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ABSTRACT

Objective: Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-ciga-

rettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited

subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’

e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to

automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This

issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neu-

ral network methods have shown promise for named entity extraction from noisy text. Motivated by these observa-

tions, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.

Methods: Our deep neural language model utilizes word embedding as the representation of text input and rec-

ognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recur-

rent Neural Network.

Results: Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of

94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930

unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.

Conclusion: Although the conditional random field baseline model had slightly better precision than our ap-

proach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be

generalized to extract medical concepts from social media for other medical applications.
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INTRODUCTION

An electronic cigarette, or e-cigarette, is an electronic nicotine deliv-

ery system (ENDS) that delivers a heated aerosol of nicotine in a

fashion that mimics conventional cigarettes.1 E-cigarettes have

grown in popularity among all age groups. Research shows that

12.6% of adults in the United States have tried e-cigarettes in

their lifetime.2 E-cigarettes have a large market among youth as

well.3 According to the US Food and Drug Administration (FDA),

e-cigarette use among high school students surged from 1.5% in

2011 to 16% in 2015.3 The global e-cigarette industry is expected

to grow over 22.36% from 2015 to 2025, reaching a total market

value of $50 billion.4

Medical studies have discovered many e-cigarette adverse events

that affect large groups of users.5,6 Recognizing the potential risks
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and the growing popularity of e-cigarette use, the FDA issued new

regulations on ENDS in May 2016. The new rules mandate that

e-cigarette manufacturers evaluate the ingredients of tobacco prod-

ucts and communicate their potential risks.7 However, most e-ciga-

rette manufacturers have failed to do so.8 To detect hazards related

to e-cigarettes and alert the public, regulatory agencies and public

health researchers need to take a more proactive role.

Most existing studies on e-cigarettes developed clinical trials to

evaluate the safety issues, with limited results due to their small sam-

ple size and short duration. Thus, the safety profile of e-cigarettes

based on clinical trials is incomplete. It is essential to conduct post-

market surveillance and monitor the hazards related to e-cigarettes.

Although postmarket monitoring systems, such as the FDA’s Med-

Watch, have been established to collect reports of adverse events,

most users are not aware of such systems. Consequently, a signifi-

cant number of e-cigarette adverse events have never been reported.

Also, current methods to detect e-cigarette adverse events, such as

clinical experiments and the MedWatch system, require huge human

capital and research budgets. There is a great need to explore cost-

efficient reporting channels for e-cigarette adverse events.

As social media has grown in popularity, many e-cigarette discus-

sion forums have emerged and received attention from vendors, con-

sumers, health care professionals, and other stakeholders. Their social

media engagements have become a valuable source for understanding

e-cigarette user behavior, health effects, and marketing practices. Fig-

ure 1 shows 2 examples of e-cigarette discussions in social media.

Recognizing the value of consumer-generated content about e-

cigarettes in social media, we aimed to develop a natural language

processing approach to understanding e-cigarette safety issues. Our

research testbed is composed of posts from the world’s largest e-cig-

arette discussion forum. Leveraging recent developments in deep

neural network methods, we utilized word embedding to represent

semantic meaning in consumer vocabulary. We developed a novel

Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neu-

ral Network model to identify e-cigarette safety issues from unstruc-

tured social media text. To the best of our knowledge, this study is

among the first to develop a deep neural network approach for med-

ical entity recognition in social media. Our study contributes to both

health information extraction methodology and regulatory practice

for ENDS product safety surveillance. By incorporating the LSTM

unit and the bidirectional architecture, our Bi-LSTM model can be

generalized to various entity recognition problems in the health in-

formatics domain. The adverse events identified in this study can be

referenced by regulatory agencies for decision support.

LITERATURE REVIEW

E-cigarette adverse events
E-cigarette safety monitoring usually has 2 phases: premarketing re-

view and postmarketing surveillance. In the premarketing phase,

e-cigarette vendors,9 the FDA,10 and researchers11–13 rely on experi-

ments or surveys to examine e-cigarette safety with a small sample

of users (10–30 subjects).14–17 These surveys and experiments have

identified adverse events such as increased heart rate,16 decreased

fractional exhaled nitric oxide,17 increased white blood cells,14 and

increased interleukins and epidermal growth factor.15 However, due

to limited sample size and short experiment duration, many review

studies are incapable of detecting rare adverse events and long-term

effects of e-cigarettes.18,19 Moreover, most premarketing e-cigarette

review studies are conducted in controlled settings with constrained

use cases. Risks associated with extreme cases such as high tempera-

ture are rarely examined. As a result, many adverse events that could

affect a massive consumer base cannot be detected in premarketing

reviews. To this end, large-scale postmarketing surveillance is essen-

tial for building safety profiles of e-cigarette products.

The responsibility for current postmarketing surveillance of e-

cigarettes mainly lies in the FDA’s MedWatch system. The Med-

Watch system allows users to report adverse events for medical

products.20 However, this voluntary reporting system has not shown

success in e-cigarette safety monitoring. Since MedWatch started to

collect reports about e-cigarette safety issues in 2008, the annual re-

port numbers have not exceeded 30.6

While regulatory agencies struggle to obtain information about

e-cigarettes, consumers have shared a significant amount of their ex-

perience on social media, making it a promising source for collecting

reports of e-cigarette adverse events. For instance, E-Cigarette

Forum, the largest social media platform for e-cigarette consumers

in the world, contains over 17 million posts from about 250 000 regis-

tered members. To utilize social media data for e-cigarette adverse

event detection, we need to identify entity names such as chemical com-

pounds and medical events.21 However, very few studies on e-cigarette

safety monitoring have utilized social media data. To understand the

state-of-the-art techniques of medical entity recognition in social media,

we reviewed social media surveillance studies for medical products.

Adverse event extraction in social media
Social media has been adopted for postmarket surveillance of many

medical products.22–26 These studies demonstrate the value of social

media in complementing the traditional medical product safety

monitoring systems. Two common approaches have been developed

for medical entity extraction: lexicon-based and statistical learning

methods. Lexicon-based approaches leverage medical term dictio-

naries, such as the Unified Medical Language System (UMLS),27

GATE,28 and MedLEE,29 to map user-generated words to standard

medical concepts and their entity types. They usually achieve low ac-

curacy (around 20–60%),22,30,31 because lexicon-based methods

cannot detect variations of medical terms used in social media, such

as consumer vocabularies, typos, and abbreviations. The state-of-

the-art statistical learning method, conditional random fields

(CRFs), usually achieve a higher precision (60–90%) than lexicon-

based methods.32–34 Nevertheless, their recalls are still low (only

40–70%),35,36 because CRFs treat words as discrete atomic symbols

and require accurate input for training and prediction. Unfortu-

nately, in social media, there are many word variations, and hence

Figure 1. Examples of e-cigarette discussions in social media
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CRFs are not as successful as they are in extracting entities from

other text genres. More advanced models that can address the word

variations and data sparsity issues are needed.

Recent developments in deep neural networks address the word

variation issue by capturing the semantic meanings of words and

achieve higher performance in entity extraction.37 According to the

distributional hypothesis, words with similar meanings occur with

similar neighbors.38 Word embedding represents each word in a vec-

tor of its surrounding words. Such a method enables us to represent

a medical term with its semantic context instead of the symbolic

term itself. We can effectively represent sparse entities, entities with

typos, and entities with variations in social media data using word

embedding. A recurrent neural network (RNN) is a class of artificial

neural network where connections between units form a loop. This

loop creates an internal state in the network and enables informa-

tion to persist during the learning process.39 RNN models with

word embedding input achieve good performance in many sequence

learning tasks, such as part-of-speech tagging,39 named entity recog-

nition (NER),40 and machine translation.41 However, a standard

RNN is not capable of learning long-term dependency (long input

sequence),42 as is often seen in social media text. Long Short-Term

Memory (LSTM) RNNs, an improvement over standard RNNs, ad-

dress the long-term dependency issue. An LSTM RNN can add or

remove information in each internal state through the internal gates

in the LSTM units. Both standard RNNs and LSTM RNNs have re-

strictions, as future input information cannot be reached at the cur-

rent state. A Bi-LSTM RNN connects 2 hidden layers from opposite

directions to the same output, thus making future input data avail-

able for the current state. Bi-LSTM RNNs have achieved leading

performance for NER on noisy user-generated text37,40 because of

their ability to consider interconnected information in a sentence.

Research gaps
Although social media provides information related to e-cigarette

safety on a large scale, there is very limited research in this area. The

primary challenge is to interpret consumer health vocabulary (CHV)

and extract useful information for e-cigarette safety monitoring

from user-generated textual data. To address this issue, we propose

to develop a Bi-LSTM model for e-cigarette adverse event detection.

Our approach incorporates state-of-the-art word embedding and Bi-

LSTM to identify e-cigarette components and medical events from

social media. Word embedding can address the sparse entity and

word variation issues in social media. The Bi-LSTM model can map

an input embedding sequence to the predefined entity types with

high performance. Our proposed method can also be utilized to

solve various social media mining problems, such as adverse drug

event detection, drug-drug interactions, and more.

METHODS

Data collection and annotation
Our research data was collected from E-Cigarette Forum (https://

www.e-cigarette-forum.com/forum/), the largest e-cigarette online

forum in the world. To ensure that the discussions were relevant to

e-cigarette safety issues, we filtered the posts by focusing our analy-

sis on 3 subforums: Health, Safety, and Vaping (vaping is the behav-

ior of inhaling and exhaling vapor generated by e-cigarette devices);

Tobacco Harm Reduction; and Nicotine. These 3 subforums were

selected because their discussions mostly concentrate on e-cigarette

safety issues such as adverse events. Our testbed encompasses

197 106 users, 6 054 832 posts, 155 296 threads, and 64 e-cigarette

brands. We collected posts from April 1, 2008, to September 9,

2015.

Since 1 post can contain multiple sentences, we segmented the

posts into sentences with the sentence boundary detection package

from NLTK (http://www.nltk.org). Five thousand sentences were

randomly selected from the testbed, 4000 in the training set and

1000 in the test set. Two expert annotators independently labeled

the sentences for entity types. We list 10 entity types included in our

annotation in Table 1.

Each word was labeled with an entity type. Figure 2 shows an

example of sentence annotation; “eos” stands for “end of the sen-

tence.”

To measure interannotator reliability, we used Cohen’s kappa.43

The kappa value is 0.96 for the e-cigarette forum data annotation. A

third annotator reviewed the disagreements and made the final judg-

ment. Finally, the ground truth was generated, containing 4000

training sentences and 1000 test sentences. The statistics of the train-

ing and test sets are shown in Table 2.

Word embedding representation
We first trained an embedding model using the Skip-gram method in

Word2vec44 on the entire forum corpus. Each unique word in the

corpus was assigned a number. The Skip-gram method predicts

what words are likely to co-occur with the word of interest. The for-

mula and description below detail the model. T is the number of

unique words in the training corpus; c is the window size of the sur-

rounding words. Words that appear within the distant of c are con-

sidered as the surrounding words. wtþj are the words surrounding

wt. Given a word wt, the training objective is to maximize the aver-

age log probability:

Table 1. Entity types

Entity Type Explanation Examples

Body part Part of the human body Chest, head, throat

Chem Chemical compounds and components of e-liquid (chemical liquid used in e-cigarettes) VG, PG, nicotine

Device E-cigarette device Madvapes, anjelvape77, atomizer

Event User-reported adverse events after using e-cigarette Headache, vomit, dizzy

Flavor E-liquid flavors Banana, cherry, apple

Num Numbers 10, 20 mg, 5.23

People People I, son, Peter

Time Time Today, 2015, 3:50

Unit Unit of weight, distance, etc. Watts, mg, mile

Na Any other mentioned entities Have, only, on, around
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1

T

XT

t¼1

X
�c�j�c;j6¼0

log pðwtþjjwtÞ:

The resulting model obtains an array of semantic vectors, also

known as word embeddings, containing predicted neighbor words

of each word in the corpus. In our experiment, we used a 50-dimen-

sional word embedding to represent a unique word. A 50-dimen-

sional word embedding is composed of 50 words that are most

likely to appear around the word of interest. Word embedding en-

ables us to represent medical entities in social media text when their

semantic information is similar to that of standard medical terms.

To avoid rare words appearing in word embedding and negatively

affecting the model performance, we pruned the vocabulary by

replacing the less frequent words with a unified symbol, “UNK”

(short for “unknown token”). We kept the top 5000 frequent words

in their original form and replaced the remaining words with UNK.

After the training, we generated a 50-dimensional embedding model.

Bi-LSTM RNN model
Our research objective, to identify the entity types related to e-ciga-

rette adverse events, can be considered as an NER task. In online fo-

rums, many user-generated posts contain long sentences. Besides,

the semantic meaning of a word can be influenced by the words be-

fore and after it. Motivated by this intuition, we designed a language

model that can handle long sentences and process sentences both

forward and backward, thus capturing the previous and future word

information at the same time. To this end, we developed a Bi-LSTM

model to extract medical entities from the online forum text.

Given an input vector (x1; . . . . . . ; xT ), an RNN computes the

output (y1; . . . . . . ; yT ) by iterating the following equations:

hðtÞ ¼ sigm
�

UxðtÞ þWhðt�1Þ
�

;

oðtÞ ¼ VhðtÞ:

sigm is the sigmoid function; U, W, and V are the weight vectors. At

each time step, the RNN takes the last hidden state hðt�1Þ and the

current input xðtÞ to compute the current hidden state hðtÞ, and it

uses the current hidden state hðtÞ to compute the current output oðtÞ.

The current hidden state hðtÞ is further passed to the next iteration

to calculate the next hidden state hðtþ1Þ.

LSTM is a unique RNN architecture. Each LSTM unit contains

an input gate iðtÞ; a forget gate f ðtÞ, an output gate oðtÞ, a memory

cell cðtÞ, and a hidden state hðtÞ. The LSTM unit computes the output

by iterating the following equations:

iðtÞ ¼ sigm
�

Wix
ðtÞ þUih

ðt�1Þ þ bi

�
;

f ðtÞ ¼ sigm
�

Wf x
ðtÞ þUf h

ðt�1Þ þ bf

�
;

oðtÞ ¼ sigm
�

WoxðtÞ þUohðt�1Þ þ bo

�
;

uðtÞ ¼ tanh
�

WuxðtÞ þUuhðt�1Þ þ bu

�
;

cðtÞ ¼ iðtÞ � uðtÞ þ f ðtÞ � cðt�1Þ;

hðtÞ ¼ oðtÞ � tanhðcðtÞÞ:

xðtÞ is the input at time step t. � denotes element-wise multiplica-

tion. W, U, and b are the weight vectors of the gate parameters.

The forget gate controls the extent to which the previous memory

cell is forgotten, the input gate controls how much each unit is

updated, and the output gate controls the exposure of the internal

memory state.45

A Bi-LSTM46 consists of 2 LSTMs that run in parallel: 1 on the

input sequence and the other on the reverse of the input sequence.

At each time step, the hidden state of the Bi-LSTM is the concatena-

tion of the forward and backward hidden states. This setup allows

the hidden state to capture both past and future information.45 To

reduce computational complexity, we trained a 50-dimensional

word embedding model, meaning each word was converted to a

50-dimensional semantic vector. Then the word sequence was rep-

resented as an embedding sequence, which was passed to the Bi-

LSTM layer. Instead of using a large hidden layer size, we used 150

neurons in the Bi-LSTM layer to avoid overfitting. This hidden

layer size setup has also been successfully tested in other studies.47

The outputs of the Bi-LSTM layers were then processed to a Soft-

max classifier, which predicts the entity type of each word in the

input sentence. A graphic illustration of our Bi-LSTM is shown in

Figure 3.

The Bi-LSTM model was trained on the annotated 4000 sen-

tences, with 1000 sentences as the validation set (for cross-

validation). Another 1000 annotated sentences were used as the test

set. The model can predict the entity type of each word in the sen-

tence automatically. The entity types are shown in Table 1.

Baseline models
Statistical learning method: conditional random fields

CRFs, a class of undirected statistical graphical model, have been

widely adopted as the state-of-the-art NER method.48–50 We used

CRFsuite51 as the implementation for our CRF baseline because it is

fast. It can generate features automatically given the training text

and provides a simple interface for training the input features.48,51

The CRF classifier can predict the entity types given new sentences.

Figure 2. Annotation example

Table 2. Statistics of annotated data

Statistics Training Set Test Set

No. of sentences 4000 1000

No. of words 84 830 21 036

No. of unique words 8108 3405

No. of body part mentions 1002 258

No. of chem mentions 2181 538

No. of device mentions 1545 406

No. of event mentions 1784 545

No. of flavor mentions 176 13

No. of num mentions 1353 389

No. of people mentions 7607 1888

No. of time mentions 1019 221

No. of unit mentions 227 201
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Lexicon-based methods

MetaMap. MetaMap52 is a Java application programming interface

that accesses the UMLS, a medical dictionary maintained by the

National Library of Medicine. Many medical studies have used

MetaMap to find biomedical concepts from text.30,53,54 We used

MetaMap to identify the entity types of the words given the input

sentences in the test set. We selected 21 entity types in the MetaMap

entity type option, which are shown in Table 3.

MetaMap 1 consumer health vocabulary. CHV55 complements the

existing UMLS framework and helps to interpret consumer health

vocabularies. CHV covers all entity types in the UMLS and enables

the translation of consumer language to professional technical

terms. We utilized CHV to map medical terms in informal and non-

technical language to standard medical terms and then MetaMap to

identify their entity types.

RESULTS

Evaluation
To evaluate the performance of our proposed model, we adopted

precision, recall, and F-measure metrics. We compared our model

with 3 strong baseline models: lexicon-based named entity recogni-

tion with MetaMap and CHV, and the state-of-the-art statistical

learning model CRF. The annotated data was divided into 2 parts:

80% for training and 20% for testing. The precision (P), recall (R),

and F-measure (F) for all entity types are shown in Table 4. The

bold numbers are the best performance for each entity type.

Our model achieved much higher recall and F-measure than the

3 baseline models for all entity types, mainly due to the capability of

recognizing adverse event entities with variations and rare adverse

events in social media. Combining MetaMap and CHV achieved

worse performance than using MetaMap alone, mainly because of

the semantic drift that CHV caused. Many common words were ex-

tracted as medical entities of interest based on CHV when they

should not have been. For instance, CHV converted “us” to “the

United States,” “an” to “autonomic nervous system,” and “me” to

“chronic fatigue syndrome.” This negatively affected the accuracy

of the system.

E-cigarette–related concepts
We applied our Bi-LSTM model to the entire corpus. Together with

the expert-annotated dataset, we identified 1591 unique adverse

events and 9930 unique e-cigarette components (ie, chemicals,

Figure 3. The Bi-LSTM RNN architecture

Table 3. UMLS entity types

Entity Type UMLS Entity Type

bodypart bdsy (Body System), blor (Body Location or Region), bpoc (Body Part, Organ, or Organ Component)

chem chem (Chemical), chvf (Chemical Viewed Functionally), chvs (Chemical Viewed Structurally), clnd

(Clinical Drug), elii (Element, Ion, or Isotope), enzy (Enzyme), hops (Hazardous or Poisonous Substance),

inch (Inorganic Chemical), orch (Organic Chemical), phsu (Pharmacologic Substance)

device drdd (Drug Delivery Device), medd (Medical Device)

event acab (Acquired Abnormality), dsyn (Disease or Syndrome), inpo (Injury or Poisoning), mobd

(Mental or Behavioral Dysfunction), patf (Pathologic Function), sosy (Sign or Symptom)

flavor No match

num qnco (Quantitative Concept)

people humn (Human), famg (Family Group)

time tmco (Temporal Concept)

unit No match
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flavors, and devices) from the entire research corpus. As men-

tioned before, word embedding contains semantic information of

words. Words with similar semantic meaning have similar vector

representation. To demonstrate this feature of word embedding,

we visualized the semantic similarity of words based on the em-

bedding representations. We used the t-SNE technique,56 which

reduces the dimensions of the embedding from 50 to 2 while pre-

serving the relevant distance among the vectors. Words related to

e-cigarette are plotted in Figure 4.

In the word embedding visualization, semantically similar words

are clustered together. For instance, most words in the red circle are

about adverse events, words in the blue circle are basically about

chemicals, and words in the green circle are related to flavors. This

result indicates that word embedding represents semantically similar

words with similar vectors, and this representation is invariant to

different spellings of words.

There are 34 287 adverse event entities (1591 unique ones). The

adverse event entities account for 8.49% of all the extracted entities.

Cough, headache, allergy, asthma, sore throat, and migraine were

very commonly reported among e-cigarette users. Allergy, eye-

twitch, fatigue, and asthma, which can potentially lead to serious

health outcomes, have not been noted by the FDA. The new reports

of adverse e-cigarette events will be valuable to the FDA’s product

safety monitoring program. We also identified 59 597 chemical enti-

ties (6509 unique ones; ie, vg, pg, caffeine, nicotine), 2879 flavor en-

tities (334 unique ones; ie, chocolate, cherry, banana, vanilla), and

Table 4. Experiment results

Entity Type MetaMap MetaMapþCHV CRF Bi-LSTM RNN

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

All 42.5 21.7 28.7 26.9 18.6 22.0 95.9 75.3 84.4 94.1 91.8 92.9

Body part 75.4 55.3 63.8 35.7 22.9 27.9 95.2 67.0 78.6 93.9 89.8 91.8

Chemical 67.8 35.2 46.3 30.0 33.6 31.7 98.9 65.9 79.1 82.1 91.5 86.5

Device 4.9 0.7 1.2 4.8 0.7 1.2 99.1 79.0 87.9 94.4 91.9 93.1

Event 65.6 45.6 53.8 31.2 42.5 36.0 99.5 38.6 55.6 91.9 77.3 84.0

Flavor 0.0 0.0 0.0 0.0 0.0 0.0 100.0 6.7 12.6 84.6 73.3 78.6

Number 59.3 100.0 74.5 18.5 37.8 24.8 78.5 94.6 85.8 96.5 98.4 97.4

People 57.9 2.3 4.4 47.6 1.1 2.2 99.8 91.1 95.3 98.6 96.7 97.6

Time 29.0 83.8 43.1 29.4 83.3 43.5 99.4 72.5 83.8 95.7 89.1 92.3

Unit 0.0 0.0 0.0 0.0 0.0 0.0 70.3 31.8 43.8 88.2 82.5 85.3

Figure 4. Word embedding visualization for e-cigarette related entities
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36 548 device entities (3087 unique ones; ie, madvapes, cloupor,

anjelvape77, vapemail). Chemical entities account for 14.79% of all

the extracted entities, flavor entities account for 0.71%, and device

entities account for 9.05%.

DISCUSSION

Findings
This research aimed to extract adverse events related to e-cigarette

from social media content. We developed the Bi-LSTM model with

word embedding as the input representation. Although our model

had slightly lower precision than the CRF model, it achieved much

higher recall, resulting in the best F-measure among 3 strong base-

line models. Our proposed method addresses the issues of the exist-

ing entity recognition methods. Our evaluation results show that

our model reaches a precision of 94.10%, a recall of 91.80%, and

an F-measure of 92.94%. The recall is 16% higher than the state-of-

the-art CRF method, and the F-measure is 8% higher than CRF.

The high recall ensures that our model can detect most of the rele-

vant adverse events from the corpus data. We detected e-cigarette–

related entities such as adverse events, chemical compounds, flavors,

and devices. Some adverse events that we identified have not been

noted by the FDA yet, including allergy, eye-twitch, fatigue, and

asthma. Since the FDA has just started to regulate e-cigarettes, the

agency has received limited e-cigarette safety reports. Social media,

however, has matured and accumulated a large volume of e-cigarette

discussions and feedback. In this sense, this data source provides

valuable insights that are unnoted by the FDA.

Implications
First, our proposed Bi-LSTM is very useful in extracting medical en-

tities from user-generated content. Compared to other entity recog-

nition methods, our method achieved much higher recall, meaning

our model can identify medical entities that have typos, abbrevia-

tions, and other variations in social media content. This is because

the Bi-LSTM with word embedding is able to capture and process

the semantic meanings of words. Furthermore, our approach, which

uses social media data, can assist e-cigarette postmarket surveillance

and increase the understanding of users’ experiences with e-ciga-

rettes. Our method automatically identifies discussions about ad-

verse events, chemical compounds, e-cigarette device parts, and

brands with high accuracy. This information can help clinical practi-

tioners see from the consumers’ perspective and gain better knowl-

edge about emerging issues in the e-cigarette market. These user

experiences will complement clinical experiments and enrich the

knowledge of e-cigarette safety issues. Moreover, our research can

improve consumer awareness of harmful outcomes of e-cigarette

use. While most campaigns promote e-cigarettes as a benign alterna-

tive to conventional cigarettes or other tobacco products, few new

consumers are aware that e-cigarette use can cause adverse events.

Our findings can also provide supplemental information for regula-

tory agencies to improve consumer awareness of harmful outcomes

of e-cigarettes.

Limitations
First, we trained a Bi-LSTM model to reduce computational com-

plexity. To obtain higher performance, we can train an LSTM net-

work, though at the cost of longer training duration. Second, the

word embedding model contained 50 dimensions. Higher-

dimensional embedding models can be trained to capture more accurate

semantic information. Third, we did not consider the relationships be-

tween adverse events and chemical compounds. Relation extraction can

be applied to identify the adverse events related to a particular chemical

compound. Fourth, social media surveillance alone is not enough for

comprehensive e-cigarette safety regulation. Clinical experiments, to-

gether with complementary online surveillance, will improve clinical im-

plications. For future research, more sophisticated models can be tested

and further analysis such as relation extraction can be performed.

CONCLUSION

E-cigarettes have been proven to cause adverse effects. However,

previous medical studies and e-cigarette safety monitoring systems

failed to identify adverse e-cigarette events on a large scale. This

study aimed to extract e-cigarette–related information from a large

volume of social media data. We developed a high-performance in-

formation extraction framework for e-cigarette social media safety

surveillance using a deep neural network method. Although the CRF

baseline model had slightly better precision, our Bi-LSTM RNN

model achieved much higher recall, resulting in a higher F-measure

than strong statistical learning and lexicon-based baselines. To the

best of our knowledge, we are among the first to develop a deep neu-

ral network–based approach for understanding medical information

in social media, and this is also the first study to examine e-cigarette

safety issues on a large scale. By incorporating the LSTM unit and

the bidirectional architecture, our proposed Bi-LSTM model can ac-

curately extract relevant medical entities in social media data. This

framework can be generalized to solve other problems, such as ad-

verse drug event detection and drug-drug interactions. Based on the

extracted information, we identified adverse events unnoted by the

FDA and prior studies, which further demonstrates the value of

user-generated social media content for e-cigarette safety surveil-

lance. Our research supports tobacco product regulatory policy

makers by providing new evidence of harmful e-cigarette effects,

such as allergy, eye-twitch, fatigue, and asthma. We also contribute

to health informatics research by designing a novel computational

method for named entity recognition. Future research can focus on

finding the best configuration of model parameters, such as the

number of hidden layers and word embedding dimensions.
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