [2].
In Europe, it is one of the commonest human-patho-
genic microbes carried by Ixodes ricinus ticks, after
Borrelia burgdorferi sensu lato and Rickettsia spp. [2].
The bacterium gained renewed attention in 2010
when several case reports revealed its capacity to
cause human disease [3–5]. This new infectious disease
was named neoehrlichiosis and severe cases typically
featured high fever with thromboembolic or vascular
complications such as deep vein thrombosis, pulmon-
ary embolism, transitory ischaemic attacks and arterial
aneurysms [2,4]. Initially, Ca. N. mikurensis was
believed to be an opportunistic bacterium that exclu-
sively afflicted immune-suppressed patients with

particular haematologic or autoimmune diseases [6].
However, persons with normal immune defense can
also become infected by this new pathogen; the clinical
picture among immune-competent individuals encom-
passes asymptomatic infections, skin rashes resembling
erythema migrans, systemic infection with fever, and
even a possible fatality from vascular complications
[5,7–10].

Many, if not most, cases of neoehrlichiosis go unrec-
ognized because the bacterium cannot be detected by
routine microbiological diagnostic methods such as
blood culture. This member of the family Anaplasma-
taceae is thought to be an obligate intracellular bacter-
ium and consequently does not grow on cell-free
culture media. The infection is often designated as
“fever of uncertain origin” among immune-suppressed
patients and any ensuing thromboembolic or vascular
complications are misinterpreted as being age-related
or due to other associated medical conditions, since
the majority of patients are middle-aged or older
with underlying diseases [6,11]. Currently, panbacterial

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Christine Wennerås christine.wenneras@microbio.gu.se Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, Guldhedsgatan 10, 413 46 Göteborg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital,
Guldhedsgatan 10, 413 46 Göteborg, Sweden
*Shared first authorship.

Emerging Microbes & Infections
2019, VOL. 8
https://doi.org/10.1080/22221751.2019.1584017

http://crossmark.crossref.org/dialog/?doi=10.1080/22221751.2019.1584017&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:christine.wenneras@microbio.gu.se
http://www.iom3.org/
http://www.tandfonline.com


or specific PCR of blood samples is the only means of
diagnosis. There are no serological methods available
since there are no cultured bacterial extracts for use
in the development of ELISA or cell-based indirect
fluorescence antibody assays. Lack of an in vitro culture
system for Ca. N. mikurensis additionally hampers
research on the pathogenic mechanisms of this new
infectious agent, including the sequencing of its gen-
ome. An additional difficulty is that the natural target
cells for infection by Ca. N. mikurensis are unknown.
Structures resembling bacteria of the family Anaplas-
mataceae have been identified inside splenic sinusoidal
endothelial cells of experimentally infected rats [1] and
human neutrophilic granulocytes collected from an
infected patient [12], but labelling these bacteria by
antibodies or DNA probes was not attempted [1,12].
Furthermore, as both of these cell types belong to the
reticulo-endothelial cell system and efficiently ingest
noxious material, presence within them of bacteria
could reflect efficient cellular immune defense
rather than actual infection. Moreover, it should be
borne in mind that since rodents infected by Ca.
N. mikurensis do not appear to develop disease [2],
and the splenic sinusoidal endothelium of rats differs
markedly from that of humans [13], the cellular trop-
ism of this microorganism may not be the same in
rats and humans.

The objective of this study was the successful iso-
lation and in vitro cultivation of Ca. N. mikurensis,
and if possible, identification of the target cells for
infection in humans. To this end, blood samples
from neoehrlichiosis patients were inoculated into a
variety of cell lines of tick and human origin.

Results

Successful propagation of infection from patient
blood but not from ticks in tick cell lines

We first inoculated the tick cell lines IRE/CTVM20 and
ISE6 with haemolymph or homogenates prepared from
Ca. N. mikurensis-infected ticks that were collected by
flagging. Tick cell lines derived from I. ricinus and
Ixodes scapularis were selected because the former
tick species is known to be a vector of Ca.
N. mikurensis [2], and cells of the latter species support
growth of the closely related Neoehrlichia lotoris
[14,15]. However, despite 14 attempts and intermittent
use of Amphotericin B, one-third of the cultures were
lost to fungal contamination and infection was not
transferred from any of the infected tick specimens to
the tick cell lines (data not shown).

In contrast, we were able to transmit the infection
from blood samples from six individual neoehrlichiosis
patients (Table 1) to one or both tick cell lines. The kin-
etics of the infection were monitored by real-time PCR,
and decreasing CT-values indicative of increasing

amounts of bacterial DNA were apparent after 7–20
weeks of culture (Table 1); results from two representa-
tive patients (SE15 and SE17) are shown in Figure 1.
The I. ricinus and I. scapularis cell lines seemed to be
equally susceptible to infection, and unfractionated
whole blood samples and buffy coat supplemented
with plasma were equally good infectious material
(Figure 1(a–b)). Importantly, passage of the infection
to new uninfected tick cells was achieved for five of
the clinical isolates, for example SE15, in which it
may be seen that the CT-values began to decrease
earlier already after 10 weeks following subculture
(Figure 1(b)) compared with the initial culture (Figure 1
(a)). Moreover, we succeeded in maintaining this first
isolate in continuous culture through three passages
over a period of 10 months.

The presence of penicillin and streptomycin in the
tick cell culture medium did not appear to inhibit
growth of Ca. N. mikurensis, as also seen with the clo-
sely related Ehrlichia ruminantium, the agent of the
infectious disease heartwater of ruminants [16], and
Ehrlichia minasensis, a tick-borne pathogen of cattle
in Brazil [17]. Whether or not the antibiotics might
have delayed initial establishment and spread of the
bacteria in the tick cells is unclear, but long incubation
periods on first infection of tick cells using mammalian
stage Anaplasmataceae have been reported previously
both with [16] and without [18] antibiotics, suggesting
that low amounts of viable infective bacteria in the
inoculum and/or a requirement for bacterial adap-
tation to the very different environment of a tick cell
may be important contributory factors.

To ensure the specificity of our findings, infected
tick cells were labelled with fluorescent panbacterial
and Ca. N. mikurensis-specific DNA probes, and ana-
lysed using image flow cytometry, a technique that
combines flow cytometry and high resolution
microscopy, enabling detailed visualization of individ-
ual cells. It was found that the tick cells inoculated with
patient buffy coat admixed with plasma harboured
cytoplasmic particles that were stained with the Ca.
N. mikurensis probe. Varying patterns of staining
were seen – ranging from a few individual rounded
bacteria-like structures to densely packed groups of
bacteria (Figure 2(a–b)). Ca. N. mikurensis tended to
localize in what appeared to be cytoplasmic inclusions
adjacent to the tick cell nucleus, which is exactly the
same location that has been reported for its closest rela-
tive, N. lotoris of raccoons [14]. The bacteria that were
stained by the Ca. N. mikurensis probe were also
stained by the panbacterial probe as indicated by over-
lay images (Figure 2(a–b)). No bacteria were only
stained by the panbacterial probe and not by the Ca.
N. mikurensis-specific probe, indicating that there
were no other bacterial contaminants present in the
tick cells (Figure 2(a–b)). Importantly, no fluorescent
staining was evident in mock-inoculated tick cells
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Table 1. Clinical data of patients whose blood samples were included in the study.

Patient
ID Age Sex Disease

Immune
suppression Fever Other symptoms Vascular event

Tick
bite Infectious material

Cell line supporting
growth of Neoehrlichia

First positive
culture

Infected
CEC

detected Ref.

SE15 57 F Multiple sclerosis Rituximab 1.5 months Swollen foot, localized myalgia (trapezius
muscle), bilateral pain lower legs upon
exertion

Thrombo-phlebitis Yes Whole blood and
plasma/buffy coat

IRE/CTVM20
ISE6

15 weeks NA [43]

SE17 58 M Follicular lymphoma Rituximab
Chemotherapy

2 months Myalgia upper and lower extremities,
arthralgia both ankles

Repeated thrombo-
phlebitis

Yes Plasma/buffy coat IRE/CTVM20 17 weeks NA [11]

SE21 63 F Primary hypogamma-
globulinemia (IgG1)

Splenectomy 1–2 weeks Pain, sore palpation right flank and lower
abdominal quadrant

No Yes Whole blood and
plasma/buffy coat

ISE6 12 weeks NA [11]

SE23 48 F Multiple sclerosis Rituximab 4 months Localized myalgia (left upper arm, left
lower leg), arthralgia right wrist, swollen
ankles, cough

Repeated muscle
vein thromboses

No Whole blood and
plasma/buffy coat

IRE/CTVM20 20 weeks Yes This study

SE24 54 M Granulomatosis with
polyangiitis

Rituximab
Chemotherapy
IL-1R inhibitor
Corticosteroids

1.5 years Severe fatigue, skin rash, general myalgia,
cough

DVT lower extremity Yes Whole blood and
plasma/buffy coat

IRE/CTVM20
ATCC PCS-110-010
ATCC PCS-100-022

Tick cells: 9
weeks
Endothelial
cells: 15 days

NA This study

SE25 62 M Multiple sclerosis Rituximab 2 months Cough No Yes Plasma/buffy coat IRE/CTVM20
ATCC PCS-110-010
ATCC PCS-100-022

Tick cells: 7
weeks
Endothelial
cells: 6 days

NA This study

SE26 65 M B-Chronic lymphocytic
leukemia

Rituximab
Chemotherapy

6 days Localized myalgia (neck), headache, cough DVT upper
extremity

No NA NA* NA* Yes This study

Note: F = female, M =male, NA = not assessed, NA* = not assessed because of insufficient material, CEC = circulating endothelial cells.
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(Figure 2(c)), nor did complementary control probes
give rise to non-specific hybridization (Figure 2(d)).
The per cent of cells that were infected by Ca.
N. mikurensis as estimated by using image analysis
algorithms was 81% for the I. ricinus tick cell line ver-
sus 43% of the I. scapularis cell line after 8 weeks of cul-
ture. Giemsa-stained smears of the infected tick cell
lines showed bacterial aggregates within the cell cyto-
plasm (Figure 2(e–f)), reminiscent of the morulae
seen in cells infected by Anaplasma phagocytophilum
or Ehrlichia chaffeensis [19,20].

Successful transfer of infection from tick cell
lines into human endothelial cells

After several unsuccessful attempts to directly infect
endothelial cells with either tick extracts or infected
patient blood, we attempted to transfer the infection
from the infected tick cell lines to the endothelial cell
lines. This strategy has previously proven to be
successful for other members of the family
Anaplasmataceae, including Anaplasma marginale

and A. phagocytophilum [21]. Whereas it took 4–5
months for a Ca. N. mikurensis infection to establish
in the tick cell lines, transfer of the infection from
tick cells infected with bacteria originating from two
different patients to the endothelial cells was evident
already after one week (Figure 3(a)) and reached a
peak after 2–3 weeks of infection (Figure 3(b)). No
staining of uninfected control endothelial cells was
seen using either of the two probes (Figure 3(c)). It
was ascertained that these cell lines were indeed of
endothelial origin and not fibroblasts or smooth
muscle cells since they expressed the typical endothelial
markers CD146 and von Willebrand factor (Figure 3
(d)).

According to image analyses, more than 80% of the
cutaneous microvasculature endothelial cells and the
pulmonary artery endothelial cells contained bacteria
after 2 weeks of culture (Figure 3(e)). The endothelial
cell lines could only be maintained for a maximum of
four weeks, by which time they were very damaged
by the infection. The bacterial inclusions within
cutaneous endothelial cells were also visualized using
Giemsa stain: a single microvascular skin endothelial
cell experimentally infected with tick cell-derived Ca.
N. mikurensis showing low-level infection after 2
weeks of culture is depicted (Figure 3(f)).

As further corroboration of the specificity of the lab-
elling of bacteria inside endothelial cells, immune lab-
elling was done using immune serum from a
neoehrlichiosis patient. It may be seen that bacterial
inclusions were brightly stained using this serum
(Figure 4(a)), and that the Ca. N. mikurensis-specific
DNA probe and the immune serum bound to the
same structures within the endothelial cell (Figure 4
(b)). Neither a control serum from a healthy individual,
nor culture medium alone followed by the secondary
anti-IgG antibody (Figure 4(c)), stained the infected
endothelial cells.

Detection of Ca. N. mikurensis inside circulating
endothelial cells of infected patients

We hypothesized that it might be possible to detect cir-
culating endothelial cells infected by Ca. N. mikurensis
in the blood of neoehrlichiosis patients. Endothelial
cells can be detected in extremely low numbers in the
blood of healthy individuals [22]. Freshly isolated
buffy coats from patients with newly diagnosed
neoehrlichiosis were examined for the presence of
large cells expressing CD146 and the von Willebrand
factor, and containing Ca. N. mikurensis bacteria, by
image flow cytometry. Indeed, such cells were ident-
ified in two patients (Table 1), establishing that Ca.
N. mikurensis are found within endothelial cells in
naturally infected humans (Figure 5). The infected
cells that we identified were very large and elongated,
measuring up to 50 µm in length, and appeared

Figure 1. Isolation of Ca. N. mikurensis from patient blood into
tick cell lines and passage of the infection. (a) Diminishing
Cycle threshold (CT) values of Ca. N. mikurensis PCR amplicons
in tick cell lines derived from I. ricinus (IRE/CTVM20) and
I. scapularis (ISE6) inoculated with either whole blood (continu-
ous lines) or plasma/buffy coat specimens (dashed lines) from
two patients with neoehrlichiosis (SE15; blue symbols, and
SE17; red symbols, Table 1). PCR results from undiluted tick
cell extracts are shown. (b) CT values following passage of
the infection (isolate SE15) from infected tick cell lines ISE6
and IRE/CTVM20 to uninfected homologous tick cell lines.
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Figure 2. Visualization of Ca. N. mikurensis infection of tick cell lines. (a) Image flow cytometer depiction of I. scapularis ISE6 cells 9
weeks after the first passage of the infection, which originally had been maintained for 25 weeks of culture after inoculation with an
infected blood sample (SE15). The cells were labelled using a panbacterial DNA probe (EUB) in green and a Ca. N. mikurensis-specific
DNA probe (NEO) in yellow; bright field image (BF); red staining (DRAQ5) of the host cell nucleus (tick). Overlay image of all stains
shows complete congruence of bacteria in the cytoplasm labelled using the panbacterial and Ca. N. mikurensis probes. (b) Panels as
in (a) using I. ricinus IRE/CTVM20 cells inoculated with infected blood from patient SE15. (c) Mock-infected IRE/CTVM20 cells stained
using the Ca. N. mikurensis-specific DNA probe (NEO), the panbacterial DNA probe (EUB) and host cell nucleus stain DRAQ5. (d) No
hybridization signal was seen when infected IRE/CTVM20 cells were incubated with the control probes non-EUB338 or non-Neo.
(e)–(f) Giemsa-stained cytocentrifuge smears of tick cells infected in vitro with Ca. N. mikurensis. (e) I. scapularis ISE6 cell line. (f)
I. ricinus IRE/CTVM20 cell line. Arrows indicate bacterial inclusions.
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Figure 3. Visualization of Ca. N. mikurensis infection of primary endothelial cell lines. (a)–(b) Image flow cytometer depiction of
endothelial cells from pulmonary artery 7–14 days after inoculation with homogenized tick cells that had been infected from clinical
isolate SE25. The endothelial cells were labelled using a panbacterial DNA probe (EUB) in green and a Ca. N. mikurensis-specific DNA
probe (NEO) in yellow; red staining (DRAQ5) of the host cell nucleus (endothelium), after (a) 1 week and (b) 2 weeks of culture. (c)
Uninfected negative control endothelial cells did not stain with the EUB388 probe nor with the Neo probe. (d) Verification that the
infected cells were endothelial by labelling them with a mAb against the von Willebrand factor (vWF, purple), the Ca. N. mikurensis-
specific DNA probe (NEO, green), a mAb against CD146 (yellow), and staining of the endothelial cell nucleus (DRAQ5, red). Bright
field images (BF) and overlay images are shown. (e) Graph illustrating the percentage of the two endothelial cell lines that were
infected by Ca. N. mikurensis (⬤ = pulmonary artery endothelial cells, ▪ = skin microvasculature endothelial cells) and the fraction
of the cytosol of these respective cell lines that were occupied by bacteria (○ = pulmonary artery endothelial cells,□ = skin micro-
vasculature endothelial cells), after 2, 3 and 4 weeks of culture. (f) Giemsa-stained preparation of a cutaneous microvasculature
endothelial cell infected in vitro by Ca. N. mikurensis. Arrows indicate bacterial inclusions.
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damaged, which is to be expected of dying cells infected
by an intracellular pathogen (Figure 5). Similarly,
detection of the agent of Mediterranean spotted fever,
Rickettsia conorii, in circulating endothelial cells that
were pulled out of the blood of an infected patient
using magnetic beads coated with monoclonal anti-
bodies to CD146, was reported to be difficult: the
cells appeared as ghost cells with unclear cellular
boundaries and pycnotic nuclei [23,24].

Discussion

The severe form of neoehrlichiosis that mainly afflicts
immune-compromised patients is associated with a
very high incidence of vascular incidents [2], as reflected
by the fact that two-thirds of the patients from whose
blood samples we were able to cultivate Ca.
N. mikurensis in this study suffered from venous compli-
cations. This raised the question as to whether these vas-
cular events were the result of infectious vasculitis, which
indeed seems to be possible since we were able to infect
endothelial cell lines with clinical isolates of Ca.
N. mikurensis. A number of arguments favour the endo-
thelial cell as being a target cell of human infection by
Ca. N. mikurensis: the suspected infection of splenic
rat endothelial cells by the bacterium [1], the vascular
events afflicting neoehrlichiosis patients that could indi-
cate endothelial infection [6], and the close genetic
relationship of Ca. N. mikurensis with E. ruminantium
which infects the vascular endothelium [25,26].

Endothelial cells are heterogeneous and vary both
functionally and phenotypically depending on their
origin, e.g. arterial or venous, size of the blood vessel
and in which organ or part of the body [27]. We
chose human endothelial cells derived from the skin
microvasculature to infect with Ca. N. mikurensis for
obvious reasons – the first contact of the bacterium
with the endothelium is likely to occur in the skin fol-
lowing its transmission via a tick bite. A primary pul-
monary arterial endothelial cell line was also selected
because there are two published case reports of neoehr-
lichiosis associated with the development of arterial
aneurysms, one of which afflicted the pulmonary artery
[5,6].

Final evidence for the vascular endothelial hypoth-
esis was the demonstration of the bacteria within
what are termed “circulating endothelial cells.” There
are two main types of endothelial cells in the blood cir-
culation, circulating endothelial cells and endothelial
progenitor cells. Whereas the circulating endothelial
cells are believed to be fully mature cells that have
detached from the vessel wall, either as part of the nor-
mal turn-over of blood vessels or due to damage to the
vessel wall, endothelial progenitor cells are thought to
be endothelial precursor-like cells released from the
bone marrow whose function is to repair injured
vessels [22]. Although there is no clear consensus on
the exact molecular marker profiles that define these
two types of endothelial cells, the circulating endo-
thelial cells are generally defined as large cells (10–

Figure 4. Immune serum stains bacterial inclusions in an endothelial cell line infected in vitro using a clinical isolate of Ca.
N. mikurensis. (a) Image flow cytometer depiction of two infected endothelial cells incubated with serum from a patient with
neoehrlichiosis (SE13), followed by a secondary FITC-labelled anti-human mAb. (b) The immune serum stains the same inclusions
in endothelial cells as the Ca. N. mikurensis-specific probe. Bright field images (BF) and overlays are also shown. (c) Representative
images show that the infected endothelial cells were not stained using control serum from a healthy individual or culture medium,
followed by the secondary antibody.
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50 µm in diameter) that express CD146 on the surface
and the von Willebrand factor intracellularly [22,28].
In contrast, endothelial progenitor cells are smaller
(10–15 µm in size) than the circulating endothelial
cells but may express the same surface antigens [22].

The vascular endothelium is an unusual target of
bacterial infections in humans [29]. The prototype

bacteria that infect endothelial cells are the Rickettsiae;
the species belonging to the typhus group (Rickettsia
typhi and Rickettsia prowazekii) and spotted fever
group (Rickettsia rickettsii, R. conorii, etc.) all have
selective tropism for the endothelium [30]. Another
member of the family Rickettsiaceae, Orientia tsutsuga-
mushi, which causes scrub typhus, also has a

Figure 5. Circulating endothelial cells isolated from the blood of a neoehrlichiosis patient stain positive for Ca. N. mikurensis. Image
flow cytometer depiction; the cells (derived from patient SE26) were stained using the Ca. N. mikurensis-specific DNA probe (NEO,
green), DAPI or DRAQ5 (host cell nucleus, purple or red), and either the mAb anti-CD146 (red) or the mAb anti-von Willebrand factor
(vWF, purple). Bright field image (BF) and overlays are shown for five different endothelial cells.
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predilection for endothelial cells [31]. Finally, Barto-
nella species invade microvascular endothelial cells
before continuing on to invade erythrocytes [32]. All
of these bacteria are strict or facultative (in the case
of Bartonella) intracellular pathogens that are trans-
mitted to humans via vectors, just like Ca.
N. mikurensis. Amongst the Anaplasmataceae, another
recently recognized human pathogen, the Ehrlichia
muris-like agent (EMLA), infected pulmonary vascular
endothelial cells of experimentally inoculated labora-
tory mice [33] and white-footed mice experimentally
infected with EMLA-infected I. scapularis nymphs
[34]. In contrast, A. phagocytophilum and
E. chaffeensis, although pathogenic for humans, are
more distantly related to Ca. N. mikurensis and have
leukocytes as their primary targets of infection [35].
However, human strains of A. phagocytophilum readily
infect primate endothelial cells in vitro when trans-
ferred from infected tick or human cell cultures
[21,36]. Similarly, the bovine pathogens A. marginale
and E. minasensis infect mammalian endothelial cells
in vitro when transferred from tick cells [17,21],
although evidence for endothelial cell infection in cattle
in vivo is inconclusive [37,38] or lacking [39].
E. ruminantium, the agent of the tick-borne disease
heartwater that kills large numbers of domestic rumi-
nants in Africa and some islands of the Caribbean,
typically infects vascular endothelial cells as well as cir-
culating neutrophils [25], and is closely related phylo-
genetically to Ca. N. mikurensis [26]. Another
intraleukocytic veterinary pathogen, E. canis, has
been reported to infect human microvascular endo-
thelial cells in vitro [40] and pulmonary endothelial
cells of an experimentally infected dog in vivo [41].

Our assertion that endothelial cells are targets of Ca.
N. mikurensis infection provides an explanation for the
puzzling observation that many patients have fallen ill
during the winter months (in Sweden) when tick bites
are extremely rare; all of these patients have had
immune-suppressive medication, which suggests that
the infection lay dormant and was re-activated when
their immune defenses were impaired. This is reminis-
cent of Brill-Zinsser disease, the recrudescence of
R. prowazekii infection in aged patients decades after
the initial epidemic typhus infection [42]. The vascular
endothelium provides an ideal niche for chronic per-
sistent infections since endothelial cells have a very
low turn-over with a daily replication rate of 0–1%
[28]. Further support for the theory of chronicity of
infection is that even immune-competent individuals
harbour Ca. N. mikurensis DNA in their blood for
many months [7,10].

According to the rules of bacterial nomenclature,
bacterial species that have not yet been cultivated are
given the “Candidatus” prefix. In view of our successful
cultivation of six clinical isolates of Ca. N. mikurensis,
we propose that this prefix be now removed, and that

the bacterium be renamed Neoehrlichia mikurensis.
To conclude, an important milestone has been reached
– the cultivation of Ca. N. mikurensis in both tick cell
lines and human endothelial cells. Furthermore, an
essential gap in knowledge has been filled by establish-
ing that the vascular endothelium is a target of neoehr-
lichial infection in humans. Both of these
accomplishments, the cultivation of the bacterium
and the identification of its cellular tropism should
greatly facilitate future research on the pathogenic
mechanisms used by this novel bacterium to cause
infectious disease. Hopefully it will now be possible,
using culture-derived bacteria, to develop diagnostic
assays for monitoring antibody responses to the infec-
tion as well as for estimation of the epidemiology of
neoehrlichial infections in different populations. Fur-
thermore, the sequencing of the bacterial genome
should be within reach now that the bacterium can
be cultivated. An important limitation of studies on
neoehrlichiosis is the lack of animal models since it is
only human beings and dogs that become sick; rodents
do not show overt signs of infection and are presumed
to be healthy reservoirs [2]. For the time being,
research on N. mikurensis will have to rely on patient
samples and in vitro studies of infected tick and
human cell lines.

Materials and methods

Infected tick material

Questing nymphal and adult I. ricinus ticks were col-
lected in June and July of 2015 by blanket dragging
at Koön and Klöverön outside Marstrand, on the
west coast of Sweden. The ticks were washed in 70%
ethanol, dried for a few seconds on filter paper and
cut sagitally into two halves using a scalpel. The halves
were separately homogenized in microcentrifuge tubes
containing two 3.2 mm steel beads and distilled water
(200 μl) in a Bullet Blender (Next Advance Inc, Troy,
NY, USA) at speed 8 for 4 min. The homogenates
were diluted in distilled water to a final volume of
400 μl and tested by Ca. N. mikurensis-specific real-
time PCR as described below, either individually or
in pools of four ticks. Alternatively, the extremities of
the ticks were removed, the tick carcass was individu-
ally centrifuged at 8000g for 5 min, and clear haemo-
lymph was collected and analysed by real-time PCR.
PCR-positive haemolymph or tick homogenate was
inoculated into cell lines.

Prevalence estimates were done on the ticks col-
lected in June (n = 223; 94% nymphs, 6% adults) and
July (n = 146; 95% nymphs, 5% adults). A first estimate
of the Ca. N. mikurensis prevalence in the June collec-
tion was based on six pools of ticks containing four
ticks each. Half of the pools were PCR-positive, yield-
ing a minimal infection rate of 13%. Next, 33 ticks
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from the same collection were individually analysed by
real-time PCR which resulted in a 9.1% infection rate
(3/33). A higher infection rate of 15% was seen
among the ticks collected in July: 11/71 individually
analysed ticks were positive.

Infected human material

Whole blood, plasma and buffy coats from EDTA-
blood collected from patients who tested positive for
Ca. N. mikurensis by real-time PCR (n = 7) were
used for cultivation experiments (n = 6). All the
patients were immunocompromised and presented
with symptomatic febrile disease. Their blood speci-
mens were also checked by 16S rRNA PCR [7] and
resultant PCR products were sequenced to ensure
there were no multiple infections or ambiguous DNA
sequences. Clinical data are presented in Table 1;
data pertaining to three of the patients have been pub-
lished previously [11,43].

Cell lines

Two embryo-derived tick cell lines were used: the
I. scapularis cell line ISE6 at passage >82 [44] and the
I. ricinus cell line IRE/CTVM20 at passage >210 [45],
both obtained from the Tick Cell Biobank, UK. The fol-
lowing primary human cell lines were tested: primary
dermal microvascular endothelial cells (ATCC PCS-
110-010; ATCC, Manassas, VA, USA) and primary
pulmonary artery endothelial cells (ATCC PCS-100-
022). The tick cell line ISE6 was maintained in L-15B
medium [46] supplemented with 10% heat-inactivated
foetal bovine serum (FBS), 10% tryptose phosphate
broth (TPB), 0.1% bovine lipoprotein (MP Biomedi-
cals, Santa Ana, CA, USA), 2 mM L-glutamine,
100 U/ml penicillin and 100 μg/ml streptomycin (Invi-
trogen, Carlsbad, CA, USA). The tick cell line IRE/
CTVM20 was maintained in a 1:1 mixture of L-15B
medium supplemented as above, and unmodified L-
15 (Leibovitz) medium supplemented with 20% FBS,
10% TPB, 2 mM L-glutamine and antibiotics as
above. Both tick cell lines were grown in sealed, flat-
sided culture tubes (Nunc, Roskilde, Denmark) in
ordinary air at 28°C. The endothelial cells were seeded
into 25 cm2 cell culture flasks with vented cap (TPP,
Trasadingen, Switzerland) in vascular cell basal med-
ium (ATCC PCS-100-030) supplemented with endo-
thelial cell growth kit-BBE (ATCC PCS-100-040)
containing 5 ng/ml vascular endothelial growth factor,
5 ng/ml epidermal growth factor, 5 ng/ml fibroblast
growth factor, 15 ng/ml insulin-like growth factor,
10 mM L-glutamine, 0.75 U/ml heparin sulphate,
1 μg/ml hydrocortisone hemisuccinate, 2% FBS and
50 μg/ml ascorbic acid, and grown at 37°C in air sup-
plemented with 5% CO2. No antibiotics were added
to the medium.

Inoculation of cell cultures with Ca.
N. mikurensis

The various cell lines were inoculated with either of the
following Ca. N. mikurensis-infected specimens: (1)
tick haemolymph (pooled from 15 ticks, total volume
30–40 µl), (2) tick homogenates (10 ticks homogenized
in 300 µl culture medium), (3) patient-derived whole
blood (1 ml), and (4) patient-derived buffy coat
admixed with plasma (1 ml). Cultures were allowed
to proceed for between 2 weeks and 5 months. Cell cul-
ture supernatants as well as whole cell cultures were
monitored for infectivity by real-time PCR as described
below. All cell lines tested negative forMycoplasma spp.
by PCR [47].

Passage of infection from tick cells onto fresh
tick cells and cryopreservation

Infected tick cell cultures were harvested, divided into
two and used to inoculate two new tubes containing
fresh uninfected tick cells. Aliquots of infected tick
cell cultures were cryopreserved with 10% dimethyl
sulfoxide in a vapor-phase liquid nitrogen refrigerator
as described previously [16].

Transfer of infection from tick cells to
endothelial cells

The protocol employed by Goodman et al. was used
[48]. In short, infected tick cells were harvested
(2 ml) and homogenized by passage through a 25-
gauge needle three times, followed by centrifugation
of the homogenate at 700g for 5 min to remove remain-
ing intact cells and cellular debris. The supernatant was
centrifuged at 1250g for 5 min and the resultant bac-
terial pellet was resuspended in 50 µl of endothelial
cell medium and immediately inoculated into one of
the primary endothelial cell lines.

DNA extraction and Ca. N. mikurensis-specific
real-time PCR

Extraction of DNA from tick and human specimens, as
well as from whole cell cultures or cell culture super-
natants, was performed using the Nucleic Acid Iso-
lation Kit I (Roche Molecular Diagnostics,
Pleasanton, CA, USA) in a MagNA Pure Compact
Extraction Robot (Roche Molecular Diagnostics).
DNA extracts were stored at −20°C unless the real-
time PCR analyses were done immediately. The DNA
extracts (undiluted, 1/10 and 1/100 dilutions) were
analysed with a Taqman real-time PCR directed
against a 169-bp segment of the groEL gene of Ca.
N. mikurensis as previously described [7]. A synthetic
plasmid containing the 169-bp sequence cloned into a
pUC57 vector (Genscript, Piscataway, NJ, USA) was
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used both as a positive control and to estimate bacterial
gene copy numbers. Samples that were positive by the
Ca. N. mikurensis-specific groEL-based real-time PCR
were re-analysed using a panbacterial PCR directed
against the 16S rRNA gene and sequenced for confir-
mation [7].

Imaging flow cytometry

Ca. N. mikurensis-infected and mock-infected tick cell
cultures were harvested by pipetting, fixed and permea-
bilized using the BD cytofix and cytoperm kit (Becton
Dickinson, San Jose, CA, USA) and then hybridized
with the panbacterial 16S rRNA probe EUB338 [49]
conjugated to Alexa Fluor 488 (Eurofins Genomics,
Ebersberg, Germany) and with a newly designed 16S
rRNA probe specific for Ca. N. mikurensis (CTATT-
TAAACTAGAGATCGAGAGAG) conjugated to
Alexa Fluor 555 (Eurofins Genomics). Two comp-
lementary probes were used to control for non-specific
hybridization: the non-EUB338 probe conjugated to
Alexa Fluor 488 and the non-Neo probe conjugated
to Alexa Fluor 555 (Eurofins Genomics). All probes
were diluted in a hybridization buffer comprising
3.6 M NaCl, 80 mM Tris-HCl at pH 4.7 containing
30% formamide and 5% SDS. The cells were hybridized
overnight with 10 ng/μl of each probe at 42°C, washed
once using pre-heated hybridization buffer (42°C)
minus formamide and SDS, followed by one PBS
wash at room temperature. The DNA stain DRAQ5
(1 µM, Affymetrix eBioscience, San Diego, CA, USA)
was added 10 min prior to sample acquisition without
washing to label tick cell nuclei.

Ca. N. mikurensis-infected and mock-infected
endothelial cells were harvested by flushing twice
with 0.5 mM EDTA supplemented with 2% trypsin at
37°C. The endothelial cells were hybridized as
described above for the tick cell lines using the
EUB388 probe and the Ca. N. mikurensis-specific
DNA probe. In addition, the cells were labelled using
mAb anti-von Willebrand Factor conjugated to Alexa
Fluor 405 (R&D Systems, Minneapolis, MN, USA),
mAb anti-CD146 conjugated to PE or APC (Miltenyi
Biotech, Bergisch Gladbach, Germany), and either of
the nuclear stains DRAQ5 or DAPI (140 nM, Thermo
Fisher Scientific, Waltham, MA, USA). Infected endo-
thelial cells were also labelled using a 1/10 dilution of
an immune serum from a neoehrlichiosis patient
(SE13) [26] or a control serum from a healthy individ-
ual, at 37°C for 30 min. The cells were washed once,
before the addition of affinity-purified FITC-labelled
goat anti-human IgG antibody (Focus Diagnostics,
Cypress, CA, USA) for 30 min at 37°C.

Images of 1000 cells were collected in the imaging
flow cytometer (ImageStream®X Mark II; Amnis, Seat-
tle, WA, USA) and analysed with IDEAS software 6.0.
To determine what proportion of the cells were

infected, a custom-made analysis strategy was
employed. First, a mask defining the cytosol region
was created. The area stained by the Ca.
N. mikurensis-specific DNA probe was divided by
the area of the cytosol mask, and the value was then
multiplied by 100. The IDEAS feature used for calcu-
lation was as follows: Area_Threshold(M03, NEO,
30) / Area_Object(M04, BF, Tight)−Area_Threshold
(M05, DRAQ5, 60) × 100. Results are expressed as
the median feature value for 1000 cells from each
culture.

Giemsa-stained cytocentrifuge smears of
infected cell lines

Infected tick cells were spun on to glass slides using a
Shandon Cytospin cytocentrifuge (Thermo Fisher
Scientific) at 1000 rpm for 5 min, fixed in 98% metha-
nol for 10 min, and stained for 20 min using 10%
Giemsa (Merck, Darmstadt, Germany) diluted in Sor-
ensen’s phosphate buffer (0.2 M KH2PO4 and 0.2 M
Na2HPO4 in distilled water, pH 6.7) and rinsed in dis-
tilled water. Endothelial cells were seeded on to Lab-
Tek™ II Chamber slides (Nunc) placed in cell culture
wells supplemented with 2 ml medium for one day,
removed, fixed in 100% acetone for 10 min, and stained
in Giemsa solution as described above.

Circulating endothelial cells

Freshly isolated EDTA buffy coats from two patients
with newly diagnosed neoehrlichiosis were incubated
with Alexa Fluor 405-labelled mAb anti-von Willeb-
rand Factor or APC-conjugated anti-CD146 mAb for
30 min at 4°C, fixed and permeabilized with BD
Cytofix and Cytoperm kit (Becton Dickinson) and
hybridized overnight using the Alexa Fluor 488-
labelled Ca. N. mikurensis-specific DNA probe as
described for the infected endothelial cell lines. Prior
to analysis by imaging flow cytometry, the endothelial
cell nuclei were stained using DRAQ5 or DAPI.
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